

UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF A STATE-SPACE OBSERVER FOR ACTIVE NOISE CONTROL SYSTEMS

MAZIN T. MUHSSIN

FK 2009 82

DEVELOPMENT OF A STATE-SPACE OBSERVER FOR ACTIVE NOISE CONTROL SYSTEMS

By

MAZIN T. MUHSSIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

October 2009

Dedicated to

My dearest Parents, Brothers and Sisters

For their extraordinary love and their endless care

Thank You

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

DEVELOPMENT OF A STATE-SPACE OBSERVER FOR ACTIVE NOISE CONTROL SYSTEMS

By

MAZIN T. MUHSSIN

October 2009

Chairman: Raja Mohd Kamil Bin Raja Ahmad, PhD

Faculty : Engineering

Active noise control (ANC) is a method of reducing the unwanted sound. This is realized by artificially generating canceling (secondary) source(s) of sound through detecting the unwanted (primary) noise and processing it by an electronic controller, so that when the secondary wave is superimposed on the primary wave the two destructively interfere and cancellation occurs at the observation point. ANC system is an active research area for its high demand especially in the acoustic noise and vibration control systems. A lot of work in modeling an ANC system involves the transfer function approach, but unfortunately this method allows observation at a single point or mode. It is of interest to measure the level of cancellation not only at the observer but also around it. Therefore, a state space approach would allow observation at multi modes simultaneously and became the subject of this research.

This thesis is concerned with the study and development of a state-space model (SSM) for ANC system in on dimensional free-field medium instead of Finite Impulse Response (FIR) Models. In this work, the derivation of the SSM of each propagation

path of ANC system is presented and hence the system is termed Feedforward state space control system with feedback inclusion single input single output (SISO) architecture. The criterions of success considered the evaluation process are the length of the propagation path, level of cancellation, convergence rate, number of modes of each path, and destructive interferences occur at the cancellation path. The secondary path of the ANC system is modeled by using the LMS algorithm to complete the design of the Filtered-X Least Mean Square (FXLMS) controller. Then the adaptive FXLMS controller is presented and incorporated with the proposed model for both Feedforward with / without the acoustic Feedback cases. As a result, the comparisons between the two cases are presented by mean of level of cancellation and convergence rate. The simulation results of the proposed model show that the level of the disturbance signal at ten modes along the primary path is decreasing as much as the modes go away from the source indicating that this model is suitable to build the mechanism of the ANC system which satisfies the relation between the wave dissipation against the number of modes which are distributed along the length of path.

The derivation of the SSM gives the opportunity to extend the work furthermore to involve the derivation of a state-space optimal observer which is named State Space Least Mean Square (SSLMS) observer. This observer is employed to observe and monitor the pressure modes along the propagation path through simulating it in an offline structure i.e. without controller, or to observe the modes at the cancellation path through simulating the SSLMS in an on-line structure i.e. while the controller is converging. The comparison results between the real and observed modes of the secondary propagation show an accurate observing. Finally, the comparisons of the

observed pressures of three modes along the cancellation path while the controller is converging (on-line structure) are shown with the mode which is located at the observer achieving the best cancellation.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sians

PEMBANGUNAN SISTEM KAWALAN AKTIF HINGAR MENGGUNAKAN FORMULA RUANG KEADAAN

Oleh

MAZIN T. MUHSSIN

Oktober 2009

Pengerusi: Raja Mohd Kamil Bin Raja Ahmad, PhD

Fakulti : Kejuruteraan

Kawalan Hingar Aktif (ANC) adalah satu kaedah bagi mengurangkan hingar yang tidak diingini. Dengan menghasilkan kesan tiruan bagi menyingkirkan bunyi dari sumber kedua dengan cara mengesan hingar yang tidak diingini daripada sumber pertama dan diproses oleh pengawal elektronik supaya apabila berlakunya pertindihan antara gelombang kedua dan pertama, ANC yang akan melenyapkan kedua-dua gelombang. Sistem ANC merupakan satu kajian yang mendapat perhatian terutamanya dalam bidang sistem kawalan getar dan akustik hingar. Lazimnya ANC melibatkan kaedah Sambutan Dedenyut Terhingga, tetapi malangnya kaedah ini hanya membenarkan pemerhatian pada mod tunggal. Adalah menjadi untuk mengukur tahap pembatalan, bukan sahaja di pemerhati tetapi di sekitarnya juga. Oleh yang demikian, kaedah keadaan ruang menjadi tajuk utama kajian ini kerana kaedah ini membenarkan pemerhatian untuk pelbagai mod secara serentak.

Tesis ini akan tertumpu pada kajian dan pembangunan model keadaan ruang (SSM) untuk sistem ANC dalam dimensi yang bebas bagi menggantikan Model Sambutan Dedenyut Terhingga (Finite Impulse Response (FIR) Model). Dalam kajian ini, asalan bagi MKR bagi setiap tindakan penyebaran sistem ANC akan dibahagikan supaya tempoh suap hadapan dan suap balik sistem kawalan tergolong dalam binaan masukan tunggal keluaran tinggal (SISO).

Kriteria bagi menjayakan projek ini adalah bergantung pada tafsiran proses iaitu panjang tindakan penyebaran, tahap pembatalan, kadar pemusatan, bilangan mod pada setiap tindakan dan kemusnahan antaramuka pada setiap tindakan pembatalan. Jalan kedu system ANC akan dimodelkan dengan menggunakan algoritma LMS untuk melengkapi rekabentuk pengawal Filtered-X Least Mean Square (FXLMS). Kemudian FXLMS disajikan dan digabungkan dengan model yang dicadangkan untuk kedua suap hadapan dengan / tanpa kes suap balik akustik. Akibatnya, perbandingan antara dua kes yang akan distunjukkan oleh tahap pembatalan dan kadar penumpuan. Keputusan simulasi model yang dicadangkan menunjukkan bahawa tahap gangguan isyarat di sepuluh mod sepanjang jalan utama menurun sebanyak mana mod pergi daripada sumber yang menunjukkan bahawa model ini sangat desuai untuk membina mekanisma sistem ANC yang memenuhi hubungan antara gelombang disipasi terhadap jumlah mod yang diedarkan di sepanjang jalan.

Hasil perolehan SSM memberi peluang untuk melanjutkan kajian termasuk memperolehi ruang keadaan optimal pada pemerhati yang dipanggil pemerhati Rajah Min Terkecil Keadaan Ruang (SSLMS). Pemerhati ini berfungsi untuk mengamati perambatan dan memantau mod tekanan di sepanjang jalan melalui simulasi perambatan dalam struktur luar talian iaitu tanpa pengawal , atau untuk mengamati mode di jalan pembatalan melalui simulasi SSLMS dalam struktur dalam talian iaitu sementara pengawal itu bertumpu. Keputusan perbandingan antara mod nyata dan mod yang diperhatikan oleh mod perambatan yang kedua menunjukkan pemerhatian yang tepat. Akhirnya, perbandingan tekanan yang diperhatikan daripada tiga mod di sepanjang jalan pembatalan semasa pengawal masih bertumpu (struktur dalam talian) akan dipaparkan dengan mod yang terletak di pemerhati yang mencapai pembatalan yang terbaik.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Beneficent, the Most Merciful

I would like to express my heartiest thanks to my supervisor Dr. Raja for his guidance, patience, advice and devotion of time, throughout my research. He taught me how to be a researcher with his wonderful personality. I have the honor to work under his supervision and I will ask Allah to keep him safe, and support him with good health and the power to help the students with the knowledge and his scientific abilities. I am forever indebted to him for excellent guidance.

I would like also to extend my thanks to my co-supervisor Associate Professor Mohammad Hamiruce for his support.

My gratitude also goes to all my colleagues in the control laboratory for their encouragement and motivations.

Finally, I would like to thank my family for their unconditional care until I reach to this point, without their continuous support and precious prayers I could not have been able to finish my research. I know their blessings will always be with me in all my endeavors and I dedicate this success to them. Thanks my beloved family.

ix

I certify that a Thesis Examination Committee has met on **16 October 2009** to conduct the final examination of Mazin T. Muhssin on his thesis entitled "**Development of a State-Space Observer for Active Noise Control Systems**" in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Examination Committee are as follows:

Norman Bin Mariun, PhD Professor Faculty of Graduate Studies Universiti Putra Malaysia (Chairman)

Samsul Bahari Bin Mohd Noor, PhD

Lecturer Faculty of Graduate Studies Universiti Putra Malaysia (Internal Examiner)

Nor mariah Bt. Adam, PhD

Associate Professor Faculty of Graduate Studies Universiti Putra Malaysia (Internal Examiner)

Mohd Fua'ad Bin Hj Rahmat, PhD

Associate Professor Faculty of Electrical Engineering Universiti Teknologi Malaysia (External Examiner)

BUJANG KIM HUAT, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of **Master of Science**. The members of the Supervisory Committee were as follows:

Raja Mohd Kamil Bin Raja Ahmad, PhD

Assistance Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Mohammad hamiruce Bin Marhaban, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 14 January 2010

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

MAZIN T. MUHSSIN

Date:

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL	viii
DECLARATION	xii
LIST OF TABLES	XV
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS	xix

CHAPTER

1

2

3

INT	RODUCTION	
1.1	Motivations	2
1.2	Problem Statement	3
1.3	Research Objectives	4
1.4	Scope of work	5
1.5	Organization of the Thesis	5
LITE	ERATURE REVIEW	
2.1	Introduction	8
2.2	Overview on Noise Control	8
2.3	Noise Control Methods	9
	2.3.1 Passive Noise Control	10
	2.3.2 Active Noise Control	10
2.4	Feedforward Active Noise Control Structure	14
	2.4.1 Acoustic Feedback Effect	15
	2.4.2 Feedback Inclusion Architecture	19
2.5	Basic Principles of Adaptive Filter	21
	2.5.1 Secondary Path Effect	23
	2.5.2 Filter-X LMS	26
	2.5.3 Secondary Path Identification	29
	2.5.4 State-Space Filters	31
2.6	Construction of Models	33
2.7	Summary	36
МЕТ	THODOLOGY	
3.1	Introduction	38
3.2	Formulation of the Physical Model of the Propagation Paths	39
3.3	State-Space Model	

	- F	
3.3.1	State-Space Model of Pure Feedforward ANC system	45
~ ~ ~		

51 3.3.2 State-Space Model of the Acoustic Feedback

	3.4	Selection of Modes	54
	3.5	Numerical Example	56
	3.6	Summary	58
4	CON	TROLLER AND OBSERVER STRATEGY	
	4.1	Introduction	59
	4.2	Adaptive Filter-X LMS Algorithm	59
	4.3	Adaptive Filtered-XLMS	62
		4.3.1 Feedforward Adaptive Filter-X LMS with	63
		Feedback cancellation	
		4.3.2 Feedforward Adaptive Filter-X LMS with Feedback Path	65
	4.4	Monitor the Pressure Modes While Controller is Converging	66
	4.5	Summary	73
5	CON	TROLLER DESIGN STRATEGY	
	5.1	Introduction	74
	5.2	Construction of Feedforward Simulation Environment	75
	5.3	Simulation Results of the Pressure Modes	78
	5.4	Simulation of Adaptive FXLMS Controller	83
		5.4.1 Simulation Results of Feedforward Adaptive FXLMS Without Feedback	85
		5.4.2 Feedforward Adaptive FXLMS Feedback Type	91
	5.5	Simulation Results of the SSLMS Observer in off-Line structure	98
	5.6	Simulation Results of the SSLMS Observer in on-Line structure	100
	5.6	Summary	106
6	CON	ICI LISIONS AND FUTUDE WODKS	
U	6 1	Conclusion	108
	62	Future Works	110
	0.2		110
REI	FEREN	CES	111

REFERENCES	111
APPENDIX A	122
BIODATA OF STUDENT	125
LIST OF PUBLICATIONS	126

LIST OF TABLES

Table		Page
5.1	Setup of the Propagation Paths Model	76
5.2	Plant Parameters used in Simulation	77
5.3	Numerical Solution of the propagation Paths of ANC System	78
5.4	Controller Convergence Rate with the Step Sizes for Pure Feedforward ANC system	88
5.5	Level of Cancellation and Percentage Improvement Pure Feedforward ANC system	91
5.6	Controller Convergence Rate with the Step Sizes for Feedforward ANC system which include the Feedback Path	93
5.7	Level of Cancellation and Percentage Improvement for Feedforward ANC system which include the Feedback Path	97

LIST OF FIGURES

Figure		Page
2.1	Suppression of Engine Noise in an Airplane	13
2.2	Basic setup of an active noise/vibration control system	14
2.3	Block diagram of Feedforward control system	15
2.4	Feedforward control system with feedback cancellation	17
2.5	Pure Feedforward control system	17
2.6	ANC system with adaptive feedback neutralization	18
2.7	ANC system with adaptive feedback neutralization	19
2.8	Feedforward control system with feedback inclusion architecture	20
2.9	Feedforward control system with a switch	21
2.10	System identification view point of ANC	22
2.11	Simplified block diagram of ANC system.	24
2.12	Block diagram of FXLMS filter in ANC circuit	28
2.13	Adaptive state-space filter	32
2.14	Rigid walled acoustic duct setup	35
3.1	Flowchart of the research methodology	39
3.2	Schematic diagram of Feedforward control structure	40
3.3	Arrangement of modes along the propagation paths	43
3.4	Feedforward ANC control system with acoustic feedback path	52
3.5	The pressure modes (states)	54

3.6	Geometric diagram of Feedforward ANC system	55
3.7	Measurement along the propagation path	57
4.1	Secondary path Identification	60
4.2	Feedforward adaptive FXLMS with Feedback cancellation	62
4.3	Feedforward adaptive FXLMS with Feedback inclusion	65
4.4	Feedforward ANC system with SSLMS Observer	67
4.5	SSLMS Observer Algorithm	69
5.1	Distances if the propagation paths	75
5.2	Time Response of the primary path Modes	82
5.3	The Average of the Mean Square Amplitude of the Modes	83
5.4	Impulse response comparison of the secondary path	84
5.5	Sinusoidal Source signal	86
5.6	Sinusoidal Residual Error for Feedforward ANC System	88
5.7	The Spectral Densities of 200Hz Noise Signal for Feedforward ANC System	90
5.8	Sinusoidal Residual Error Signal for Feedforward ANC System with Feedback Inclusion	94
5.9	The Spectral Densities of the 200Hz Noise Signal for Feedforward ANC System with Feedback Path	97
5.10	Block Diagram of Feedforward ANC System with off-Line Observer	98
5.11	Comparison of the Secondary Path Real and Estimated State	100
5.12	Comparison between Squared Amplitude of $e(n)$ and $e_s(n)$ Signal	100
5.13	Setup of the cancellation path for three modes	101
5.14	The Residual Error $f(n)$	103

5.15	The Square Magnitude of the Pressure Modes along the Cancellation Path	104
5.16	Square Magnitude of the Pressure Modes with / without controller	106

LIST OF ABBREVIATIONS

ANC	Active Noise Control
SSM	State-Space Model
SISO	Single Input Single Output
FXLMS	Filtered-X Least Mean Square
SSLMS	State-Space Least Mean Square
LMS	Least Mean Square
DSP	Digital Signal Processing
ANVC	Active Noise Vibration Control
1D	One Dimension
3D	Three Dimension
ASAC	Active Structural Acoustic Control
FFCS	Feedforward Control Structure
FBPM	Feedback Path Modeling
ADNC	Adaptive Noise Cancellation
FIR	Finite Impulse Response
D/A	Digital to Analog
A/D	Analog to Digital
MSE	Mean Square Error
VSS	Variable Step Size
PRBS	Pseudo Random Binary Sequence
RLS	Recursive Least Square
SPM	Secondary Path Model

ERLS	Extend Recursive Least Square
SSRLS	State-Space Recursive Least Square
SSRLSWAM	State-Space Recursive Least Square Adaptive Memory
FFT	Fast Fourier Transform
MIMO	Multiple Input and Multiple Output
E(n)	State-space model of the acoustic path between the primary source and detector through r_e
<i>E</i> '(<i>n</i>)	State-space model of the acoustic path between the primary source and detector through r_e coupled with the state-space model of the detector M and the secondary source L .
F(n)	State-space model of the acoustic path between the secondary source and the detector through r_f .
$\overset{\scriptscriptstyle \wedge}{F}(n)$	Estimate of the of the acoustic path between the secondary source and the detector through r_f .
F'(n)	State-space of the acoustic path between the secondary source and the detector through r_f coupled with the state-space model of the detector M .
G(n)	State-space model of the acoustic path between the primary source and the observer through r_{g} .
<i>G</i> '(<i>n</i>)	State-space of the acoustic path between the primary source and the observer through r_g coupled with the state-space model of the detector M and the secondary source L .
H(n)	State-space model of the acoustic path between the secondary source and the observer through r_h .
H'(n)	State-space model of the acoustic path between the secondary Source and the observer through r_h coupled with the transfer functions of the detector M and the secondary source L .

L(n)	State-space model of the secondary source
M(n)	State-space model of the detector
$M_{_0}(n)$	State-space model of the observer
$U_{c}(n)$	Control signal generated by the controller
$U_{D}(n)$	Primary signal at the source
$U_{_{M}}(n)$	Detector signal at the detector
$Y_{co}(n)$	Secondary signal at the source point
$Y_{_{DO}}(n)$	Primary signal at the observation point
$Y_{_{0}}(n)$	Combined primary and secondary signal at the observation point (observed signal)
r	Length of the propagation path
r _e	Distance of the propagation path between the primary source and the detector
r_{f}	Distance of the propagation path between the secondary source and the detector
r _g	Distance of propagation path between the primary source and the observer
$r_{_h}$	Distance of propagation path between the secondary source and the observer
W_{n}	The natural frequency rad / sec
С	Speed of sound in air mm / sec

ζ	Damping coefficient
n(n)	Reference signal
<i>u</i> (<i>n</i>)	Input signal
Α	Dynamic matrix
В	Input vector
С	Output vector
D	Feedforwad vector
$A_{_{g}}$	Dynamic matrix of the primary propagation path
B_{s}	Input vector of the primary propagation path
$C_{_g}$	Output vector of the primary propagation path
$A_{_h}$	Dynamic matrix of the secondary propagation path
B_{h}	Input vector of the secondary propagation path
C_{h}	Output vector of the secondary propagation path
$A_{_{e}}$	Dynamic matrix of the primary propagation E
$B_{_{e}}$	Input vector of the primary propagation E
$C_{_e}$	Output vector of the primary propagation E
$A_{_f}$	Dynamic matrix of the acoustic feedback path
$B_{_f}$	Input vector of the acoustic feedback path
$C_{_f}$	Output vector of the acoustic feedback path
$A_{_m}$	Dynamic matrix of the mode

$B_{_{n}}$	1	Input vector of the pressure mode
C_{m}	n	Output vector of the pressure mode
N_{i}	g	No. of modes along the primary path
N_{j}	h	No. of modes along the secondary path
N_{i}	e	No. of modes along the propagation path E
N	f	No. of modes along the feedback path
Ψ	<i>(x)</i>	Pressure modes coefficients
Ψ	(x,t)	Time dependent acoustic parameter
P	(x,t)	Time dependent acoustic pressure
P	(t)	Pressure wave
P_{n}	(<i>t</i>)	Pressure modes
x		Arbitrary point
$X_{_m}$		Location of observer
$X_{_d}$		Location of detector
Δ		Laplace operator
S		Lablace function
<i>u</i>	p	Filtered signal vector by $\overset{\Lambda}{H}$
d		Disturbance signal
W	(n)	Weights vector of the filter
\mathcal{Y}_{p}		Output of the secondary path

V	Identification signal
Κ	Observer gain
<i>B</i> ^{<i>h</i>}	The output of the secondary path in off / on- line system identification
e_{s}	Observer error
Е	Prediction error
X	System state
$\stackrel{\scriptscriptstyle\Lambda}{X}[n]$	Observer state
$\overline{X}[n]$	Predicted state
$y(x_m,t)$	Pressure output at the observer
$y(x_{d},t)$	Pressure output at the detector
$Z(a,\beta)(z)$	Boundary condition
$\delta[n]$	Error between observer state and predicted state
μ_{a}	Step size of the SSLMS Observer

