UNIVERSITI PUTRA MALAYSIA

EXPERIMENTAL AND FINITE ELEMENT ANALYSIS OF THE PRESSURE CARRYING CAPACITY OF REINFORCED COMPOSITE THICK-WALLED MATERIAL TUBES

ABDALLA F. HAMED

FK 2009 77
EXPERIMENTAL AND FINITE ELEMENT ANALYSIS OF THE PRESSURE CARRYING CAPACITY OF REINFORCED COMPOSITE THICK-WALLED MATERIAL TUBES

By

ABDALLA F. HAMED

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of philosophy

February 2009
Special Dedication

This thesis is dedicated to
 My affectionate parents and my beloved family for their
 patient love and support
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in Fulfilment of the requirements for the degree of Doctor of Philosophy

EXPERIMENTAL AND FINITE ELEMENT ANALYSIS OF THE PRESSURE CARRYING CAPACITY OF REINFORCED COMPOSITE THICK-WALLED MATERIAL TUBES

By

ABDALLA F. HAMED

February 2009

Chairman: Professor Megat Mohamad Hamdan Megat Ahmad, PhD

Faculty : Engineering

Presently modern composites using continuous fibers in a resin matrix are important candidate materials for cylindrical structures like pipes and pressure vessels. These materials are lighter, stronger, corrosion resistance and more cost effective when compared with the traditional materials like metals. These structures are commonly subjected to internal pressure and there are some applications where structures subjected to complex loading conditions which are resulted from internal pressurization and superimposed axial loads during installation and/or operation. Most of the previous works were concentrated on the thin shell structures while less work was carried out on thick shell structures under internal pressure loading. The use of hybrid structures in this application is limited and also a limited research work is available for multi-directional tubular composite structures compared with single lay-up configuration. The effects of the different winding angle, different materials and hybridization, different number of layers and different stacking sequence of multi-layered angles on the carrying capacity of thick shell composite tube under internal pressure loading have been studied. The composite materials used were
glass/epoxy and carbon/epoxy. In this study it was found that the optimum winding angle for filament wound pipes depends primarily on the loading modes applied. The experimental results showed that the optimum winding angle is 55° for biaxial pressure loading (mode II), 75° for hoop pressure loading (mode I) while 85° is suitable for biaxial pressure with axial compressive loading (mode III). The test results also show that the carrying capacity of the composite tube increases as the number of the number of layers increase and the percentage difference for all loading modes is about 46% and 63% for four layers and six layers compared by two layers of glass/epoxy respectively. Changing the stacking sequence of multi-layered composite tube enhance the internal pressure carrying capacity for different loading modes and the percentage difference for all loading modes is about 5% and 13%. Using different materials for the composite tube shows that the internal pressure carrying capacity is enhanced. The carrying capacity is about 9% to 19% increased if hybrid composite tube made from two different materials; glass/epoxy and carbon/epoxy are used compared with composite tube made from glass/epoxy alone for all loading modes. On the other hand the carrying capacity is increased by 32% to 38% for the composite tube wound with two and four layers of carbon/epoxy compared with composite tube wound with two and four layers of glass/epoxy for all loading modes. The finite element analysis has been used to analyze the composite tube under internal pressure load for different loading modes. ANSYS finite element software was used to perform the numerical analysis for the different arrangements of composite tubes. The predicted results gave good agreement with the experimental results, the percentage differences between the experimental and the finite element analysis results are approximately 4%-25% for different loading modes.
Abstrak tesis yang dikemukan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

EKSPERIMEN DAN ANALISIS UNSUR TERHINGGA BAGI KEUPAYAAN PENANGGUNGAN TEKANAN BAGI TIUB KOMPOSIT BERDINDING TEBAL DIPERKUAT GENTIAN

Oleh

ABDALLA F. HAMED

Februari 2009

Pengerusi : Profesor Megat Mohamad Hamdan Megat Ahmad, PhD

Fakulti : Kejuruteraan

Bahan komposit yang telah digunakan dalam kajian ini adalah gentian kaca/epoksi dan gentian karbon/epoksi. Dalam kajian ini didapati bahawa sudut belitan optimum bagi paip terbelit filamen sangat bergantung kepada mod bebanan yang dikenakan. Hasil eksperimen menunjukkan bahawa sudut belitan optimum adalah 550 untuk beban tekanan dua-paksi (mod II), 750 untuk beban tekanan gegelang (mod I) dan 850 untuk beban mampatan paksi (mod III). Hasil pengujian juga menunjukkan keupayaan menanggung bagi tiub komposit meningkat sejajar dengan peningkatan jumlah lapisan dan perbezaan peratusan untuk semua mod bebanan adalah 46% dan 63% untuk empat dan enam lapisan berbanding dengan dua lapisan kaca/epoksi. Perubahan dalam turutan tindanan tiub komposit berbilang lapisan meningkatkan keupayaan menanggung tekanan dalaman untuk mod bebanan berbeza dan perbezaan peratusan untuk semua mod pembebanan adalah kira-kira 8% dan 11%. Penggunaan bahan komposit yang berbeza bagi tiub komposit menunjukkan peningkatan keupayaan menanggung tekanan dalaman.

Keupayaan penanggungan bertambah kira-kira 9% ke 19% jika tiub komposit hibrid yang dibuat daripada dua bahan berbeza, kaca/epoksi dan karbon/epoksi digunakan berbanding tiub komposit dibuat daripada kaca/epoksi sahaja untuk semua mod bebanan. Sebaliknya keupayaan penanggungan meningkat 32% hingga 38% untuk tiub komposit yang dibelit dengan dua atau empat lapis karbon/epoksi berbanding paip komposit dengan dua atau empat lapis kaca/epoksi untuk semua mod pembebanan. Analisis unsur terhingga telah digunakan untuk menganalisis paip komposit di bawah beban tekanan dalaman untuk pelbagai mod bebanan. Perisian unsur terhingga ANSYS telah digunakan untuk menjalankan analisis berangka bagi komposit dengan susunan berbeza. Keputusan yang dijangkakan memberikan persetujuan yang baik dengan keputusan eksperimen, dan perbezaan peratusan
antara eksperimen dan analisis unsur terhingga adalah kira-kira 4%-25% untuk mod bebanan yang berbeza.
ACKNOWLEDGEMENTS

Completion of this thesis was both grueling and rewarding. The rewards far exceeded the pains, so I am satisfied with the entire process required to achieve this goal. I would like to thank my advisor, Associate Prof. Dr. Megat Mohamad Hamdan bin Megat Ahmad for his assistance, valuable advices and timely corrections.

I am also grateful to my supervisory committee, Prof. Ir. Dr. Barkawi Bin Sahari and Prof. Dr. Mohd Sapuan Salit for their advice and helpful discussion during this period of study.

To Assoc. Prof. Dr. Yousif A. Khalid, the first chairman of my supervisory committee, I wish to express my sincere thanks for patiently and encouragingly guiding me towards a successful completion of this research. His assistance, advice during a period of one and half year proved to be very effective and will always be remembered.

I would like to thank:

- All the Staff in Department of Mechanical Engineering, UPM for their cooperation given to me throughout my work.
- All the Malaysian people especially UPM staff for the best hospitalities.

Finally, I would like to thank my family for all of their love and support through the years. You have always encouraged me to challenge myself, and I enjoy sharing my accomplishments with you.
I certify that an Examination Committee met on 10-2-2009 to conduct the final examination of Abdalla F. Hamed on his Doctor of Philosophy thesis entitled “Experimental and Finite Element Analysis of the Pressure Carrying Capacity for Reinforced Composite Thick Walled Material Tubes” in accordance with Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the Doctor of Philosophy.

Members of the Examination Committee are as follows:

Md. Yusof Ismail, PhD
Associate Professor
Faculty of Graduate studies
Universiti Putra Malaysia
(Chairman)

Shamsuddin Sulaiman, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Nor Mariah Adam, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Azlan Bin Ariffin, PhD
Associate Professor
Faculty of Engineering
Universiti Kebangsaan Malaysia
(External Examiner)

HASANAH MOHD GHAZALI, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Megat Mohamad Hamdan bin Megat Ahmad, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Barkawi Bin Sahari, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Mohd Sapuan Salit, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 14 May 2009
DECLARATION

I hereby declare that the thesis based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ABDALL F. HAMED

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvii</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 General</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Composite Structures</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Problem Statement</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Scope of the Work</td>
<td>4</td>
</tr>
<tr>
<td>1.5 Objectives</td>
<td>5</td>
</tr>
<tr>
<td>1.6 Thesis Layout</td>
<td>6</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Types of Composite Materials</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Particulate Composites</td>
<td>7</td>
</tr>
<tr>
<td>2.2.2 Laminated Composites</td>
<td>7</td>
</tr>
<tr>
<td>2.2.3 Fibrous Composites</td>
<td>8</td>
</tr>
<tr>
<td>2.3 Types of Fibers and Matrices</td>
<td></td>
</tr>
<tr>
<td>2.3.1 Fibers</td>
<td>8</td>
</tr>
<tr>
<td>2.3.2 Matrices</td>
<td>10</td>
</tr>
<tr>
<td>2.4 Composite Structures</td>
<td>12</td>
</tr>
<tr>
<td>2.5 Composite Fabrication Processes</td>
<td></td>
</tr>
<tr>
<td>2.5.1 Background Review</td>
<td>13</td>
</tr>
<tr>
<td>2.5.2 Hand Lay-Up</td>
<td>13</td>
</tr>
<tr>
<td>2.5.3 Filament Winding</td>
<td>14</td>
</tr>
<tr>
<td>2.6 Theoretical Analysis</td>
<td></td>
</tr>
<tr>
<td>2.6.1 Lamination Theory</td>
<td>15</td>
</tr>
<tr>
<td>2.6.2 Failure Criterions</td>
<td>23</td>
</tr>
<tr>
<td>2.6.3 Micromechanics and Macromechanics of Composite Materials</td>
<td>27</td>
</tr>
<tr>
<td>2.6.4 Engineering Properties in Global Coordinates System</td>
<td>32</td>
</tr>
<tr>
<td>2.6.5 Coefficient of Mutual Influence</td>
<td>33</td>
</tr>
<tr>
<td>2.7 Controlling Factors</td>
<td></td>
</tr>
<tr>
<td>2.7.1 Winding Angle Effect</td>
<td>36</td>
</tr>
</tbody>
</table>
5.2 Theoretical Stresses and Strains Distributions across Thick Walled Filament Wound Composite Tubes

5.2.1 Introduction 125
5.2.2 Thick Cylinder Theory for Filament Wound Tubes 126
5.2.3 Analysis Procedure 127
5.3 Conclusion 135

6 RESULTS AND DISCUSSIONS 137

6.1 Experimental Results 137
6.1.1 Determination of the Laminate Properties 137
6.1.2 Calculation of the Through Thickness Effective Constants for Orthotropic Thick Filament Wound Tubes 150
6.1.3 Internal Pressure Carrying Capacity and Stress Distribution 155
6.2 Analytical Results 181
6.2.1 Finite Element Analysis 181
6.2.2 Element Types 182
6.2.3 Material Properties 184
6.2.4 Boundary Conditions 185
6.2.5 Finite Element Results 188
6.3 Comparison of Experimental and Finite element Results 195
6.3.1 Loading Mode I 195
6.3.2 Loading Mode II 199
6.3.3 Loading Mode III 203
6.4 Discussion 207
6.4.1 Material Characterization Results 207
6.4.2 The through Thickness Effective Elastic Constants for Orthotropic Thick Filament Wound Tubes 210
6.4.3 Parameters Affecting the Performance of the Composite Tube 210
6.5 Stress Distribution through the Thickness of Thick Composite Tubes 213
6.6 Failure Modes 213
6.7 Comparison with Previous Work 218
6.8 Finite Element Prediction 220
6.8.1 Method Applied 220
6.8.2 Accuracy of Prediction 220
6.9 Limitations 221

7 CONCLUSIONS AND RECOMMENDATIONS 222

7.1 Introduction 222
7.2 Conclusions 223
7.2.1 Fabrication Process 223
7.2.2 Testing Procedure 224
7.2.3 Composite Material Characterization 224
7.2.4 Pressure Carrying Capacity 225
7.2.5 Failure Modes 228
7.3 Recommendations 229

REFERENCES 230

APPENDICES 240
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1: Angle of Orientation</td>
<td>76</td>
</tr>
<tr>
<td>3.2: Number of Layers</td>
<td>76</td>
</tr>
<tr>
<td>3.3: Fiber Type and Hybridization</td>
<td>77</td>
</tr>
<tr>
<td>3.4: Multi-Angle Combination</td>
<td>78</td>
</tr>
<tr>
<td>4.1: The Average Values of the Outside Diameter</td>
<td>101</td>
</tr>
<tr>
<td>4.2: The Relation between Passages Numbers the Winding Angle and the Carriage Speed</td>
<td>105</td>
</tr>
<tr>
<td>4.3: Samples of Tube Diameter Measured at Different Positions for Two, Four and Six Layers of Glass/Epoxy Composite Tube</td>
<td>107</td>
</tr>
<tr>
<td>6.1: Mechanical Properties of Composite Fibers</td>
<td>138</td>
</tr>
<tr>
<td>6.2: Physical and Mechanical Properties of the Matrix</td>
<td>139</td>
</tr>
<tr>
<td>6.3: Volume Fraction for Glass Fiber/Epoxy Composite</td>
<td>140</td>
</tr>
<tr>
<td>6.4: Volume Fraction of Carbon Fiber and the Density of</td>
<td>142</td>
</tr>
<tr>
<td>6.5: Summary of the Mechanical Properties for Composite Materials</td>
<td>148</td>
</tr>
<tr>
<td>6.6: Unidirectional Elastic Constants for Glass/Epoxy</td>
<td>150</td>
</tr>
<tr>
<td>6.7: Mechanical Properties of Plastic Tube</td>
<td>185</td>
</tr>
<tr>
<td>6.8: Comparison of Maximum Internal Pressure Capacity between Experimental Work and Finite Element Analysis for Loading Mode I.</td>
<td>199</td>
</tr>
<tr>
<td>6.9: Comparison of Maximum Internal Pressure Capacity between Experimental Work and Finite Element Analysis for Loading Mode II.</td>
<td>203</td>
</tr>
<tr>
<td>6.10: Comparison of Maximum Internal Pressure Capacity between Experimental Work and Finite Element Analysis for Loading Mode III.</td>
<td>207</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1: Fabrication of Composite Tube</td>
<td>14</td>
</tr>
<tr>
<td>2-2: Schematic Representations of Helical</td>
<td>15</td>
</tr>
<tr>
<td>2-3: Schematic of Single Filamentary Lamina Geometry</td>
<td>16</td>
</tr>
<tr>
<td>2-4: Relationship between Lamina Principal Axes (1, 2)</td>
<td>18</td>
</tr>
<tr>
<td>2-5: Unidirectional Fiber Square Packing Geometry</td>
<td>28</td>
</tr>
<tr>
<td>2-6: Variation of Coefficient of Mutual Influence with Fiber Angle</td>
<td>34</td>
</tr>
<tr>
<td>2-7: Variation of Engineering Properties with Fiber Angle</td>
<td>35</td>
</tr>
<tr>
<td>2-8: Influence of Wind Angle on the Strength of Carbon Tubes</td>
<td>37</td>
</tr>
<tr>
<td>2-9: Stress-Strain Response of E-glass/polyester Pipes Wounded at Different Angles under Open-end Mode</td>
<td>38</td>
</tr>
<tr>
<td>2-10: Experimental Stress-strain Response E-glass/epoxy Tube for Different Winding Angles</td>
<td>39</td>
</tr>
<tr>
<td>2-11: CFRP Helical Wound Cylindrical Specimen under Internal Pressure</td>
<td>40</td>
</tr>
<tr>
<td>2-12: Stress/Strain Curves for ± 75° CFRP Composite tubes</td>
<td>41</td>
</tr>
<tr>
<td>2-13: Variation of Peak hoop Stress versus Fiber Orientation Angle</td>
<td>43</td>
</tr>
<tr>
<td>2-14: Effect of the Winding Angle on the hoop Stresses of Pipe with E-Glass/Epoxy under Bending Load</td>
<td>43</td>
</tr>
<tr>
<td>2-15: Comparing FEM and Analytical Results with Experimental Results</td>
<td>44</td>
</tr>
<tr>
<td>2-16: Specimen Dimensions</td>
<td>45</td>
</tr>
<tr>
<td>2-17: Stress-Strain for Closed End Loading</td>
<td>46</td>
</tr>
<tr>
<td>2-18: Stress-Strain Curve for ± 45° Tubes</td>
<td>47</td>
</tr>
<tr>
<td>2-19: The Distribution of Hoop, Axial and shear Stress through the Radial Distance</td>
<td>48</td>
</tr>
<tr>
<td>2-20: The distribution of Hoop Stress through the Non-Dimensional Radial Distance</td>
<td>49</td>
</tr>
</tbody>
</table>
2-21: Prediction of Damage and Yielding of a Pressurized Closed end Carbon/Epoxy Tubes with Steel Liners

2-22: Stress-Life Curves of GRP Pipe with Elliptical Surface Crack

2-23: Comparison between Hoop Stress and Internal Pressure

2-24: Influence of Fiber Volume Fraction Variation on Stress Distribution throughout the Tube Thickness

2-25: Experimental and Predicted Pressure vs. Hoop Strain.

2-26: Stress Distributions within a Sandwich Pipe

2-27: Experimental and Calculated Values for the Liner Circumferential Deformation

2-28: Different Loading Modes

2-29: Experimental Initial and Final Failure Stresses for ±55° Tubes

2-30: Testing Methods

2-31: Damage Kinetics

2-32: Average Stress versus Average Strain Behavior of [±60]T Glass/Epoxy Tubular Specimens Loaded in Pure Hoop Stress

2-33: Normal Failure Stress vs. Crack Length

2-34: Damage Progression in Defect and Defect-free Shells

2-35: Principal on-Axis Fiber Direction Stress Value

3-1: Experimental Work Flowchart.

3-2: A Schematic Diagram of the Specimen and Basic Dimensions.

3-3: Testing Methods

3-4: Test Setup

3-5: Epoxy Tensile Test Specimen.

3-6: Geometry and Dimensions of the Mold for Making Epoxy Specimens.

3-7: Tensile specimen for reinforced composite.
3-8: Analytical Work Flowchart 86
4-1: Schematic Diagram of the Wet Filament Winding Process. 89
4-2: Circumferential or Hoop Winding 92
4-3: Helical Winding Layout of Mandrel and Creel and Typical Winding Sequence. 93
4-4: Polar Winding 94
4-5: Schematic Diagram for Proposed Winding Machine 96
4-6: Set-up of the Specimen on the Winding Machine. 97
4-7: Schematic Diagram for Control Unit 98
4-8: Winding Angle versus Screw Speed 101
4-9: Fabricated Specimens for Glass and Carbon Fiber Composite Tube 102
4-10: Winding Process 103
4-11: Diamond Pattern 103
4-12: Samples of Fabricated Tube at Different Winding Angles 105
4-13: Turn Round Region and Dog Boning in Winding Process 106
5-1: Unidirectional Lamina 111
5-2: Stacking Sequences and the Positive Rotation of Reference Axes (x, y, z) to Material Axes (1, 2, 3) 112
5-3: Un-bonded View of a 4 Layered Balanced and Symmetric Laminates 114
5-4: Flowchart for the Computer Program Developed. 124
5-5: Cylindrical Coordinates used with Thick Cylinder Theory 127
5-6: Relation of Coordinate System between 131
5-7: Flowchart for the Stresses and Strains Calculation 136
6-1: Roving Creel for Fiber 138
6-2: Load-Extension Relations for the Matrix. (Epoxy and Hardener) 139
6-3: Photographs of the Failed Tensile Test Specimens for Matrix 140
6-4: Specimen for Volume Fraction Test 141
6-5: Extensometer Insulation 144
6-6: Tensile Stress-Strain Response of a [0°] Carbon/Epoxy Composite,
 \((v_f = 54\%) \) 145
6-7: Tensile Stress-Strain Response of a [0°] Glass/Epoxy Composite,
 \((v_f = 47.6\%) \) 145
6-8: Tensile Stress-Strain Response of a [90°] Carbon/Epoxy Composite,
 \((v_f = 54\%) \) 146
6-9: Tensile Stress-Strain Response of a [90°] Glass/Epoxy Composite,
 \((v_f = 47.6\%) \) 146
6-10: Shear Stress-Strain Curve Obtained from a Tensile Test of a [45]_4 Carbon Fiber Test
 Specimen, \((v_f = 54\%) \) 147
6-11: Shear Stress-Strain Curve Obtained from a Tensile Test of a [45]_4 Glass Fiber Test
 Specimen, \((v_f = 54\%) \) 147
6-12: Photographs of the Failed Tensile Test Specimens 150
6-13: Young’s Modulus versus Winding Angles for Glass/Epoxy Reinforced Material. 152
6-14: Young’s Modulus versus Winding Angles for Carbon/Epoxy Reinforced Material. 152
6-15: Shear Modulus versus Winding Angles for Glass/Epoxy Reinforced Material. 154
6-16: Shear Modulus versus Winding Angles for Carbon/Epoxy Reinforced Material. 154
6-17: Poisson’s Ratio versus Winding Angles for Glass/Epoxy Reinforced Material. 155
6-18: Poisson’s Ratio versus Winding Angles for Carbon/Epoxy Reinforced Material. 155
6-19: Internal Pressure Capacity versus Winding Angle of Glass/Epoxy Composite for
 Loading Mode I. 157
6-20: Internal Pressure Capacity versus Layers Number of Glass/Epoxy Composite for Loading Mode I. 157
6-21: Internal Pressure Capacity versus Layers Number of Glass/Epoxy and Carbon/Epoxy Composites for Loading Mode I. 158
6-22: Internal Pressure Capacity versus Four Layers of Composite Material for Loading Mode I. 159
6-23: Internal Pressure Capacity versus Stacking Sequence of Glass/Epoxy Composite for Loading Mode I. 159
6-24: Hoop Stress versus Tube Thickness for Two Layers of Glass/Epoxy and Carbon/Epoxy under Internal Pressure for Loading Mode I. 160
6-25: Hoop Stress versus Tube Thickness for Four Layers of Glass/Epoxy and Carbon/Epoxy under Internal Pressure for Loading Mode I. 161
6-26: Hoop Stress versus Tube Thickness for Six Layers of Glass/Epoxy under Internal Pressure for Loading Mode I. 162
6-27: The Hoop Stress Distribution along the Tube Thickness for Hybrid Composite Materials for Loading Mode I. 163
6-28: The Hoop Stress Distribution along the Tube Thickness of Different Stacking Sequence for Loading Mode I. 164
6-29: Internal Pressure Capacity versus Winding Angle of Glass/Epoxy Composite for Loading Mode II. 165
6-30: Internal Pressure Capacity versus Number of Layers of Glass/Epoxy Composite for Loading Mode II. 166
6-31: Internal Pressure Capacity versus Number of Layers of Glass/Epoxy and Carbon/Epoxy Composites for Loading Mode II. 166
6-32: Internal Pressure Capacity versus Four Layers of Composite Material for Loading Mode II. 167

6-33: Internal Pressure Capacity versus Stacking Sequence of Glass/Epoxy Composite for Loading Mode II. 168

6-34: Hoop Stress versus Tube Thickness for Two Layers of Glass/Epoxy and Carbon/Epoxy under Internal Pressure for Loading Mode II. 169

6-35: Hoop Stress versus Tube Thickness for Four Layers of Glass/Epoxy and Carbon/Epoxy under Internal Pressure for Loading Mode II. 169

6-36: Hoop Stress versus Tube Thickness for Six Layers of Glass/Epoxy under Internal Pressure for Loading Mode II. 170

6-37: The Hoop Stress Distribution along the Tube Thickness for Hybrid Composite Materials for Loading Mode II. 171

6-38: The Hoop Stress Distribution along the Tube Thickness of Different Stacking Sequence for Loading Mode II. 172

6-39: Internal Pressure Capacity versus Winding Angle of Glass/Epoxy Composite for Loading Mode III. 173

6-40: Internal Pressure Capacity versus Number of Layers of Glass/Epoxy Composite for Loading Mode III. 174

6-41: Internal Pressure Capacity versus Number of Layers of Glass/Epoxy and Carbon/Epoxy Composites for Loading Mode III. 175

6-42: Internal Pressure Capacity versus Four Layers of Composite Material for Loading Mode III. 175

6-43: Internal Pressure Capacity versus Stacking Sequence of Glass/Epoxy Composite for Loading Mode III. 176
6-44: Hoop Stress versus Tube Thickness for Two Layers of Glass/Epoxy and Carbon/Epoxy under Internal Pressure for Loading Mode III. 177

6-45: Hoop Stress versus Tube Thickness for Four Layers of Glass/Epoxy and Carbon/Epoxy under Internal Pressure for Loading Mode III. 178

6-46: Hoop Stress versus Tube Thickness for Six Layers of Glass/Epoxy under Internal Pressure for Loading Mode III. 178

6-47: The Hoop Stress Distribution along the Tube Thickness for Hybrid Composite Materials for Loading Mode III. 180

6-48: The Hoop Stress Distribution along the Tube Thickness of Different Stacking Sequence for Loading Mode III. 181

6-49: Solid46-3D Layered Structural Solid Element 183

6-50: Solid45-3D Solid Element 183

6-51: Finite Element Meshes for Composite Tube 184

6-52: Stress-Strain Curve for the Plastic Tube. 185

6-53: Test setup for the Plastic Tube. 185

6-54: Boundary Conditions used in Finite Element Analysis for Loading Mode I 186

6-55: Boundary Conditions used in Finite Element Analysis for Loading Mode II and III 187

6-56: Failure Index versus Internal Pressure Capacity for [±75] Glass/Epoxy for Different number of Layers. 189

6-57: Failure Index versus Internal Pressure Capacity for [±75] Carbon/Epoxy for Different number of Layers. 189

6-58: The Effect of Hybridization on the Failure Index for Composite Tube of Different Materials 189
6-59: The Effect of Stacking Sequence on the Failure Index for Composite Tube for Loading Mode I 190

6-60: Failure Index versus Internal Pressure Capacity for [±55] Glass/Epoxy for Different number of Layers. 191

6-61: Failure Index versus Internal Pressure Capacity for [±55] Carbon/Epoxy for Different number of Layers. 191

6-62: The Effect of Hybridization on the Failure Index for Composite Tube of Different Materials 192

6-63: The Effect of Stacking Sequence on the Failure Index for Composite Tube for Loading Mode II 192

6-64: Failure Index versus Internal Pressure Capacity for [±85] Glass/Epoxy for Different number of Layers. 193

6-65: Failure Index versus Internal Pressure Capacity for [±85] Carbon/Epoxy for Different number of Layers. 193

6-66: The Effect of Hybridization on the Failure Index for Composite Tube of Different Materials 194

6-67: The Effect of Stacking Sequence on the Failure Index for Composite Tube for Loading Mode III 195

6-68: Internal Pressure Capacity versus Hoop Strain of Two Layers for Composite Tube for Loading Mode I. 196

6-69: Internal Pressure Capacity versus Hoop Strain of Four Layers for Composite Tube for Loading Mode I. 196

6-70: Internal Pressure Capacity versus Hoop Strain of Six Layers Composite Tube for Loading Mode I. 197