

UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF A MULTI-STANDARD PROTOCOL USING SOFTWARE DEFINED RADIO FOR A MOBILE STATION TRANSCEIVER

KHALID ELTAHIR MOHAMED OSMAN

FK 2009 73

DEVELOPMENT OF A MULTI-STANDARD PROTOCOL USING SOFTWARE DEFINED RADIO FOR A MOBILE STATION TRANSCEIVER

By

KHALID ELTAHIR MOHAMED OSMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, In Fulfilment of the Requirement for the Degree of Doctor of Philosophy

March 2009

DEDICATED

....My dearest mother.... for making out of me the person who can present such a work...for doing all this with pleasure......

.... My beloved wife Amani.... the person who leads to successful life...and gives me all her supports and cute kids.....

To all the glory inside you...

To you... ...love...thanks...and my simple effort...

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

DEVELOPMENT OF A MULTI-STANDARD PROTOCOL USING SOFTWARE DEFINED RADIO FOR A MOBILE STATION TRANSCEIVER

By

KHALID ELTAHIR MOHAMED OSMAN

March 2009

Chairman: Professor Borhanuddin Mohd. Ali, PhD

Faculty: Engineering

In this thesis, the Software Defined Radio Digital Control System (SDR DCS) has been developed to perform a multi-standard protocol of the handset using the GSM and CDMA systems. The SDR DCS was designed for the SDR based band digital transceiver of the handset as a control and protocol software to control and handle the operation of the handset when roaming between different protocols; it could easily and quickly let the handset reconfigure with the future protocol; it configured the handset with either of the GSM or CDMA protocol software, and scheduled for reconfiguration of the handset with the second protocol in sequence. The SDR DCS controls the download of the specific air interface environment.

In order to implement the whole design in software, the design had to go through three stages. The first stage was to do all the design steps in the software using generic computing resources such as Hardware Description Language (HDL), with the top-level design for each protocol. The second stage was to define a logic circuit to perform the signal processing for each protocol; this step was applied after the simulation and synthesis, and eventually programming that circuit into the FPGA

board. The third stage was to use the FPGA to implement the functions required for each protocol which constitutes the multi-standard protocol.

The VHDL files were created for each element of the GSM and CDMA protocols. The GSM related system was developed with encoders and decoders linked to the channel model. The CDMA related system was designed with a transmitter to encode the user's data into wide bandwidth using a reverse link channel and a synchronized receiver to receive the signal from the forward link channel and decode the wide bandwidth to recover the base band user's data.

The Synopsys[™] software package was used for the design, synthesis and simulation of the SDR base band platform. The simulation tools used include the Model Sim and System Studio. Meanwhile, the Xilinx ISE 9.2i was used as the synthesis tool. The results of the simulated and synthesized top-level design files were downloaded into the Xilinx XSA-3S1000 FPGA board. The waveforms for the GSM and CDMA outputs approximately matched the ones seen in the oscilloscope for the FPGA output pin. This proved that the SDR DCS had successfully implemented its task, according to the objectives of the design.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

REKABENTUK DAN PELAKSANAAN PROTOKOL BERBILANG PIAWAIAN UNTUK TRANSCEIVER STESYEN BERGERAK RADIO BERDEFINISIKAN PERISIAN (SDR)

Oleh

KHALID ELTAHIR MOHAMED OSMAN

Mac 2009

Pengerusi : Profesor Borhanuddin Mohd. Ali, PhD

Fakulti : Kejuruteraan

Dalam tesis ini, Sistem Kawalan Digital SDR (SDR-DCS) telah dibangunkan untuk melaksanakan protokol berbilang piawaian untuk telefon bimbit menggunakan sistem GSM dan CDMA. SDR-DCS telah direkabentuk untuk transceiver jalurasas digital berasaskan SDR untuk telefon bimbit supaya ia dapat merayau di antara berbagi sistem tanpa-wayar. SDR DCS dengan mudah dan cepat membenarkan telefon bimbit mengatur semula dengan protokol yang baru ini; ia mengatur semula telefon bimbit dengan salah satu dari perisian protokol GSM atau CDMA, dan menjadualkan untuk mengatursemula telefon bimbit dengan protokol kedua, dalam jujukannya. Sebagai kesimpulannya, SDR-DCS mengawal muat-turun persekitaran pengantaramuka udara tertentu.

Untuk melaksanakan keseluruhan rekabentuk dalam perisian, rekabentuk tersebut akan melalui tiga peringkat. Peringkat pertama ialah melakukan kesemua langkah rekebentuk dalam perisian menggunakan sumber pengkomputeran umum, iaitu fail Bahasa Pemerihalan Perisian (HDL) untuk rekabentuk. Peringkat kedua ialah mendefinisikan suatu litar logik untuk melakukan pemprosesan isyarat bagi setiap

protokol; langkah ini diaplikasikan setelah selesai simulasi dan sintesis dan diakhiri dengan pengaturcaraan litar tersebut pada papan FPGA. Peringkat ke tiga ialah untuk menggunakan FPGA bagi melaksanakan fungsi-fungsi yang diperlukan untuk setiap protokol yang menjadikan ia protokol berbilang piawaian.

Fail VHDL telah dibentuk untuk setiap unsur protokol GSM dan CDMA. Sistem berkaitan dengan GSM telah dibangunkan dengan pengekod dan penyahkod yang dikaitkan dengan model saluran. Sistem berkaitan dengan CDMA telah direkabentuk dengan satu penghantar untuk mengekod data pengguna kepada lebarjalur yang luas menggunakan saluran pautan songsang dan satu penerima segerak untuk menerima isyarat dari saluran pautan kehadapan, dan menyahkod lebarjalur luas untuk mendapatkan balik data pengguna.

Package perisian Synopsys telah digunakan untuk merekabentuk, mensinthisis dan mensimulasi platform jalurasas SDR. Alat simulasi yang digunakan adalah Model Sim dan Sistem Studio. Xilinx ISE 9.2i telah digunakan sebagai alat sintesis. Hasil keputusan dari fail aras utama yang disimulasi dan disintesiskan telah dimuat turun kepada papan Xilinx XSA-3S1000 FPGA. Bentuk gelombang untuk GSM dan CDMA adalah hampir serupa dengan apa yang dapat dilihat dari oscilloscope untuk pin keluaran FPGA. Ini membuktikan bahawa SDR-DCS telah berjaya melaksanakan tugasnya mengikut objektif rekaan.

ACKNOWLEDGMENTS

All praises to Almighty Allah (SWT) the most Benevolent, Merciful, and Compassionate, for giving me the utmost strength, patience, and guidance to have this work completed.

I would like to express my most sincere gratitude and deepest appreciation to the chairman of my supervisory committee, Prof. Dr. Borhanuddin Mohd. Ali, for his invaluable contribution, input and careful supervision. Without his constant encouragement, this thesis would have never been written. I could never thank him enough for giving me his support, particularly in extending and completing my work in MIMOS Berhad.

I am also indebted to the members of my supervisory committee, Prof. Dr. S. S. Jamuar, for his support and assistance on this project, as well as for serving as a member on my committee. I am also grateful to Associate Professor Dr. Sabira Khatun and Dr. Alyani Ismail, for being on my committee and also for their encouragement, constructive suggestions and guidance.

Furthermore, I would like to acknowledge the Government of Sudan, and the University of Gezira, for supporting me during my studies. My thanks also go to my family members, especially my brothers Mohamed, Ameen and Awad.

Thanks are also due to the staff at the Faculty of Engineering, for their assistance and permission to use all the facilities and software at the wireless lab. My thanks also go to my fellow graduate students for their hospitality and kind assistance throughout my studies; my friends' kind words and help will always be cherished and remembered. I would like to thank all of my friends for their support and helps.

Words alone are not enough to express my heartfelt feelings to my beloved wife and cute kids, Ahmed and Abdelaal, for their constant support, concern and motivation throughout the study period.

Last but not least to my beloved mother, Rowgia Nooraljalil, my deepest appreciation and respect for her untiring guidance, support and sacrifices, ever since my childhood. Her spiritual support, *Do'a* and motivation have inspired me to do this research. I owe a depth gratitude to her, which can never be repaid.

I certify that an Examination Committee met on 11th of March 2009 to conduct the final examination of Khalid Eltahir Mohamed Osman of his Doctor of Philosophy thesis entitled "Development of a Multi Standard Protocol Using Software Defined Radio for Mobile Station Transceiver" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination committee are as follows:

Roslina Binti Mohd Sidek

Associate Professor Department of Electrical and Electronics Engineering Faculty of Engineering Universiti Putra Malaysia (Chairman)

Mohd Adzir Mahdi, Ph.D,

Professor Department of Computer and Communication Systems Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Ishak Aris, Ph.D.

Associate Professor Department of Electrical and Electronics Engineering Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Syed Idris Syed Hassan, Ph.D.

Professor School of Electrical and Electronic Engineering Universiti Sains Malaysia (External Examiner)

BUJANG KIM HUAT, Ph.D.,

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Borhanuddin Mohd. Ali, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

S. S. Jamuar, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Sabira Khatun, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 11 September 2009

DECLARATION

I declare that the thesis is my original work except for the quotations and citations, which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

KHALID ELTAHIR MOHAMED OSMAN

Date: 15 July 2009

TABLE OF CONTENTS

Page

ABST ABST ACKN APPR DECI LIST LIST	CATED TRACT TRAK NOWLEDGMENTS COVAL LARATION OF TABLES OF FIGURES OF ABBREVIATIONS	ii iii v vii ix xi xv xvi xvi xx
1 I	NTRODUCTION	1
1.1	Research Motivations and Problem Statements	1
1.2	Research Scope	6
1.3	Research Aim and Objectives	7
1.4	Study Module	8
1.5	Research Contribution	12
1.6	Thesis Outline	12
2 L	LITERATURE REVIEW	13
2.1	A Brief History of Software Defined Radio (SDR)	13
2.2	SDR Architecture	17
2.3	SDR Technology	18
2.4	Advantages of SDR	24
2.5	Requirements of Base Band Platform	26
2.6	Multi Standard SDR Protocol	27
2.7	Multi Standard SDR Handset Transceiver	31
2.8	Summary	39
3 P	PROPOSED SDR DIGITAL CONTROL SYSTEM (SDR DCS)	41
3 3 3 3	 SDR Digital Control System (SDR DCS) 1.1 Reconfigurable SDR DCS 1.2 SDR DSC for Multi standard Base Band 1.3 Handset Software Download Methods 1.4 Download Implementation 1.5 Roaming Support Overview of GSM 	41 42 43 48 49 50 50
	.2.1 GSM Channel Encoding.2.2 Channel Model	51 53

3.2.3 System Structure	53
3.3 CDMA and Multiple Access	55
3.4 Classification of CDMA	56
3.4.1 Direct Sequence CDMA	58
3.4.2 DS CDMA Wireless Transceiver	60
3.5 Pseudorandom Noise (PN) Sequence	61
3.6 Simulation and Synthesis Tools	62
3.6.1 Simulation Stage	63
3.6.2 Synthesis and Implementation Stage	63
3.6.2.1 Design Entry	63
3.6.2.2 Synthesis	64
3.6.2.3 Implementation	64
3.7 System Design with the VHDL Approach	64
3.7.1 Design Methodology	64
3.7.2 VHDL Modeling Structure	66
3.7.3 VHDL Synthesis	66
3.8 Test Bench	68
3.9 Field Programmable Gate Array (FPGA)	69
3.10 Summary	70
4 METHODOLOGY	71
4.1 SDR Digital Control System (SDR DCS) Overview	71
4.1.1 SDR DCS Design Specification	73
4.1.2 SDR DCS Design	76
4.1.3 SDR DCS Verification	77
4.1.4 SDR DCS Implementation	79
4.1.4.1 Logic Synthesis4.1.4.2 Place and Route	81
4.1.4.2 Place and Route 4.1.5 Device Programming and Testing	83 86
4.1.6 SDR DCS Implementation	88
4.1.7 SDR DCS Software Protocol	90
4.1.8 Network Detection and Network ID	92
4.2 Coding, Decoding and Channel Model in GSM System	95
	95
4 2 1 GSM Parity Encoder	<i>,</i> •
4.2.1 GSM Parity Encoder4.2.2 Convolution Encoder	97
	97 101
4.2.2 Convolution Encoder	
 4.2.2 Convolution Encoder 4.2.3 Interleave Encoder 4.2.4 Packet Format Encoder 4.2.4.1 Normal Burst 	101 103 104
 4.2.2 Convolution Encoder 4.2.3 Interleave Encoder 4.2.4 Packet Format Encoder 4.2.4.1 Normal Burst 4.2.4.2 Random Access Burst 	101 103 104 106
 4.2.2 Convolution Encoder 4.2.3 Interleave Encoder 4.2.4 Packet Format Encoder 4.2.4.1 Normal Burst 4.2.4.2 Random Access Burst 4.2.4.3 Synchronization Burst 	101 103 104 106 107
 4.2.2 Convolution Encoder 4.2.3 Interleave Encoder 4.2.4 Packet Format Encoder 4.2.4.1 Normal Burst 4.2.4.2 Random Access Burst 4.2.4.3 Synchronization Burst 4.2.5 Differential Encoder 	101 103 104 106 107 108
 4.2.2 Convolution Encoder 4.2.3 Interleave Encoder 4.2.4 Packet Format Encoder 4.2.4.1 Normal Burst 4.2.4.2 Random Access Burst 4.2.4.3 Synchronization Burst 4.2.5 Differential Encoder 4.2.6 GSM Encoders Model Summary 	101 103 104 106 107 108 110
 4.2.2 Convolution Encoder 4.2.3 Interleave Encoder 4.2.4 Packet Format Encoder 4.2.4.1 Normal Burst 4.2.4.2 Random Access Burst 4.2.4.3 Synchronization Burst 4.2.5 Differential Encoder 4.2.6 GSM Encoders Model Summary 4.2.7 Differential Decoder 	101 103 104 106 107 108 110 110
 4.2.2 Convolution Encoder 4.2.3 Interleave Encoder 4.2.4 Packet Format Encoder 4.2.4.1 Normal Burst 4.2.4.2 Random Access Burst 4.2.4.3 Synchronization Burst 4.2.5 Differential Encoder 4.2.6 GSM Encoders Model Summary 	101 103 104 106 107 108 110

4.2.11 Parity Check Decoder	114
4.2.12 Implementation of Channel Model	115
4.2.12.1 Channel Model Structure 4.2.13 Random Error Mode	115
	116
4.3 CDMA Interface Model 4.3.1 Data Model	119 123
4.3.2 Coding Scheme & Parameter Setting	123
4.3.2.1 Coding Scheme in Reverse Link	124
4.3.2.2 Coding Scheme for Forward Link	128
4.3.3 Circuit Process Model	129
4.3.3.1 Base Band Transmitter Circuit Process4.3.3.2 Base Band Receiver Circuit Process Media	
4.4 Summary	132
5 RESULTS AND DISCUSSION	139
5.1 The SDR DCS	140
5.1.1 Reset Check	140
5.1.2 Test GSM Protocol	141
5.1.3 Test CDMA Protocol	144
5.1.4 Test Future Protocol	144
5.1.5 Selection of the Best Mode of Operation	148
5.2 GSM Protocol	154
5.3 The CDMA Protocol	158
5.4 Transmitter Module	160
5.5 The Receiver Module	161
5.6 The DS CDMA Modem	163
5.7 Implementation Results	164
5.8 Simulation and Implementation Results Integration	on 170
5.9 System Performance	176
5.9.1 Incremental	177
5.9.2 The Channel Error Rate Calculations5.9.3 The Calculation of the Configuration Delay	179 181
5.10 SDR switching Systems and SDR DCS	181
5.11 Summary	188
6 CONCLUSION	190
6.1 Achievements	191
6.2 Summary of Contributions	192
6.3 Future Work	193
REFERENCES	195
APPENDICES List of Publications	202 217
	<u> </u>

Table	Page
4.1: SDR DCS input/output (I/O) pin functions	75
4.2: FSM with logic values	77
4.3: convolution encoder	100
4.4: Burst structures in a GSM system	108
4.5: Differential encoding	109
4.6: Differential decoding mapping format	111
4.7: Reordering scheme for a traffic channel TCH	113
4.8: External control signal for receiver module	121
4.9: Receiver module external control signal function	121
4.10: External data Signal for Receiver Module	122
4.11: Receiver module external data signal function	122
4.12: External control signal for transmitter module	122
4.13: Transmitter module external control signal function	122
4.14: External data signal for transmitter module	123
4.15: Transmitter module external data signal function	123
4.16: Parameter setting for transmitter coding scheme	127
4.17: Transmitter test vector setting	127
5.1: Results of the three incremental types	177

LIST OF TABLES

LIST OF FIGURES

Figure	Page
1.1: SDR Architecture Software Defined Radio Forum (2002)	7
1.2: SDR DCS Study Module	11
2.1: conceptual view of a software radio system	17
2.2: Block diagram of a generic digital transceiver Wipro (2002)	18
2.3: An example of dual mode second-generation cellular handset architecture	Shah
(2002)	21
2.4: An example of reconfigurable SDR architecture Shah (2002)	23
2.5: The Vanu Software Radio architecture Shah (2002)	23
2.6: Multi standard SDR base band system Zhigang (2003)	28
2.7: Multi standard SDR base band processing platform SDR Forum Base Stat	ion
Working Group (2001) Zhigang (2003)	29
2.8: Hierarchical SDR library concept Koenig (2006)	31
2.9: Tsurumi handheld SDR terminal Tsurumi (1999)	33
2.10: Vanu Anywave GSM/GPRS BSS in a rural cellular deployment Vanu (20	006)34
2.11: Example SDR baseband data path reconfiguration	36
2.12: Base band sample packet transmit timing diagram for VHDL Software D	efined
Radio Forum (2009)	39
3.1: The reconfiguration of the CDMA handset to work in GSM network Braw	rerman
(2005)	44
3.2: Flexible RF section Stefano (2006)	44
3.3: Hierarchical SDR DCS library concept	46
3.4: SDR Forum Reference model Software Defined Radio Forum, (2002)	47
3.5: SDR software framework Koenig (2006), Zhgang (2003)	48
3.6: From GSM to UMTS Sicard (2001)	51
3.7: GSM channel coding structure Eberspacher (2001)	54
3.8: Multiple access schemes: (a) FDMA, (b) TDMA, and (c) CDMA Ojanpera	a
(2003)	56
3.9: Classification of CDMA Ojanpera (2003)	57
3.10: Direct sequence, frequency hopping, and time hopping Ojanpera (2003)	58
3.11: Block diagram of a DS CDMA transmitter Sam (1998)	59
3.12: Receiver of a DS CDMA signal Sam (1998)	59

3.13: (a) Traditional schematic design approach (b) VHDL-based design approach	ı 65
3.14: VHDL modeling structure Zwolinski (2000)	66
3.15: Flow in VHDL synthesis Perry (1998)	67
3.16: High –level design flow	68
3.17: General purpose processing with flexible software Chang (2001)	69
4.1 FPGA Design Flow	72
4.2: SDR DCS flow chart	73
4.3: SDR DCS block diagram	75
4.4: SDR DCS sample test frame	78
4.5: FPGA Implementation flow	83
4.6: Sign-Off verification	86
4.7: FPGA Development board Stefano (2006)	87
4.8: Xess FPGA prototyping board	89
4.9: The view of the SDR DCS, GSM and CDMA inside the FPGA board	92
4.10: SDR with software control and frequency selection	92
4.11: SDR DCS frequency detection and reconfiguration	94
4.12: Parity Error detection method used for full rate encoder	96
4.13: Linear feedback shift register in parity encoder	96
4.14: Convolution error correction method used for RELP full rate encoder	98
4.15: Convolution encoder for speech encoding	99
4.16: Details of interleaving process	102
4.17: Diagonal interleaving of speech data	103
4.18: Structure of a normal burst	104
4.19: Structure of a random access burst	107
4.20: Structure of a synchronization burst	108
4.21: Differential encoding	109
4.22: Diagonal interleaver decoding of speech data	112
4.23: Structure of the channel model	116
4.24: Modem chip & its interfaces	121
4.25: Transmitter flow of operation	131
4.26: Base band transmitter architecture Wong (2001)	132
4.27: Receiver flow of operation	134
4.28: Proposed synchronization module	136
4.29: Base band DS CDMA modem architecture	137

5.1: SDR DCS Reset test	142
5.2: SDR DCS GSM test	143
5.3: SDR DCS CDMA test	145
5.4: SDR DCS future protocol test configure case	147
5.5: SDR DCS future protocol test error case	149
5.6: SDR DCS with call wait status case 1	151
5.7: SDR DCS with call wait status case 2	153
5.8: The simulated result for the GSM channel coding structure	155
5.9: GSM encoder module	156
5.10: GSM decoder module	156
5.11: GSM encoders and decoders	157
5.12: GSM encoders/decoders starting frames	158
5.13: Input and output pins for CDMA transmitter and receiver before	
synchronization	159
5.14: Schematic diagram for the transmitter module	159
5.15: Schematic diagram for the receiver module	160
5.16: DS CDMA transmitter	161
5.17: DS CDMA receiver	162
5.18: DS CDMA transceiver capture1	163
5.19: DS CDMA transceiver capture2	164
5.20: SDR DCS implementation for the GSM protocol using FPGA	166
5.21: The output of the GSM as seen in the oscilloscope	166
5.22: SDR DCS implementation for the CDMA protocol using the FPGA	167
5.23: The output of the CDMA as seen in the oscilloscope	167
5.24: SDR DCS implementation for future protocol using the FPGA	168
5.25: The output of the future protocol as seen in the oscilloscope	168
5.26: The automatic switching between GSM and CDMA	169
5.27: The system configured with GSM	170
5.28: The system configured with future protocol	170
5.29: The reset, configuration, and GSM stages for the handset	172
5.30: The GSM, reconfiguration, and CDMA stages for the handset	173
5.31: The CDMA, reconfiguration, and future protocol stages for the handset	174
5.32: Simulation and implementation results comparison	175
5.33: A comparison of the simulation and implementation results	176

5.34: Simulation results of the random error mode	179
5.35: Simulation results of random error mode continue	180
5.36: The configuration delay period calculations	182

LIST OF ABBREVIATIONS

ADC	Analog to Digital Converter
AIS	Air Interface Standards
ASIC	Application Specific Integrated Circuits
CDMA	Code Division Multiple Access
CORBA	Common Object Request Broker Architecture
CRC	cyclic redundancy checks
DAC	Digital to Analog Converter
DDC	Digital Down Converter
DKI	Direct Kernel Interface
DoD	US Department of Defense
DS	Direct Sequence
DSP	Digital Signal Processor
DUC	Digital Up Converter
EDA	Electronic Design Automation
IF	Intermediate Frequency
IS-95	Interim Standard 95
ISETM	Integrated Software Environment
ITU-R	International Telecommunication Union - Radio
FCC	Federal Communications Commission
FPGA	Field Programmable Gate Array
FSM	Finite State Machine
JTRS	Joint Tactical Radio System
GSM	Global System for Mobile
GPRS	General Packet Radio Service

LFSR	Linear Feedback Shift Register
MS	Mobile Station
NCD	Native Circuit Description
NGD	Native Generic Database
ΟΤΑ	Over-The-Air
PAR	Place and Route
PCF	Physical Constraint File
PN	Pseudo-Noise
RAM	Random Access Memory
RF	Radio Frequency
ROM	READ Only Memory
RTL	Register Transfer Level
SCA	Software Communication Architecture
SCR	software controlled radios
SDR	Software Defined Radio
SDR DCS	Software Defined Radio Digital Control System
SOC	System-on-Chip
UMTS	Universal Mobile Telecommunications System
UPM	Universiti Putra Malaysia
VCS	Verilog Compile Simulator
VHDL	Very High Speed Integrated Circuit (VHSIC)
	Hardware Description Language

CHAPTER 1

INTRODUCTION

This chapter introduces the subject of multi-standard protocol for Software Defined Radio (SDR), the main requirement that must be satisfied by the multi-standard SDR and its capability to support the communication system applications. There are numerous definitions given to the SDR, all of which are not totally consistent with each other. Among other, International Telecommunication Union - Radio (ITU-R) defines the SDR as "A radio that includes a transmitter, in which the operating parameters of frequency range, modulation type, and/or maximum output power (either radiated or conducted) can be altered, post-manufacturing, by making a change in software or adapting parameters under software direction, without making changes to the hardware components". The Federal Communications Commission (FCC) defines the SDR as a "generation of radio equipment which can be reprogrammed quickly to transmit and receive any frequency within a wide range of frequencies, using virtually any transmission format and any set of standards". In contrast, the SDR Forum, as an international, non-profit organization promoting the development of SDR, offers a broader definition, i.e. "SDR is a collection of hardware and software technologies which enable reconfigurable systems architectures for wireless networks and user terminals".

1.1 Research Motivations and Problem Statements

Wireless communication systems are rapidly evolving through the incessant extension of the old standards (GSM, IS95, CDMA2000, and UMTS) with the new

generations. A side effect of this rapid growth is an excess of mobile system standards; every major country has its own standards.

In present day environment, there is a wide range of wireless communication systems available such as the GSM, CDMA, WiFi etc. To support such diverse set of protocols and the associated payloads (voice only with the GSM; voice, graphics, video with 3G), most mobile handsets are built with multiple RF transceivers and DSP chipset or microprocessors to handle the complex signal processing requirements.

In the present technology, a handset is moved from one environment to another, for example from GSM to CDMA; the handset devices simply "switch" the receiver and transmitter circuits for the predefined air interfaces, rather than employing a single, common RF front end. If a particular interface is not built into the handset, it is not possible for the handset to operate in that particular environment. In such cases, the consumer will have to purchase a different unit.

With the rapid development and growth in mobile telephone usage, it is clear that a wireless revolution is taking place. The users' problem is one of connectivity and a growing number of incompatible Air Interface Standards (AISs) as well as information filtering. At their desks, users have email, telephones, personal computers, and wideband connectivity to internal backbones and external services. As they leave their offices, they have to rely on their personal computers for notification and cellular phones for contact. Both of these devices, however, have limited access areas and specific protocols. Users also have separate palmtop devices for multimedia information capture, storage, and display; these devices incorporate substantial computational power.

Traditional radios use hardware circuits, fixed at time of manufacture to perform the high speed signal processing to convert back and forth between user data and radio waveform. In a traditional cell phone, for example, there is the radio front end, consisting of an antenna and a radio-frequency transceiver that picks up the analog radio waves, filters out the unwanted portions of the spectrum, and converts the remainder into a lower frequency signal, which is fed into an analog-to-digital converter. The resulting baseband signal is then processed i.e. demodulated, decompressed, or otherwise decoded.

In a hardware radio (HDR), legacy platforms are tailored to support only one type of waveform. That is, the physical layer of the waveform was embedded in specific hardware solutions and the Radio Frequency (RF) front end was also optimized for the same waveform. The key architectural elements of a radio would be the transmitter and receiver (or transceiver), RF power amplification, and encryption/decryption.

Within a Software Defined Radio (SDR), the radio contains several processing elements (General Purpose Processors (GPP), Digital Signal Processors (DSP), and Field Programmable Gate Array (FPGA)) that can be programmed by the waveform to deliver the required functionality. However, if each waveform must be tailored to the specific unique capabilities of each individual platform, (e.g., the type of GPP, DSP, and FPGA), significant portions of the waveform may have to be rewritten if they need to be ported to different hardware platforms. This has prompted the development of open standards, to make it easier to develop waveforms that can run on multiple platforms with minimal change.

Software defined radio aims to get rid of most of that hardware. A number of companies are working on reconfigurable RF chips that can directly convert any

