UNIVERSITI PUTRA MALAYSIA

EFFECTS OF ETHANOLIC AZADIRACHTA EXCELSA (JACK) JACOBS. LEAF EXTRACT ON BLOOD PRESSURE AND OXIDATIVE STRESS IN THE SPONTANEOUSLY HYPERTENSIVE RAT MODEL

NUR FARHANA AHMAD SOPIAN

FPV 2017 24
EFFECTS OF ETHANOLIC AZADIRACHTA EXCELSA (JACK) JACOBS, LEAF EXTRACT ON BLOOD PRESSURE AND OXIDATIVE STRESS IN THE SPONTANEOUSLY HYPERTENSIVE RAT MODEL

By

NUR FARHANA AHMAD SOPIAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

August 2017
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATIONS

This thesis is especially dedicated to my beloved mother, Salmah Ismail and to my late father Allahyarham Ahmad Sopian Omar. A lot of thanks to my siblings, family and friends for all the tremendous support, prayers and encouragement during my entire postgraduate life.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

EFFECTS OF ETHANOLIC *Azadirachta excelsa* (Jack) Jacobs. LEAF EXTRACT ON BLOOD PRESSURE AND OXIDATIVE STRESS IN THE SPONTANEOUSLY HYPERTENSIVE RAT MODEL

By

NUR FARHANA AHMAD SOPIAN

August 2017

Chair: Hafandi Ahmad, PhD
Faculty: Veterinary Medicine

Oxidative stress is implicated in the development and maintenance of hypertension. To date the available therapies and oral antihypertensive drugs could only help in treating hypertension regardless of oxidative stress status and organ protective effect in the hypertensive patients. Hence, researchers are searching for antihypertensive plants that could complement oral drugs in hypertension. *Azadirachta excelsa* or locally known as “sentang” tree is one of the plants that have been used in Malay traditional medicine to treat diabetes. However, there were only a few studies regarding its antihypertensive and antioxidant activity on mammals. Therefore, this research aimed to evaluate the antihypertensive effects of *A. excelsa* by measuring the blood pressure of rats, serum analysis on aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine phosphokinase (CPK) and lactate dehydrogenase (LDH). Meanwhile, its antioxidant effect on oxidative stress status was determined through organ analysis on malondialdehyde (MDA) level, antioxidant enzyme activity [Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)] and histopathological changes of tissue structures in the liver, kidney, and heart of SHR. In this study, twenty-four male SHR of 12-14 weeks old were assigned randomly into four different groups (n=6) as followed; Group I, SHR control received distilled water; Group II, SHR received 250 mg/kg of *A. excelsa*; Group III, SHR received 10 mg/kg of quercetin; and Group IV, SHR received 40 mg/kg of captopril. Meanwhile, male Wistar-Kyoto (WKY; n=6) rats were used as normotensive control also received distilled water. The treatments were given in 28 days where the blood pressure was measured weekly. Initially, systolic blood pressure (SBP) and diastolic blood pressure (DBP) of SHR were high significantly (P<0.01) compared to WKY. At the end of experiment, the SBP and DBP in SHR were alleviated by all treatment groups (P<0.01). Meanwhile, only quercetin-treated SHR showed significantly reduced serum enzymes of AST, ALT, LDH, and CPK. MDA level in the liver, kidney, and heart
of SHR were significantly higher (P<0.05) compared to WKY indicating impaired organ in these rats. Interestingly, treatment with *A.excelsa* and quercetin lower the MDA level in all organs (P<0.05). Furthermore, SOD activity in the heart from all treated SHR was decreased while only GPx activity in the liver and heart of *A.excelsa* treatment was increased. *A.excelsa* and quercetin treatments managed to improve hepatocyte structure. Also, all treatments managed to ameliorate glomerular and renal tubular lesions of the kidney, while only captopril treatment retained normal architecture of myocardial tissue of the heart. In conclusion, current findings suggested that *A. excelsa* ethanolic leaf extract could attenuate hypertension via amelioration of oxidative stress and improved tissue structure in SHR.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

KESAN EKSTRAK ETANOL DAUN Azadiractha excelsa (Jack) Jacobs. TERHADAP TEKANAN DARAH DAN TEGASAN OXIDATIF KE ATAS MODEL TIKUS HIPERTENSI

Oleh

NUR FARHANA AHMAD SOPIAN

Ogos 2017

Pengerusi: Hafandi Ahmad, PhD
Fakulti: Perubatan Veterinar

Tegasan oksidatif dikaitkan dengan perkembangan dan penyelenggaraan tekanan darah tinggi. Setakat ini, terapi dan ubatan antihipertensi oral yang sedia ada hanya mampu membantu merawat hipertensi tanpa mengira status tekanan oksidatif dan melindungi organ pesakit hipertensi. Oleh itu, para penyelidik mencari pokok antihipertensi yang mampu bertindak sebagai pelengkap kepada ubatan oral di dalam hipertensi. Azadiractha excelsa atau pokok yang dikenali sebagai "sentang" adalah salah satu pokok yang digunakan dalam perubatan tradisional Melayu untuk merawat kencing manis. Walau bagaimanapun, terdapat hanya beberapa kajian sahaja mengenai aktiviti antihipertensi dan antioksidan pada mamalia. Oleh itu, kajian ini bertujuan untuk menilai kesan antihipertensi A. excelsa dengan mengukur tekanan darah tikus, analisis serum terhadap paras aspartate aminotransferase (AST), alanina aminotransferase (ALT), kreatina fosfokinase (CPK) dan laktat dehidrogenase. Sementara itu, kesan antioksidan ke atas tekanan oksidatif diukur melalui analisis organ terhadap paras malondialdehyde (MDA) dan aktiviti enzim antioksidan [Superoksida dismutase (SOD), katalase (CAT) dan glutathione peroksidase (GPx)] dan perubahan histopatologi struktur tisu di dalam hati, ginjal, dan jantung daripada SHR. Di dalam kajian ini, dua puluh empat tikus SHR jantan berumur 12-14 minggu dibahagikan kepada empat kumpulan yang berbeza secara rawak (n=6) seperti berikut; Kumpulan I, SHR kawalan menerima air suling; Kumpulan II, SHR menerima 250 mg/kg A.excelsa; Kumpulan III, SHR menerima 10 mg/kg quercetin; dan Kumpulan IV, SHR menerima 40 mg/kg captopril. Sementara itu, tikus Wistar-Kyoto (WKY; n=6) dijadikan sebagai kawalan normotensif juga menerima air suling. Rawatan diberikan dalam masa 28 hari di mana tekanan darah diambil setiap minggu. Pada mulanya, tekanan sistolik (SBP) dan diastolik (DBP) dari tikus SHR adalah sangat tinggi (P<0.01) berbanding tikus WKY. Pada akhir rawatan, semua rawatan telah berjaya mengurangkan tekanan SBP dan DBP (P<0.01). Sementara itu, hanya tikus SHR yang dirawat dengan quercetin menunjukkan pengurangan signifikan terhadap paras serum AST, ALT, LDH dan CPK. Paras MDA diukur dalam hati, ginjal dan jantung kawalan SHR menunjukkan peningkatan signifikan (P<0.05) berbanding dengan kawalan WKY,
menandakan organ yang terjejas dalam tikus ini. Menariknya, rawatan dengan *A.exelsa* dan quercetin mengurangkan paras MDA dalam semua organ (P<0.05). Tambahan lagi, aktiviti SOD dalam jantung daripada semua SHR yang dirawat telah menurun, sementara itu hanya aktiviti GPx di dalam hati dan jantung daripada rawatan *A.exelsa* telah meningkat. Rawatan *A.exelsa* dan quercetin berjaya memperbaiki struktur hepatosit. Dan juga, semua rawatan berjaya mengurangkan luka-luka tiub glomerular pada ginjal, manakala hanya rawatan captopril membaiki struktur normal tisu miokardium jantung. Kesimpulannya, penemuan terkini menunjukkan bahawa ekstrak *A.exelsa* boleh merawat tekanan darah tinggi dengan menangani tegasan oksidatif dan menambah baik struktur tisu dalam tikus SHR.
ACKNOWLEDGEMENTS

In the name of Allah S. W. T, the most gracious and most merciful, praise be to Him for giving me the strength, courage and guidance during completing this thesis. First and foremost, I would like to express my deepest gratitude to my supervisor, Dr. Hafandi Ahmad for his guidance, suggestions, encouragement and giving me plenty of freedom and space to conduct my study as well as completing this thesis. My sincere appreciation is also extended to my co-supervisors, Assoc. Prof. Dr. Goh Yong Meng and Prof. Dr. Mohamed Ali Rajion for their help and valuable ideas shared throughout my research project. I would like to express my very great appreciation to my ex-supervisor during Final Year Project (UiTM), Mdm. Nurdiana Samsulrizal for her continuous support, motivation, and immense knowledge. Besides that, I would like to offer my special thanks Dr. Mokrish for his time and constructive suggestions during performing the research work. His knowledge offered to me was greatly appreciated.

I am particularly grateful for the assistance given by the laboratory staffs, Mdm. Zainab, Mdm. Rosmawati, Mr. Hafiz and Mr. Jamil, for their kindness to allow me to use all the laboratory apparatus and equipment freely while completing this project. Besides, I would also like to thank Dr. Hj. Ahmad Zuhaidi Yahya and En. Mohd Noor Mahat from Forest Research Institute Malaysia (FRIM) for their generosity in helping me collecting samples needed for my study. Acknowledgments are also extended to Mdm. Fazila Sulaiman, a research officer from Agro-Bioteknologi Institut (ABI), MARDI for her guidance during handling the blood pressure machine.

My warmest appreciation also goes to all of my beloved friends, Nurul ‘Izzati Shafie, Nur Ain Amin, Noraini Shamsudin, Ummu Afiqah Hassan and to all my friends who those involve directly or indirectly in supporting and helping me undoubtedly to run this project successfully. Last but not least, my dearest appreciation and thanks to my beloved mother, Salmah binti Ismail and all my family members for their pray and support that strengthen me to complete this project. All of the contributions are really appreciated and only Allah S.W.T could give something as return. Thank you very much.
I certify that a Thesis Examination Committee has met on 8th August 2017 to conduct the final examination of Nur Farhana Binti Ahmad Sopian on her thesis entitled “Effects of Ethanolic Azadirachta excelsa (Jack) Leaf Extract on Blood Pressure and Oxidative Stress in the Spontaneously Hypertensive Rat Model” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

RASEDEE @ MAT BIN ABDULLAH, PHD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

MOHD HEZMEE BIN MOHD NOOR, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

SULAIMAN BIN MD DOM, PhD
Associate Professor
Faculty of Health Sciences
Universiti Teknologi Mara Selangor
(External Examiner)

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 26 October 2017
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Hafandi bin Ahmad, PhD
Senior Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Goh Yong Meng, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Mohamed Ali bin Rajion, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: __________________________ Date: __________________

Name and Matric No.: __
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ________________________________
Name of Chairman of Supervisory Committee:

Signature: ________________________________
Name of Member of Supervisory Committee:

Signature: ________________________________
Name of member of Supervisory Committee:

ix
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Background of study</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Significance of study</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Objectives of study</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Hypotheses</td>
<td>3</td>
</tr>
<tr>
<td>1.5 Justifications of the study</td>
<td>3</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Hypertension</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1 Essential hypertension</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2 Secondary hypertension</td>
<td>7</td>
</tr>
<tr>
<td>2.1.3 Stages of hypertension</td>
<td>9</td>
</tr>
<tr>
<td>2.1.4 The impact of hypertension</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Pathogenesis of hypertension</td>
<td>10</td>
</tr>
<tr>
<td>2.2.1 Reactive oxygen species (ROS) in blood vessels</td>
<td>11</td>
</tr>
<tr>
<td>2.2.2 Renin-Angiotensin Aldosterone System (RAAS)</td>
<td>20</td>
</tr>
<tr>
<td>2.3 Medication used for hypertension</td>
<td>22</td>
</tr>
<tr>
<td>2.3.1 Captopril</td>
<td>22</td>
</tr>
<tr>
<td>2.4 Hypertensive animal model</td>
<td>23</td>
</tr>
<tr>
<td>2.5 Plant remedies in hypertension treatment</td>
<td>24</td>
</tr>
<tr>
<td>2.6 Azadirachta excelsa</td>
<td>25</td>
</tr>
<tr>
<td>2.6.1 Geographical and botanical Description</td>
<td>26</td>
</tr>
<tr>
<td>2.6.2 Phytochemicals in Azadirachta excelsa</td>
<td>26</td>
</tr>
<tr>
<td>2.6.3 Biological activities of Azadirachta excelsa</td>
<td>27</td>
</tr>
<tr>
<td>2.6.4 Antidiabetic effect of Azadirachta excelsa</td>
<td>27</td>
</tr>
<tr>
<td>3 MATERIALS AND METHOD</td>
<td></td>
</tr>
<tr>
<td>3.1 Preparation of Azadirachta excelsa leaf powder and ethanolic crude extract</td>
<td>29</td>
</tr>
<tr>
<td>3.2 Experimental location and animal housing</td>
<td>29</td>
</tr>
<tr>
<td>3.3 Experimental design</td>
<td>29</td>
</tr>
<tr>
<td>3.4 Collection of Blood and Organ Samples</td>
<td>30</td>
</tr>
</tbody>
</table>
4 QUANTITATIVE ANALYSIS AND ANTIOXIDANT ACTIVITIES OF *Azadirachta excelsa* ETHANOLIC LEAF EXTRACT

4.1 Introduction 33
4.2 Objective 33
4.3 Materials and methods 34
 4.3.1 Chemicals and raw materials 34
 4.3.2 Preparation of leaves powder and ethanolic extract 34
 4.3.3 Quantitative analysis 34
 4.3.4 *In-vitro* antioxidant activities 35
4.4 Results 36
 4.4.1 Quantitative analysis of phytochemicals on phenolics and flavonoids content 36
 4.4.2 *In-vitro* antioxidant study of *Azadirachta excelsa* leaf extract (DPPH assay) 36
4.5 Discussion 38
 4.5.1 Quantitative analysis of phytochemicals on TPC and TFC 38
 4.5.2 *In-vitro* antioxidant study of *Azadirachta excelsa* leaf extract 39
4.6 Conclusions 40

5 ANTIHYPERTENSIVE EFFECTS OF ETHANOLIC *Azadirachta excelsa* LEAF EXTRACT ON SERUM ENZYMES

5.1 Introduction 41
5.2 Objectives 42
5.3 Materials and methods 42
 5.3.1 Measurement of blood pressure on single oral dose and 28 days administration of *Azadirachta excelsa* ethanolic leaf extract 42
 5.3.2 Measurement of body weight and organs weight (somatic index) 43
 5.3.3 Serum analysis 43
5.4 Data analysis 44
5.5 Results 44
 5.5.1 Single oral dose administration on systolic blood pressure of SHR 44
 5.5.2 Blood pressure in SHR during 28 days administration 47
 5.5.3 Body weight during treatment 51
 5.5.4 Organ weight over body weight ratios 53
 5.5.5 Serum analysis of LDH and CPK 55
5.6 Discussion 57
 5.6.1 Single oral dose of *Azadirachta excelsa* leaf extract administration on blood pressure of SHR 57
 5.6.2 Blood pressure level in SHR during 28 days administration 57
 5.6.3 Body weight 58
 5.6.4 Organ weight over body weight ratios 59
 5.6.5 Serum analysis 59
5.7 Conclusion 60
6 ASSESSMENT ON MALONDIALDEHYDE (MDA) AND ANTIOXIDANT ENZYME ACTIVITIES LEVEL IN KIDNEY, LIVER AND HEART.

6.1 Introduction 61
6.2 Objectives 62
6.3 Materials and methods 62
 6.3.1 Processing of tissues 62
 6.3.2 Protein assay 62
 6.3.3 Measurement of malondialdehyde (MDA) level 62
 6.3.4 Antioxidant enzyme activity 63
6.4 Data analysis 64
6.5 Results 64
 6.5.1 Measurement of malondialdehyde (MDA) level 64
 6.5.2 Antioxidant enzyme activity in organs 66
 6.5.3 Glutathione peroxidase (GPx) activities 68
6.6 Discussion 70
 6.6.1 Malondialdehyde (MDA) level 70
 6.6.2 Antioxidant enzyme activity in organs 71
6.7 Conclusions 72

7 EVALUATION ON POTENTIAL TOXICITY CHANGES ASSOCIATED WITH THE ADMINISTRATION OF ETHANOLIC Azadirachta excelsa EXTRACT

7.1 Introduction 73
7.2 Objectives 74
7.3 Materials and methods 74
 7.3.1 Serum analysis on toxicity 74
 7.3.2 Tissue collection and histopathology 74
 7.3.3 Lesions scoring for liver, kidney, and heart 75
7.4 Data analysis 75
7.5 Results 76
 7.5.1 Serum level of AST and ALT 76
 7.5.2 Histopathological findings of organs 78
 7.5.3 Scoring index of liver 90
 7.5.4 Scoring index of kidney 90
 7.5.5 Scoring index of heart 91
7.6 Discussion 92
7.7 Conclusions 95

8 GENERAL DISCUSSION AND CONCLUSION 96

REFERENCES 99
APPENDICES 116
BIODATA OF STUDENT 121
LIST OF PUBLICATIONS 122
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stages of hypertension</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Total phenolic and flavonoid content of Azadirachta excelsa</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>Single oral dose administration on blood pressure of SHR</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>Heart rate changes (bpm) of rats during treatment</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>Body weight changes (g) during treatment</td>
<td>52</td>
</tr>
<tr>
<td>6</td>
<td>Somatic index (% of body weight) of SHR’s organ</td>
<td>54</td>
</tr>
<tr>
<td>7</td>
<td>Superoxide dismutase (SOD) enzyme activities</td>
<td>67</td>
</tr>
<tr>
<td>8</td>
<td>Catalase (CAT) enzyme activities</td>
<td>67</td>
</tr>
<tr>
<td>9</td>
<td>Scoring index of liver</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>Scoring index of kidney</td>
<td>90</td>
</tr>
<tr>
<td>11</td>
<td>Scoring index of heart</td>
<td>91</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interaction of genetic and environmental factors in the development of primary hypertension</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>The mechanism in the development of hypertension</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Sources of ROS in vascular cells</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>ROS and the enzymes that regulate their level</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Combination of several mechanisms leading to hypertension</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>Angiotensin-Converting Enzyme (ACE) mechanism</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>Azadirachta excelsa tree</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>Summary of research approach for plant study</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>Summary of experimental design for animal study</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>Percentage of DPPH scavenging activity against samples</td>
<td>37</td>
</tr>
<tr>
<td>11</td>
<td>Percentage of DPPH scavenging activity at 500 μg/ml</td>
<td>37</td>
</tr>
<tr>
<td>12</td>
<td>Systolic blood pressure (SBP) level (mmHg) at different doses of A. excelsa</td>
<td>46</td>
</tr>
<tr>
<td>13</td>
<td>Systolic blood pressure (SBP) level (mmHg) of rats</td>
<td>48</td>
</tr>
<tr>
<td>14</td>
<td>Diastolic blood pressure (DBP) level (mmHg) of rats</td>
<td>49</td>
</tr>
<tr>
<td>15</td>
<td>CPK level (U/L) after 4 weeks treatment</td>
<td>56</td>
</tr>
<tr>
<td>16</td>
<td>LDH level (U/L) after 4 weeks treatment</td>
<td>56</td>
</tr>
<tr>
<td>17</td>
<td>MDA level (nmol/mg) in liver</td>
<td>65</td>
</tr>
<tr>
<td>18</td>
<td>MDA level (nmol/mg) in kidney</td>
<td>65</td>
</tr>
<tr>
<td>19</td>
<td>MDA level (nmol/mg) in heart</td>
<td>66</td>
</tr>
<tr>
<td>20</td>
<td>GPx level (nmol/mg) in liver</td>
<td>68</td>
</tr>
<tr>
<td>21</td>
<td>GPx level (nmol/mg) in kidney</td>
<td>69</td>
</tr>
<tr>
<td>22</td>
<td>GPx level (nmol/mg) in heart</td>
<td>69</td>
</tr>
<tr>
<td>23</td>
<td>Serum level of AST (U/L)</td>
<td>77</td>
</tr>
<tr>
<td>24</td>
<td>Serum level of ALT (U/L)</td>
<td>77</td>
</tr>
<tr>
<td>25</td>
<td>Photomicrographs of liver of rats of each group</td>
<td>79-81</td>
</tr>
<tr>
<td>26</td>
<td>Photomicrographs of kidney of rats of each group</td>
<td>83-85</td>
</tr>
<tr>
<td>27</td>
<td>Photomicrographs of heart of rats of each group</td>
<td>87-89</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Animal ethic form</td>
<td>119</td>
</tr>
<tr>
<td>2 Standard curve of BCA protein and MDA</td>
<td>120</td>
</tr>
<tr>
<td>3 Standard curve of CAT and SOD enzyme</td>
<td>121</td>
</tr>
<tr>
<td>4 Standard curve of GPx and gallic acid</td>
<td>122</td>
</tr>
<tr>
<td>5 Standard curve of rutin and DPPH assay</td>
<td>123</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAPH</td>
<td>2,2’-azobis (2-amidinopropane)</td>
</tr>
<tr>
<td>ACE</td>
<td>Angiotensin converting enzyme</td>
</tr>
<tr>
<td>ACEI</td>
<td>Angiotensin converting enzyme inhibitors</td>
</tr>
<tr>
<td>ADH</td>
<td>anti-diuretic hormone</td>
</tr>
<tr>
<td>AGT</td>
<td>Angiotensinogen</td>
</tr>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine aminotransferase</td>
</tr>
<tr>
<td>ANG I</td>
<td>Angiotensin I</td>
</tr>
<tr>
<td>ANG II</td>
<td>Angiotensin II</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate aminotransferase</td>
</tr>
<tr>
<td>BBB</td>
<td>blood-brain barrier</td>
</tr>
<tr>
<td>BPM</td>
<td>beats per minute</td>
</tr>
<tr>
<td>CAT</td>
<td>Catalase</td>
</tr>
<tr>
<td>CI</td>
<td>Cardiosomatic index</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>CVO</td>
<td>circumventricular organs</td>
</tr>
<tr>
<td>DBP</td>
<td>Diastolic blood pressure</td>
</tr>
<tr>
<td>DPPH</td>
<td>2,2-diphenyl-1-picrylhydrazyl</td>
</tr>
<tr>
<td>eNOS</td>
<td>endothelial nitric oxide synthase</td>
</tr>
<tr>
<td>GR</td>
<td>glutathione reductase</td>
</tr>
<tr>
<td>GSSG</td>
<td>oxidized glutathione</td>
</tr>
<tr>
<td>GPx</td>
<td>Glutathione peroxidase</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>hydroxyl peroxide</td>
</tr>
<tr>
<td>HSI</td>
<td>Hepatosomatic index</td>
</tr>
<tr>
<td>IC₅₀</td>
<td>half maximal inhibitory concentration</td>
</tr>
<tr>
<td>ICV</td>
<td>intracerebroventricular</td>
</tr>
<tr>
<td>KSI</td>
<td>kidney somatic index</td>
</tr>
<tr>
<td>LDLs</td>
<td>Low density lipoproteins</td>
</tr>
<tr>
<td>MDA</td>
<td>Malondialdehyde</td>
</tr>
<tr>
<td>MmHg</td>
<td>Millimeter per mercury</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>PKD</td>
<td>polycystic kidney disease</td>
</tr>
<tr>
<td>PUFA</td>
<td>Polyunsaturated fatty acid</td>
</tr>
<tr>
<td>RAAS</td>
<td>Renin angiotensin aldosterone system</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SBP</td>
<td>Systolic blood pressure</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of mean</td>
</tr>
<tr>
<td>SHR</td>
<td>Spontaneously hypertensive rat</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>VSMC</td>
<td>vascular smooth muscle cell</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WKY</td>
<td>Wistar-Kyoto rat</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of study

Hypertension is a silent killer disease manifested as the major contributor to the development of many cardiovascular diseases (CVD). It was reported that CVD is the main cause of mortality and morbidity rate in a worldwide population contributed to 16.7 million deaths in worldwide each year (WHO, 2003). Back in 2009, it was estimated about 12.8% of total deaths per year in which 7.5 million from the total deaths is accredited to hypertension (WHO, 2009). However, because of population growth and aging, the number had increased to 16.5% of annual deaths worldwide where hypertension is recognized as leading cause associated with CVD (WHO, 2013). According to WHO (2013), the annual death toll is estimated to reach 23.5 million people by 2030. Commonly, people with high blood pressure are at high risk of CVD such as heart attack, stroke, and atherosclerosis. Other than that, hypertension also lead to renal damage, dementia, or blindness (August, 2004; Freedman and Cohen, 2016). Thus, alleviating hypertension can reduce the risk of mortality associated with CVD and others complications in hypertensive patients (Chobanian et al., 2003).

In current medical practice, there are many types of antihypertensive drugs prescribed for hypertension although sometimes the exact etiology of hypertension remains unknown. Despite this, there is increasing concern about the quality of patient’s life receiving treatment for hypertension as these regimes may be associated with various adverse effects. Specifically, elderly hypertensive patients are little more prone to side-effects. Most of the synthetic antihypertensive drugs often cause undesired side effects such as dehydration, vomiting, and cough. As an example, beta-blockers and diuretics drugs only reduce blood pressure but unable to prevent organ damage (Clinical Practice Guidelines for the Management of Hypertension, 2013). In order to achieve an optimal effect of hypotensive action, the efficiency of the drugs are only 34% when two or more antihypertensive drugs from different categories were combined (August, 2004; Yeh et al., 2009; Wang and Xiong, 2012). Major concerns often delay the treatment are represented by their availability and accessibility (Wang and Xiong, 2012), unwanted side effects (Susait et al., 2011; Wang and Xiong, 2012) and higher costs of antihypertensive drugs (Susait et al., 2011) when combination of two or more pills are needed. Thus, researchers revealed many potential plant species that possessed antihypertensive properties. For instance, high intake of natural flavonoids from medicinal plants in the diet was reported to have an inverse relationship to risk of CVD (Knekt et al., 2002). They play a protective role against the development of pathological conditions such as hypertension, diabetes, and obesity which associated to oxidative stress. Oxidative stress emerges as a key regulator of blood pressure regulation by
balancing vasoconstrictor and vasodilator mechanisms. Disruption of the mechanism leads to a persistent vasoconstriction and resulted in an elevation of blood pressure. As hypertension is one of the most common metabolic disorders characterized by oxidative stress, there is a growing interest of inhibiting oxidative stress by using natural antioxidants in plants such as phenolic and flavonoid compounds.

Commonly, the hypertensive patients from low-income group, especially rural dwellers in developing countries are seeking alternative approaches such as herbal remedies to control hypertension and its concomitant complications in face of limited socioeconomic resources (Chockalingam et al., 2006). Therefore, plant-based remedies are being widely investigated by researchers to provide alternatives in treating hypertension. Currently, various species of plants have been identified to exert antioxidant associated with antihypertensive properties (Nahida and Feroz, 2011). However, not all of them have received scientific scrutiny and therefore scientific research needs to be done to verify their effectiveness and elucidate safety profile of such herbal remedies.

Azadirachta excelsa or locally known as “sentang” belongs to Meliaceae family where it is a plant family that recognizable with various benefits associated with medical properties. A number of studies have investigated the biological activities of *A. excelsa* such as antiseptic, anti-inflammatory, antimicrobial, antifeedant and insecticidal agent (Ng et al., 2003; Akhtar et al., 2008; Mustafa and Al-Khazraji, 2008). Meanwhile, our previous finding on animal studies had proven that *A. excelsa* acts as an antidiabetic agent by reducing blood glucose level in type 1 and type 2 of diabetes mellitus (Nurdiana et al., 2013; Nurdiana et al., 2014; Nurul ‘Izzati 2016). However, *A. excelsa* has not been studied extensively regarding its antihypertensive activity. Thus, the current study was designed primarily to determine its effect on blood pressure in genetic hypertension animal model. This study may also provide an alternative source of natural herbs potential namely *A. excelsa* as antihypertensive agents with probably fewer or no adverse side effect.

1.2 Significance of study

The study was designed primarily to evaluate the antioxidant activities of *A. excelsa* leaf extract on Spontaneously Hypertensive Rat (SHR) model. This study allows the plant to be scientifically prove as remedies for hypertension as well as its ability in scavenging free radicals. As encouraged by World Health Organization (WHO), the present study can be a turning point in enhancing more research involving natural herbs as drugs of tomorrow to improve our quality life.
1.3 Objectives of study

Main objective;
To determine the antioxidant activities of *A. excelsa* leaf extract on blood pressure and oxidative stress in SHR animal model.

Specific objectives;
1. To quantify the total phenolic, total flavonoids content and the IC\textsubscript{50} value of *A. excelsa*.
2. To investigate the effects of *A. excelsa* leaf extract on elevated blood pressure in SHR model and serum level of cardiac injury.
3. To evaluate the effects of *A. excelsa* leaf extract on oxidative stress marker and antioxidant enzyme activities in SHR’s organs.
4. To determine the effects of *A. excelsa* leaf extract on serum level of liver toxicity and histopathological changes of liver, kidney and heart in SHR model.

1.4 Hypotheses

It was hypothesized that;

Antioxidant activities of *A. excelsa* exhibited an antihypertensive effect on SHR model by ameliorating serum level of cardiac injury.

A. excelsa mitigates ROS level and lipid peroxidation process in SHR’s organs by altering the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) antioxidant enzymes.

Administration of *A. excelsa* ethanolic extract for 28 days reduced serum liver toxicity as well as improve the histopathological structure and the extent of oxidative stress damage.

1.5 Justifications of the study

Recently, several studies were reported on the antidiabetic effect of *A. excelsa* in type I and type II diabetic rats (Nurdiana et al., 2013 and 2014; Nurul ‘Izzati, 2016). However, the effect of *A. excelsa* on oxidative stress, specifically in hypertensive rats remains elusive and yet to be investigated. On those studies, the approach used to induce diabetes was by an injection of streptozotocin (STZ). The injection generates free radicals from β-cells of pancreatic islet that are vulnerable and sensitive to oxidative stress (Robertson et al., 2003). As the main underlying cause of diabetes and hypertension is oxidative stress, the current
study was done to investigate effects of *A. excelsa* on oxidative stress in genetic hypertension of SHR model.

The uses of SHR as an animal model to study the pathogenesis of hypertension and screening any potential antihypertensive plants are well documented. While, an elevation and progression of blood pressure in this genetic animal model were attributable by oxidative stress (Hirooka et al., 2011; Fanelli and Zatz, 2011). Therefore, this study was conducted to evaluate the effect of *A. excelsa* on blood pressure in SHR while examining oxidative stress level in organs.

Quercetin was chosen at 10 mg/kg based on the average of human intake in the diet (Duarte et al., 2001b). It was included in the current study to compare between the treatment of quercetin with crude extract from *A. excelsa*, since quercetin was the purified plant phenols found in *Azadirachta* sp (Sithisarn et al., 2007). Meanwhile, captopril was chosen as a positive control in the treatment because it causes little side effects and possessed antioxidant as well as renoprotective effects (Dzau et al., 2001).
REFERENCES

Cui, B., Chai, H., Constant, H. L., Santisuk, T., Reutrakul, V., Beecher, C. W. W.,
Farnsworth, N. R., Cordell, G. A., Pezzuto, J. M. and Kinghorn, A. D.
(1998). Limonoids from Azadirachta excelsa. Phytochemistry, 47:
1283-1287.

Dawood, T. and Schilaich, M. P. (2009). Mediators of target organ damage in
hypertension: Focus on obesity associated factors and inflammation.
Minerva Cardioangiologica, 57: 687–703.

Deanfield, J., Donald, A., Ferri, C., Giannattasio, C., Halcox, J., Halligan, S.,
Lerman, A., Mancia, G., Oliver, J. J., Pessina, A.C., Rizzoni, D., Rossi,
Endothelial function and dysfunction. Part I: Methodological issues
for assessment in the different vascular beds : A statement by the Working
Group on Endothelin and Endothelial Factors of the European Society

captopril enhance glutathione-dependent antioxidant defenses in mouse
tissues. American Journal Physiology Regulation Integrative
Comparative Physiology, 278:R572–R577.

De Haan, J. B., Bladier, C., Griffiths, P., Kelner, M., O'Shea, R. D., Cheung, N.
S., Bronson, R. T., Silvestro, M. J., Wild, S., Zheng, S. S., Beart, P. M.,
mutation for the most abundant glutathione peroxidase, GPx1, show
increased susceptibility to the oxidative stress-inducing agents paraquat
22528-22536.

Hepatology, 43(2-1): 63-74.

developments. Hypertension, 43:147–150.

Duarte, J., Galisteo, M., Ocete, M. A., Perez-Vizcaino, F., Zarzuelo, A. and
Tamargo, J. (2001a). Effects of chronic quercetin treatment on
hepatic oxidative status of spontaneously hypertensive rats. Molecular

Duarte, J., Perez-Palencia, R., Vargas, F., Ocete, M. A., Perez-Vizcaino, F.,
the flavonoid quercetin in spontaneously hypertensive rats. Journal of
Pharmacology, 133: 117-124.

Dzau, V. J., Bernstein, K., Celermajer, D., Cohen, J., Dahlof, B. and Deanfield, J.
(2001). The relevance of tissue angiotensin-converting enzyme:
manifestations in mechanistic and endpoint data. American Journal of
Cardiology, 88:1L–20L.

Miguel-Carrasco, J. L., Monserrat, M. T., Mate, A. and Vazquez, C. M. (2010). Comparative effects of captopril and L-carnitine on blood pressure an

