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Presently modern composites using continuous fibers in a resin matrix are important 

candidate materials for cylindrical structures like pipes and pressure vessels. These 

materials are lighter, stronger, corrosion resistance and more cost effective when 

compared with the traditional materials like metals. These structures are commonly 

subjected to internal pressure and there are some applications where structures 

subjected to complex loading conditions which are resulted from internal 

pressurization and superimposed axial loads during installation and/or operation. 

Most of the previous works were concentrated on the thin shell structures while less 

work was carried out on thick shell structures under internal pressure loading. The 

use of hybrid structures in this application is limited and also a limited research work 

is available for multi-directional tubular composite structures compared with single 

lay-up configuration. The effects of the different winding angle, different materials 

and hybridization, different number of layers and different stacking sequence of 

multi-layered angles on the carrying capacity of thick shell composite tube under 

internal pressure loading have been studied. The composite materials used were 
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glass/epoxy and carbon/epoxy. In this study it was found that the optimum winding 

angle for filament wound pipes depends primarily on the loading modes applied. The 

experimental results showed that the optimum winding angle is 550 for biaxial 

pressure loading (mode II), 750 for hoop pressure loading (mode I) while 850 is 

suitable for biaxial pressure with axial compressive loading (mode III). The test 

results also show that the carrying capacity of the composite tube increases as the 

number of the number of layers increase and the percentage difference for all loading 

modes is about 46% and 63% for four layers and six layers compared by two layers 

of glass/epoxy respectively. Changing the stacking sequence of multi-layered 

composite tube enhance the internal pressure carrying capacity for different loading 

modes and the percentage difference for all loading modes is about 5% and 13%. 

Using different materials for the composite tube shows that the internal pressure 

carrying capacity is enhanced. The carrying capacity is about 9% to 19% increased if 

hybrid composite tube made from two different materials; glass/epoxy and 

carbon/epoxy are used compared with composite tube made from glass/epoxy alone 

for all loading modes. On the other hand the carrying capacity is increased by 32% to 

38% for the composite tube wound with two and four layers of carbon/epoxy 

compared with composite tube wound with two and four layers of glass/epoxy for all 

loading modes. The finite element analysis has been used to analyze the composite 

tube under internal pressure load for different loading modes. ANSYS finite element 

software was used to perform the numerical analysis for the different arrangements 

of composite tubes. The predicted results gave good agreement with the experimental 

results, the percentage differences between the experimental and the finite element 

analysis results are approximately 4%-25% for different loading modes.  
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Pada masa ini, komposit moden yang menggunakan gentian berterusan dalam damar 

matriks adalah  calon bahan penting untuk struktur silinder seperti paip dan bejana 

tekanan. Bahan ini adalah lebih ringan, lebih kuat, tahan karat dan lebih murah 

berbanding bahan-bahan lazim seperti logam. Struktur ini umumnya dikenakan 

tekanan dalaman dan terdapat beberapa aplikasi di mana struktur dikenakan keadaan 

bebanan kompleks yang terhasil daripada tekanan dalaman dan bebanan paksi 

tertindih semasa pemasangan dan/atau operasi. Kebanyakan kajian sebelum ini 

difokuskan ke atas struktur kelompang nipis sementara tidak banyak kajian dibuat ke 

atas struktur kelompang tebal di bawah  beban tekanan dalaman. Penggunaan 

struktur hibrid dalam aplikasi ini masih terbatas dan begitu juga dengan penyelidikan 

dalam  struktur komposit tiub berbilang arah berbanding tatarajah bengkalai tunggal. 

Kesan daripada perbezaan sudut belitan, perbezaan bahan dengan penghibridan, 

perbezaan jumlah lapisan, dan perbezaan urutan tindanan bagi sudut berbilang lapis 

ke atas keupayaan menanggung tiub komposit kelompang tebal di bawah bebanan 
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dalaman telah dikaji. Bahan komposit yang telah digunakan dalam kajian ini adalah 

gentian kaca/epoksi dan gentian karbon/epoksi. Dalam kajian ini didapati bahawa 

sudut belitan optimum bagi paip terbelit filamen sangat bergantung kepada mod 

bebanan yang dikenakan. Hasil eksperimen menunjukkan bahawa sudut belitan 

optimum adalah 550 untuk beban tekanan dua-paksi (mod II), 750 untuk beban 

tekanan gegelang (mod I) dan 850 untuk beban mampatan paksi (mod III). Hasil 

pengujian juga menunjukkan keupayaan menanggung bagi tiub komposit meningkat 

sejajar dengan peningkatan jumlah lapisan dan perbezaan peratusan  untuk semua 

mod bebanan adalah 46% dan 63% untuk empat dan enam lapisan berbanding 

dengan dua lapisan kaca/epoksi. Perubahan dalam turutan tindanan tiub komposit 

berbilang lapisan meningkatkan keupayaan menanggung tekanan dalaman untuk 

mod bebanan berbeza dan perbezaan peratusan untuk semua mod pembebanan 

adalah kira-kira 8% dan 11%.  Penggunaan bahan komposit yang berbeza bagi tiub 

komposit menunjukkan peningkatan keupayaan menanggung tekanan dalaman. 

Keupayaan penanggungan  bertambah kira-kira 9% ke 19% jika tiub komposit hibrid 

yang dibuat daripada dua bahan berbeza, kaca/epoksi dan karbon/epoksi digunakan 

berbanding tiub komposit dibuat daripada kaca/epoksi sahaja untuk semua mod 

bebanan. Sebaliknya keupayaan penanggungan meningkat 32% hingga 38% untuk 

tiub komposit yang dibelit dengan dua atau empat lapis karbon/epoksi berbanding 

paip komposit dengan dua atau empat lapis kaca/epoksi untuk semua mod 

pembebanan. Analisis unsur terhingga telah digunakan untuk menganalisis paip 

komposit di bawah beban tekanan dalaman untuk pelbagai mod bebanan. Perisian 

unsur terhingga ANSYS telah digunakan untuk menjalankan analisis berangka bagi 

komposit dengan susunan berbeza. Keputusan yang dijangkakan  memberikan 

persetujuaan yang baik dengan keputusan eksperimen, dan perbezaan peratusan  
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antara eksperimen dan analisis unsur terhingga adalah kira-kira 4%-25% untuk mod 

bebanan yang berbeza. 
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