

UNIVERSITI PUTRA MALAYSIA

FORAGING OF COPTOTERMES CURVIGNATHUS (INSECTA: ISOPTERA: RHINOTERMITIDAE) AND PATTERN OF DAMAGE IN OIL PALM ON PEAT IN BINTULU SARAWAK

CHAN SEOW PHAN

FSPM 2012 2

FORAGING OF *COPTOTERMES CURVIGNATHUS* (INSECTA: ISOPTERA: RHINOTERMITIDAE) AND PATTERN OF DAMAGE IN OIL PALM ON PEAT IN BINTULU SARAWAK

CHAN SEOW PHAN

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

FORAGING OF *COPTOTERMES CURVIGNATHUS* (INSECTA: ISOPTERA: RHINOTERMITIDAE) AND PATTERN OF DAMAGE IN OIL PALM ON PEAT IN BINTULU SARAWAK

By

CHAN SEOW PHAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

December 2012

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

FORAGING OF *COPTOTERMES CURVIGNATHUS* (INSECTA: ISOPTERA: RHINOTERMITIDAE) AND PATTERN OF DAMAGE IN OIL PALM ON PEAT IN BINTULU SARAWAK

By

CHAN SEOW PHAN

December 2012

Chairman: Joseph Bong Choon Fah, PhD

Faculty: Agriculture and Food Sciences, Bintulu

Coptotermes curvignathus is a major pest in oil palm plantation planted on peat. The control of the pest was unsatisfactory due to its lifestyle that made the observation on its foraging behaviour difficult. The objectives of this study were to verify the identity of the pest, to determine the tunnelling activity of *C. curvignathus* towards presence and absence of food source in the laboratory, to detect the presence and absence of *C. curvignathus* surrounding an infested palm and lastly to investigate the damage pattern and infestation in oil palm. Tunnelling arena with and without food was prepared to compare the distribution of tunnel length and frequency of tunnel initiation in all direction to see whether any directional feeding occurred. Field study using underground baiting station with rubber wood arranged in all direction was set up surrounding an infested palm to detect the presence or absence

of C. curvignathus. Infested oil palms were dissected to see the interior damage caused by C. curvignathus, while survey of the infestation rate was carried out to determine its pattern of infestation. Morphological and molecular studies have verified the termite species as C. curvignathus with 99-100% similarity between 2-403 bp from the reference samples. The initial tunnelling activity of C. curvignathus was random but food oriented. This was due to insignificant distribution of tunnelling activity and tunnel initiation in no food arena but presence of food induced higher tunnelling activity and higher amount of tunnel initiated. Higher tunnel length was found (234.53 mm) in food present arena compared to no food arena (156.00 mm). The distribution of tunnelling activity in food present arena was not uniform as North sector (335.68 mm) possessed significant higher tunnel length than East (176.55 mm), Southwest (212.76 mm), West (185.24 mm) and Northwest (187.15 mm) respectively. Although the distribution of tunnel initiation was random, it was more likely for C. curvignathus to search in North sector as indicated in the present study. The significant difference of tunnel distribution in certain sector was also due to the search behaviour of the termite whenever food source was encountered. Coptotermes curvignathus tend to branch if the primary tunnel managed to encounter food source while long primary tunnel was excavated if no food were discovered. This observation was supported by significant differences in length of exploratory tunnels (1420. 8 mm) compared to secondary tunnels (351.8 mm) in food present arena. In the food absent arena, primary tunnels significantly dominated with tunnel length of 700.7 mm compared to secondary tunnels (280.6 mm). Coptotermes curvignathus was also observed not visiting all available food sources in the arena and thus, skewed the tunnel distribution in certain sector. Field study revealed that C. curvignathus was scattered surrounding an infested palm. It was a dominant termite species in peat as no other termite species was found within a baiting station occupied by C. curvignathus. Similarly to the laboratory observation, not all baiting station was found infested at any one time during the assessment period. Coptotermes curvignathus damaged the oil palm by excavation and eventually chambers were formed inside the trunk. Thin laminae structures were found within these chambers. Each structure had different thickness (0.98-2.27 mm) and shapes (cell height 3.54-8.92 mm, cell width 6.54-16.82 mm). This constructed structure was believed to be its endoecie where alates and nymphs were found. However the availability of thin laminae structure was random among the infested palm. The infestation incidences of oil palm were found to fluctuate throughout the year. Total infestation incidence ranged from 0.02 to 0.11%. Among the infested palms, about 11.7-23.9% had damage through spear region infestation. There was no evidence of basal infestation during the assessment period. The pattern of infestation was not influenced by monthly rainfall since no significant relationship was established. Regular chemical control managed to keep infestation low but the infestation persisted throughout the years in the surveyed plantations.

Abstrak thesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Sarjana Sains

PENCARIAN MAKANAN OLEH *COPTOTERMES CURVIGNATHUS* (INSECTA: ISOPTERA: RHINOTERMITIDAE) DAN CORAK KEROSAKAN PADA KELAPA SAWIT DI TANAH GAMBUT DI BINTULU SARAWAK

Oleh

CHAN SEOW PHAN

December 2012

Pengerusi: Joseph Bong Choon Fah, PhD

Fakulti: Sains Pertanian dan Makanan, Bintulu

Coptotermes curvignathus adalah perosak utama di ladang kelapa sawit yang ditanam di tanah gambut. Kawalan perosak anai-anai adalah tidak memuaskan disebabkan oleh gaya hidupnya yang menyusahkan permerhatian terhadap kelakuan pencarian makanannya. Objektif kajian ini adalah untuk mengesahkan identiti perosak, menentukan aktiviti menerowong *C. curvignathus* di kawasan dengan dan tanpa sumber makanan di dalam makmal, mengesan kehadiran dan ketiadaan *C. curvignathus* di sekitar kelapa sawit yang diserang, dan untuk menyiasat corak kerosakan dan serangan pada kelapa sawit. Arena terowong dengan dan tanpa makanan disediakan untuk membandingkan taburan panjang terowong dan kekerapan permulaan terowong dalam semua arah untuk melihat samaada berlakunya pemakanan berarah. Kerja lapangan menggunakan stesen umpan dengan

kayu getah disediakan di sekitar kelapa sawit yang diserang untuk mengesan taburan C. curvignathus. Kelapa sawit dibedah untuk melihat kerosakan dalaman akibat serangan C. curvignathus, manakala survei kerosakan dijalankan untuk menentukan corak serangan anai-anai. Kajian morfologi dan molekul mengesahkan spesis anaianai sebagai C. curvignathus dengan persamaan 99-100% antara 2-403 bp daripada sampel rujukan. Permulaan terowong C. curvignathus adalah rawak tetapi dipengaruhi oleh makanan. Ini adalah disebabkan oleh taburan terowong dan permulaan terowong yang tidak ketara dalam kawasan terowong tanpa makana tetapi kehadiran makanan menyebabkan aktiviti terowong dan jumlah permulaan terowong yang lebih tinggi terowong. Kawasan terowong bermakanan mempunyai panjang terowong yang lebih tinggi (234.53 mm) berbanding dengan kawasan terowong tanpa makanan (156.00 mm). Taburan activiti terowong dalam kawasan bermakanan adalah tidak seragam kerana sektor Utara (335.68 mm) memiliki panjang terowong yang lebih ketara daripada Timur (176.55 mm), Barat Daya (212.76 mm), Barat (185.24 mm) dan Barat laut (187.15 mm). Walaupun taburan permulaan terowong adalah rawak, C. curvignathus lebih cenderung untuk menerowong dalam sektor Utara seperti yang ditunjukkan dalam kajian ini. Perbezaan yang signifikan dalam taburan terowong dalam sektor tertentu juga disebabkan oleh tingkah laku pencarian anai-anai apabila sumber makanan telah dijumpai. Terowong C. curvignathus lebih cenderung untuk bercabang jika terowong utamanya berjaya menemui sumber dan sebaliknya jika makanan tidak ditemui. Pemerhatian ini disokong oleh perbezaan yang signifikan dalam panjang terowong penerokaan (1420.8 mm) berbanding terowong menengah (351.8 mm) dalam kawasan bermakanan. Dalam kawasan terowong tanpa makanan, terowong utama menguasai kawasan tersebut dengan panjang terowong 700.7 mm berbanding terowong menengah (280.6 mm). Coptotermes curvignathus telah juga didapati tidak melawati kesemua sumber makanan dalam kawasan terowong itu dan mangakibatkan pengagihan terowong dalam sektor tertentu. Kerja lapangan menunjukkan C. curvignathus adalah bertabur di sekitar kelapa sawit yang diserang. Ia adalah anai-anai yang dominan di tanah gambut dimana tiada spesis anai-anai yang lain telah ditemui dalam stesen umpan dimana C. curvignathus berada. Coptotermes curvignathus telah juga didapati tidak melawati kesemua stesen umpan pada satu-satu masa dalam tempoh penilaian. Coptotermes curvignathus merosakkan kelapa sawit dengan penggalian dan akhirnya mengakibatkan ruang dibentuk di dalam batang kalapa sawit. Struktur lamina nipis telah ditemui di dalam ruang ini. Setiap struktur lamina mempunyai ketebalan yang berbeza (0.98-2.27 mm) dan mempunyai berbagai bentuk (ketinggian sel 3.54-8.92 mm, kelebaran sel 6.54-16.82 mm). Struktur ini dipercayai adalah endoecienya kerana rayap dan nimfanya ditemui dalam struktur tersebut. Akan tetapi kehadiran struktur lamina ini adalah rawak. Kejadian serangan kelapa sawit didapati turun naik sepanjang tahun. Jumlah insiden serangan adalah diantara 0.02-0.11%. Antara kelapa sawit yang diserang, terdapat 11.7-23.9% mempunyai kerosakan melalui rantau lembing. Tiada bukti serangan bawah kelapa sawit didapati dalam tempoh penilaian. Corak serangan anai-anai adalah tidak dipengaruhi oleh jumlah hujan bulanan kerana tiada hubungan yang signifikan telah dijumpai. Kawalan kimia yang kerap berjaya memastikan serangan yang rendah tetapi serangan adalah berterusan sepanjang tahun di ladang-ladang yang dikaji.

ACKNOWLEDGEMENTS

Kindness is the language which the deaf can hear and blind can see

(Mark Twain)

I would like to express my sincere gratitude to all those who were directly or indirectly involved in the completion of this study.

My appreciation goes to my Supervisor Associate Professor Dr. Joseph Bong Choon Fah, for his sincere support, guidance and encouragement. My appreciation is also extended to Dr. Lau Wei Hong who served as a member of my Advisory Committee.

I would like to heartily thank my labmates from Pathology Lab, Miss Hoe Pik Kheng, Mr. Lim Guan Miaw and Miss Wong Ling Chie for their tireless effort in aiding in my research for my thesis would never have materialized without them. Thanks are also extended to Miss Lee Huei Hong, Miss Neoh Pei Nee and Miss Weng Bong Siew Then for their guidance and assistance in the Molecular Laboratory. Sincere appreciation is also extended to Woodman Semanok Oil Palm Plantation, Taniku 1 and Taniku 2, Sungai Trus and Sungai Balim Oil Palm Estate of Sarawak Oil Palm Berhad and Setuan Oil Palm Estate for their cooperation and effort in making the study a successful one.

Finally and, above all, my family that deserves a lot of thanks and appreciations, not only for their understanding, love and care, but also their continue support during these years.

Thank you.

I certify that a Thesis Examination Committee has met on (13 December 2012) to conduct the final examination of (Chan Seow Phan) on his thesis entitled "**Foraging of** *Coptotermes curvignathus* (Insecta: Isoptera: Rhinotermitidae) and Pattern of Damage in Oil Palm on Peat in Bintulu Sarawak" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the (Master of Science (Entomology)).

Members of the Thesis Examination Committee were as follows:

Japar Sidik bin Bujang, PhD

Professor Faculty of Agriculture and Food Sciences Universiti Putra Malaysia (Chairman)

Ahmad Said bin Sajap, PhD

Professor Faculty of Forestry Universiti Putra Malaysia (Internal Examiner)

Hadfizi bin Mohd Nor, PhD

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Internal Examiner)

Idris bin Abdul Ghani, PhD

Professor Faculty of Science and Technology Universiti Kebangsaan Malaysia Malaysia (External Examiner)

SEOW HENG FONG, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis is submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. Members of the Supervisory Committee were as follows:

Joseph Bong Choon Fah, PhD

Associate Professor Faculty of Agriculture and Food Sciences Universiti Putra Malaysia Bintulu Sarawak Campus (Chairman)

Lau Wei Hong, PhD

Senior Lecturer Faculty of Agriculture Universiti Putra Malaysia (Member)

Rajan a/l Amarthalingam, PhD

Associate Professor Faculty of Agriculture and Food Sciences Universiti Putra Malaysia Bintulu Sarawak Campus (Member)

> BUJANG BIN KIM HUAT, PhD Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATIONS

I hereby declare that the thesis is based on my original work except for quotations and citation, which have been duly acknowledged. I also declare that it has not been previously or concurrent submitted for any degree at Universiti Putra Malaysia or other institutions.

CHAN SEOW PHAN

Date: 13 December 2012

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ABSTRAK	V
ACKNOWLEDGEMENTS	viii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	xiv
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xviii

CHAPTER

1	INT	RODUC	CTION	1				
2	LIT	LITERATURE REVIEW						
	2.1	Classifi	ication	5				
	2.2	Biology	y of termites	5				
		2.2.1	Caste of termite	5				
	2.3	Importa	ance of behavioural study in controlling termite	7				
	2.4	Foragin	ng behaviour of termite	9				
		2.4.1	Food preferences	9				
		2.4.2	Foraging pattern and food search behaviour	10				
	2.5	Foragin	ng behaviour of Coptotermes curvignathus	13				
		2.5.1	Previous study of Coptotermes curvignathus	14				
		2.5.2	Foraging efficiency of Coptotermes	15				
			formosanus					
	2.6	Coptote	ermes curvignathus and the oil palm industry in	19				
		Malays	ia					
		2.6.1	Termite pest in Malaysia	18				
		2.6.2	Damage to oil palm and control	19				
3	MA	TERIAI	LS AND METHODS	21				
	3.1	Collect	ion, conditioning and verification of	21				
		Coptote	ermes curvignathus					
	3.2	Tunnell	ling activity of C. curvignathus before food	22				
		sources	were introduced (food source was only					
		introdu	ced on 3^{ra} day and 6^{th} day) in the laboratory					
	3.3	Tunnell	ling activity of C. curvignathus with food	25				
		source	in the laboratory					
	3.4	Detection	on of <i>C. curvignathus</i> 's distribution around an	26				
		infested	l palm					
	3.5	Damag	e pattern and infestation of C. curvignathus on	29				
		oil paln	n planted on peat					

4	RES	31	
	4.1	Verification of termite sample	31
	4.2	Tunnelling activity of <i>C. curvignathus</i> before	34
		introduction of food source (food source was only introduced at 3 rd day and 6 th day) in the laboratory study	
	4.3	Tunnelling activity of <i>C. curvignathus</i> in the presence of food source in the laboratory study	42
	4.4	Tunnel length distribution and tunnel initiation in presence and absence of food	51
	4.5	Detection of presence and absence of <i>C. curvignathus</i> surrounding an infested palm	53
	4.6	Damage pattern and infestation of <i>C. curvignathus</i> in oil palm	56
5	DIS	CUSSION	67
6	CO	NCLUSION	74
RE	FER	ENCE	76
AP BI	ODA'	DICES FA OF STUDENT	84 117

LIST OF TABLES

Tables		Page
4.1	Comparison of morphological measurements with Thapa (1981)	31
4.2	Tunnel length distribution in all direction in food absent arena	41
4.3	Number of tunnel initiation in all direction in food absent arena	42
4.4	Tunnel length and tunnel ration by branching order in food absent arena	42
4.5	Tunnel distribution in all direction in food present arena	50
4.6	Number of tunnel initiation in all direction in food present arena	50
4.7	Length of tunnel by branching order in food present arena	51
4.8	Tunnel length distribution in food present and food absent arena	52
4.9	Number of tunnel initiated in food present and food absent arena	52
4.10	Tunnel initiation for direction in food present and food absent arena	52
4.11	Length of tunnel by branching order for food present and food absent arena	52
4.12	Ratio of branching order in percentage for food present and food absent arena	52
4.13	Symptoms and mode of attack of Coptotermes curvignathus	57
4.14	Size of chambers found in oil palm infested by <i>Coptotermes</i> curvignathus	60
4.15	Thickness of laminae and cell sizes (mm)	60

LIST OF FIGURES

Figure		Page
3.1	Classification of tunnel according to Gravelius system (Selkirk, 1982). 1 = Primary tunnel, 2 = Secondary tunnel, 3 = Tertiary tunnel and 4 = Quaternary. Ex = Exploratory tunnel, H = Harbourage, F = Food source	24
3.2	Arrangement of food sources according to direction using a wire grid	25
3.3	Arrangement of food sources (f) according to direction. N=North, E=East, S=South, W=West and H=Harbourage	26
3.4	Schematic drawing of the baiting station's location in Block 16. N= North, NE= northeast, NW= Northwest, S= South, SE= Southeast, SW= Southwest, W= West, E= East and M= Middle, ▲ = Infested palm, ▲ = Oil palm, • = Baiting station.	27
3.5	Schematic drawing of the baiting station's location in Block 9. N= North, NE= northeast, NW= Northwest, S= South, SE= Southeast, SW= Southwest, W= West, E= East and M= Middle, ▲ = Infested palm, ▲ = Oil palm, • = Baiting station.	28
3.6	Schematic drawing of the baiting station's location in Block 13. N= North, NE= northeast, NW= Northwest, S= South, SE= Southeast, SW= Southwest, W= West, E= East and M= Middle, ▲ = Infested palm, ▲ = Oil palm, • = Baiting station.	28
4.1	 (a) Length measurement (mm) of <i>Coptotermes curvignathus</i> soldier caste, (b) opening of the fontanelle, (c) width of the head, (d) height of the head, (e) labrum, (f) mandibles, (g) postmentum, (h) maximum length of pronotum, (i) median length of the pronotum 	32
4.2	Gel image showing the amplified product of 16s genes LRJ- 13007 and LRN-13398 of soldier (S) and worker (W) castes of <i>C</i> . <i>curvignathus</i> between 500 bp and 400 bp	34
4.3	Tunnelling activity of <i>C. curvignathus</i> in all direction for each hour in day 1, Black lines = primary tunnels (a) 0 hour, (b) 1 hour, (c) 2 hour, (d) 3 hour, (e) 4 hour, (f) 5 hour, (g) 6 hour, (h) 7 hour, (i) 8 hour, (j) 9 hour, (k) 10 hour, (l) 11 hour, (m) 12 hour, (n) 13 hour, (o) 14 hour, (p) 15 hour, (q) 16 hour, (r) 17 hour, (s) 18 hour, (t) 19 hour, (u) 20 hour, (v) 21 hour, (w) 22 hour, (x) 23 hour	35
4.4	Tunnelling activity of <i>C. curvignathus</i> in all direction after day 1, Black lines = Primary tunnels, Blue lines = tunnels that circumnavigated the arena, Green lines = Exploratory tunnels, (a)	38

	24 hour (b) 36 hour, (c) 48 hour, (d) 60 hour, (e) 72 hour, (f) 84 hour, (g) 96 hour, (h) 144 hour, (i) 156 hour, (j) 168 hour, (k) 20 th day and (l) 30 th day	
4.5	The tunnel length (mm) excavated by <i>C. curvignathus</i> hourly for 24 hours	40
4.6	Cumulative tunnelled length (mm) of <i>C. curvignathus</i> by hour until the twenty fourth hours	40
4.7	The total tunnel length (mm) by day for <i>C. curvignathus</i> in no food arena	41
4.8	Tunnelling activity of <i>C. curvignathus</i> in day 1, Blue lines = primary tunnel, yellow = secondary tunnel, white = exploratory, black = tunnels circumnavigated the arena, (a) 0 hour, (b) 1 hour, (c) 2 hour, (d) 3 hour, (e) 4 hour, (f) 5 hour, (g) 6 hour, (h) 7 hour, (i) 8 hour, (j) 9 hour, (k) 10 hour, (l) 11 hour, (m) 12 hour, (n) 13 hour, (o) 14 hour, (p) 15 hour, (q) 16 hour, (r) 17 hour, (s) 18 hour, (t) 19 hour, (u) 20 hour, (v) 21 hour, (w) 22 hour, (x) 23 hour	43
4.9	The tunnelling activity of <i>C. curvignathus</i> after day 1, Blue lines = primary tunnel, yellow = secondary tunnel, white = exploratory, black = tunnels circumnavigated the arena, (a) 24 hour, (b) 36 hour, (c) 48 hour, (d) 72 hour, (e) 10^{th} day, (f) 20^{th} day and (g) 30^{th} days	46
4.10	The tunnelled length (mm) by <i>C. curvignathus</i> from 0 till 24 hours in food present arena	48
4.11	The cumulative tunnelled length (mm) by <i>C. curvignathus</i> by hour from 0 till the 24 hours in food present arena	48
4.12	The tunnelled length (mm) by <i>C. curvignathus</i> by days in food present arena	49
4.13	The relationship between the tunnel length (mm) by days in food present arena	49
4.14	Distribution of <i>C. curvignathus</i> in the infested palm for in block 16	54
4.15	Distribution of <i>C. curvignathus</i> in the infested palm for in block 9	55
4.16	Distribution of <i>C. curvignathus</i> in the infested palm for in block 13	56
4.17	The broken spear of the oil palm	57

4.18	The dissected spear (S) region of the young unopened shoot (YS), where the excavated gallery (G) was found	58
4.19	The female inflorescent was being attack and covering with mud by <i>Coptotermes curvignathus</i>	58
4.20	The termite cavity (TC) consumed by <i>Coptotermes curvignathus</i> in oil palm trunk surrounded by the periphery supportive fibrous region (PSF) with the growth bulb (GB) intact	59
4.21	An alate (arrow) of C. curvignathus found in the endoecie	61
4.22	Nymphs (arrows) of C. curvignathus found in the endoecie area	61
4.23	The cell shapes of the thin laminae structure	62
4.24	Thin laminae structure found beneath the spear region	62
4.25	The thin laminae (TL) being protected by a more solid and thicker outer layer (arrows)	63
4.26	Cross section of laminae structure of C. curvignathus in oil palm	63
4.27	The infestation rate of <i>C. curvignathus</i> in Taniku 1 Oil Palm Estate	64
4.28	The infestation rate of <i>C. curvignathus</i> in Sg. Trus Oil Palm Estate	65
4.29	The infestation rate of <i>C. curvignathus</i> in Taniku 2 Oil Palm Estate	65
4.30	The infestation rate of <i>C. curvignathus</i> in Sg. Balim Oil Palm Estate	66

LIST OF ABBREVATIONS

ha	Hectare
bp	basepair
e.g.	Example
mm	Millimetre
w/w	Weight per weight
%	Percent
min	Minute
cm	Centimetre
cm ³	Centimetre cube
m	metre
m^2	Meter square
Km	kilometre
mL	Millilitre
°C	Degree Celcius
ANOVA	Analysis of Variance
DNA	Deoxy ribonucleic acid
PCR	Polymerase Chain Reaction
BLAST	Basic Local Alignment Search Tool

CHAPTER 1

INTRODUCTION

Malaysia is one of the leading producers of palm oil in the world with a total of 5.0 million ha planted nationwide (MPOB, 2011). The eastern states of Sabah and Sarawak in Malaysia were accounted for 49% of total area planted in the country (MPOB, 2011). Rapid expansion has diminished suitable land for oil palm and, thus venturing into peat area is inevitable. The Sarawak state possessed 1.7 million ha of peat but only 25% was planted with oil palm. This provides a great opportunity for expansion of the industry. However, planting oil palm in peat is challenging and full of limitations such as high acidity, inconsistent level of water table (Kamal and Abdullah, 2001), peat subsidence, poor palm anchorage and lastly vulnerable to insect pests (Cheng and Gurmit, 2008). Peat soil is full with partially decomposed organic material, which is a natural habitat of subterranean termites. Most termite species are beneficial insects such as scavengers and wood feeder that help maturing the peat and breaking down the organic material to nutrients available for plant absorption.

Termites are social insects that lives in an organised community comprised of different castes (Pearce, 1997; Lee and Wood, 1971; Harris, 1969). There are classified in 7 families; namely Mastotermitidae, Kalotermitidae, Hodotermitidae, Termopsidae, Rhinotermitidae, Serritermitidae and Termitidae (Engel and Krishna 2004). The family of Rhinotermitidae especially *Coptotermes* is the major pests in

America, Europe and Asia (Pearce, 1997). *Coptotermes curvignathus* was identified as a major pest in a number of crops such as oil palm (Lim and Silek, 2001; Suharto *et al.*, 1991; Wood, 1968), rubber (Harris, 1969), coconut (Khoo *et al.*, 1991; Sudharto *et al.*, 1991), *Acacia mangium* (Chey and Intachat, 2000) and other fruit trees such as mango (Khoo *et al.*, 1991).

Coptotermes curvignathus is one of the few termite species reported that feeds on living tissue. Due to its feeding nature, many of the immature palms died when the spear region and the meristematic tissue inside the palm were being consumed. The infestation of oil palm was not limited to the immature palm but the mature palm was also affected (Lim and Silek, 2001; Sudharto *et al.*, 1991; Wood, 1968). The aggressive feeding of *C. curvignathus* usually takes about 30-60 days to kill an immature palm while about 90 days for a mature palm. Due to the cryptic behaviour of the subterranean termite, the available symptom of oil palm infestation was limited to the construction of mud sheeting either on the trunk surface or in the spear region. This can be problematic because untimely curative measures mean the death of palm while, preventive measure cannot be carried out due to undetectable foraging tunnels.

In oil palm plantations, heavy dosages of chemical are applied only when an infested palm was detected. Insecticide was applied at the trunk and shoot, and sometimes drenching the whole palm was also observed (Bong and King, 2006) Moreover, diamond spraying was applied to the surrounding palm to prevent the pest from migrating to other palms. Since organochlorine chemical is banned, the commonly used chemicals such as chlopyrifos and friponil are able to kill the termite rapidly (Vargo and Parman, 2012). Heavy usage of insecticide was proven non economical and destructive to the environment and other beneficial termite, thus a more friendly target specific environmental and methods was adopted. The entomopathogenic fungi such as *Metarhizium anisopliae* var anisopliae, (Hoe et al., 2009), Beauveria spp. and Pecilomyces spp. were introduced but had limited success (Lim and Silek, 2001; Suharto et al., 1991). Baiting system incorporated with either slow acting toxicant, chitin inhibitor or insect growth regulator was used nowadays (Sajap et al., 2009; Sajap et al., 2000; Su, 1994; Su, 1991; Su et al., 1991; Su and Scheffrahn, 1990). It manipulates the feeding behaviour of termite, trophallaxis which the chemical will be passed from one to another and in times gradually eliminate the whole colony (Pearce, 1997).

The inconsistency of success in controlling the subterranean termite were attributed to a few factors such as high population of termite (Tamashiro *et al.*, 1980), the extensive foraging area, the usage of wrong types of chemical in baiting station (Su *et al.*, 1982) and the limited knowledge on foraging behaviour of the termite (Su *et al.*, 1984). The inability to grasp the detail of their specific behaviour was due to insufficient understanding of their cryptic behaviour. Recent findings through modelling and simulation study such as foraging show that *Coptotermes formosanus* was moisture orientated (Su and Puche, 2003), affected by structural anomalies rather than food (Campora and Grace, 2001; Puche and Su, 2001), relationship of foraging efficiency towards the heterogeneity of landscape (Lee *et al.*, 2008b; Lee *et*

al., 2007a) while literature on foraging behaviour of C. curvignathus was limited.

Therefore, the objective of the study was

- 1) Verification of *Coptotermes curvignathus* via morphology and genetic markers
- 2) To determine the tunnelling activity of *Coptotermes curvignathus* in food present and absent arena.
- To detect the presence or absence of *Coptotermes curvignathus* using baiting system surrounding an infested palm
- 4) To investigate the damage pattern and infestation of *Coptotermes curvignathus* in oil palm on peat soil

REFERENCES

- Abdul Hafiz, A.M. and A. Abu Hassan. (2007). Comparison of subterranean termite feeding preference, *Coptotermes curvignathus* (Isoptera: Rhinotermitidae) towards two different Malaysia softwood species *Pinus caribaea* and *Araucaria cunninghamii* in the field. *Malaysian Applied Biology*. 36(2): 75-77.
- Abe, T. and M. Higashi. (1991). Cellulose centred perspective on terrestrial community structure. *Oikos*. 60: 127-133.
- Adams, E.A. and S.C. Levings. (1987). Territory size and population limits in mangrove termite. *Journal of Animal Ecology*. 56: 1069-1081
- Amburgey, T.L. (1979). Review and checklist of the literature on interactions between wood-inhabiting fungi and subterranean termites: 1960-1978. *Sociobiology*. 4: 279-296.
- Batschelet, E. (1965). *Statistical methods for the analysis of problems in animal orientation and certain biological rhythms*. Washington DC: American Institute of Biological Sciences.
- Bong, C.F.J. and J.H.P. King. (2006). An Assessment of termite infestation of oil palm on peat. Bulletin UPMKB 01-2006. Universiti Putra Malaysia Bintulu Campus, Bintulu, Sarawak.
- Campora, C.E. and J.K. Grace. (2001). Tunnel orientation and search pattern sequence of the Formosan Subterranean Termite (Isoptera: Rhinotermitidae). *Journal of Economic Entomology*. 94(5): 1193-1199.
- Campora, C.E. and J.K. Grace. (2009). Comparison of tunnelling in the laboratory and field by the Formosan Subterranean Termite, *Coptotermes formosanus* (Isoptera: Rhinotermitidae). *Sociobiology*. 53(2): 289 401.
- Chan S.P. and C.F.J. Bong. (2008). Susceptibility of planted forest species to *Coptotermes curvignathus* (Holmgren). In Proceeding of Second USM Penang International Postgraduate Convention, Penang, Malaysia.
- Chen, J. and G. Henderson. (1998). Tunnel and shelter tube convergence of Formosan subterranean termites (Isoptera: Rhinotermitidae) in the laboratory. *Sociobiology*. 30: 305-318.
- Cheng, S.L.G.K. and S. Gurmit. (2008). Termite attack on oil palm grown on peat soil, Identification of pest species and factors contributing to the problem. *The Planter*. 84: 659-670.
- Chey, V.K. and J. Intachat. (2000). Acacia plantation in Malaysia and their insect pests. *The Planter*. 76(888): 171 190.
- Engel, M.S. and K. Krishna. (2004). Family-group names for termites (Isoptera). *American Museum Novitates*. 3432: 1-9.

- Hall, T.A. (1999). BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposium Series*. 41:95-98.
- Hapukotuwa, N.K. and J.K. Grace. (2012). Coptotermes formosanus and Coptotermes gestroi (Blattodea: Rhinotermitidae) exhibit quantitatively different tunnelling patterns. *Psyche*. 2012: 1 7.
- Hapukotuwa, N.K. and J.K. Grace. (2012a). Do tunnel pattern of *Coptotermes* formosanus and *Coptotermes gestroi* (Blattodea: Rhinotermitidae) reflect different foraging strategies?. Sociobiology. 59(1): 189-202.
- Harris, W.V. (1969). Termites: Their Recognition and Control. London: Longmans.
- Hedlund J.C. and G. Henderson. (1999). Effect of available food size on search tunnel formation by the Formosan subterranean termite (Isoptera: Rhinotermitidae). *Journal of Economic Entomology*. 92(3): 610-616.
- Ho, T.H. and L.G. Kirton. (2007). Effects of different substrates and activated charcoal on the survival of the subterranean termite *Coptotermes curvignathus* in laboratory experiments (Isoptera: Rhinotermitidae). *Sociobiology*. 50(2): 479-497.
- Hoe P.K., C.F.J. Bong, K. Jugah and A. Rajan. (2009). Evaluation of *Metarhizium* anisopliae var. anisopliae (Deuteromycotina: Hyphomycete) Isolates and their effect on subterranean termite *Coptotermes curvignathus* (Isoptera: Rhinotermitidae). American Journal of Agricultural and Biological Sciences. 4: 289-297.
- Husseneder, C., R. Brandl, C. Epplen, J.T. Epplen and M. Kaib. (1998). Variation between and within colonies in a termite. morphology, genomic DNA and behaviour. *Molecular Ecology*. 7: 983-99
- Jenkins, T.M., R.E. Dean, R. Verkerk and B.T. Forschler. (2001). Phylogenetic analyses of two mitochondrial genes and one nuclear intro region illuminate European subterranean termite (Isoptera: Rhinotermitidae) gene flow, taxonomy and introduction dynamics. *Molecular Phylogenetics Evolution*. 20: 286-293.
- Jones, S.C. and M.W. Trosset. (1991). Interference competition in desert subterranean termites. *Entomologia Experimentalis et Applicata*. 6: 83-90.
- Kadir, R. and M.D. Hale. (2011). Comparative termite resistance of 12 Malaysian timber species in laboratory test. *Holzforschung*. 66(1): 127-130
- Kamal, A. M. and D. Abdullah. (2001). Water management in peatland: Tradewinds experience. Workshop on Water Management for Sustainable Agricultural Development of Peatland, Kuching, Sarawak March 28-29, 2001.
- Khoo, K.C., P.A.C. Ooi and C.T. Ho. (1991). Crop pests and their management in Malaysia. Kuala Lumpur, Malaysia: *Tropical Press*.

- Kirton, L.G. and V.K. Brown. (2003). The taxonomic status of pest species *Coptotermes* in South East Asia: Resolving the paradox in the pest status of the termites, *Coptotermes gestroi*, *C. havilandi* and *C. travians* (Isoptera: Rhinotermitidae). *Sociobiology*. 42:43-64.
- Krishna, K. (1969). Introduction. In Krishna, K. and F.M. Weesner. *Biology of Termites. Volume 1* (pp. 1-17). New York and London: Academic Press.
- Lee, C.Y. (2002). Subterranean termite pests and their control in urban environment in Malaysia. *Sociobiology*. 40: 3-9.
- Lee, C.Y., B.T. Forschler and T.M. Jenkins. (2005). Taxonomic questions on Malaysian termites (Isoptera: Termitidae) answered with morphology and DNA Biotechnology. Proceedings of the Fifth International Conference on Urban Pests Malaysia.
- Lee, K.E. and T.G. Wood. (1971). *Termites and soils*. New York and London: Academic Press.
- Lee, S.H., P. Bardunias and N.Y Su. (2006). Food encounter rates of simulated termite tunnels with variable food size/distribution pattern and tunnel branch length. *Journal of Theoretical Biology*. 243: 493-500.
- Lee, S.H., N.Y. Su and P. Bardunias. (2007a). Optimal length distribution of termite tunnel branches for efficient food search and resource transportation. *Biosystems*. 90: 802-807.
- Lee, S.H., N.Y. Su and P. Bardunias, H.F. Li. (2007b). Food encounter rate of simulated termite tunnels in heterogeneous landscapes. *Biosystems*. 90: 314-322.
- Lee, S.H., P. Bardunias and N.Y. Su. (2008a). Rounding a corner of a bent termite tunnel and tunnel traffic efficiency. *Behavioural Processes*. 77: 135-138.
- Lee S.H., P. Bardunias, N.Y. Su and R.L. Yang. (2008b). Behavioural response of termite to tunnel surface irregularity. *Behavioural Processes*. 78(3): 397-400.
- Lee, S.H., P. Bardunias and N.Y. Su. (2008c). Two strategies for optimizing the food encounter rate of termite tunnels simulated by a lattice model. *Ecological Modelling*. 213: 381-388.
- Lee, S.H., R.L. Yang and N.Y. Su. (2008d). Tunnelling response of termites to a preformed tunnel. *Behavioural Processes*. 79: 192-194.
- Lee S.H. and N.Y. Su. (2009). The influence of branching tunnels on subterranean termites' foraging efficiency: Consideration for simulations. *Ecological Information*. 4: 152-155.
- Lee S.H., N.Y. Su and M. Lee. (2009). Why is the number of primary tunnels of the Formosan subterranean termite *Coptotermes formosanus* Shiraki (Isoptera: Rhinotermitidae), restricted during foraging?. *Journal of Asia-Pacific Entomology*. 12: 151-154.
- Lee S.H. and N.Y. Su. (2010). Simulation study on the tunnel networks of

subterranean termites and the foraging behaviour. *Journal of Asia-Pacific Entomology*. 13: 83-90.

- Lenz, M. (1994). Food resources, colony growth and caste development in wood-feeding termites. In Hunt, J.L. and C.A. Nalepa. *Nourishment and Evolution in insect societies* (pp. 159-210). Boulder: Westview Press.
- Levings, S.C. and E.A. Adams. (1984). Intra and interspecific territoriality in Nasutitermes (Isoptera: Termitidae) in a Panamanian mangrove forest. *Journal of Animal Ecology*. 53: 705-714.
- Leopold, L.B. (1971). Trees and streams: the efficiency of branching patterns. *Journal of Theoretical Biology*. 31: 339-354.
- Lim, K. H. and B. Silek. (2001). Termite infestation on oil palms planted on deep peat in Sarawak: Tradewinds experience. Proceedings of the 2001 PIPOC International Palm Oil Congress (Agriculture).
- Liu, H. and A.T. Beckenbach. (1992). Evolution of the mitochondrial cytochrome oxidase II gene among the 10 order of insects. *Molecular Phylogenetics Evolution*. 1: 41-52.
- Ma, P., X.L. Jiang, Z.Y. Li, Y. Du and Y. Wang. (2010). Invasive risk analysis of *Coptotermes curvignathus* in Yunnan using integrated multi-index ecaluation system. *Journal of Yunnan Agricultural University*. 25(1): 17-21.
- Miura, T. and T. Matsumoto. (1997). Diet and nest material of the open-air processional lichen-feeding termite *Hospitalitermes* (Isoptera: Termitidae) in Borneo. *Insectes Sociaux*. 45: 17-32.
- Miura, T. and T. Matsumoto. (1998). Open-air litter foraging in the nasute termite Longipeditermes longipes (Isoptera: Termitidae). Journal of Insect Behaviour. 11: 179-189.
- Mohd. Yusri M.Y., A. Abu Hassan, A.S. Sajap, M.R. Che Salmah and J. Mat Amin. (2005). Subterranean termites from selected building premises in Northern Peninsular Malaysia. *Journal of Bioscience*. 65: 12-17.
- MPOB. (2011). Oil palm planted area by states as at December 2011. <u>http://bepi.mpob.gov.my/images/area/2011/Area_state.pdf</u>. Economic Industry Development Division, Malaysian Palm Oil Board.
- Ngee P.S., A. Tashiro, T. Yoshimura, Z. Jaal and C.Y. Lee. (2004). Wood preference of selected Malaysian subterranean termites (Isoptera: Rhinotermitidae). *Sociobiology*. 43: 535-550.
- Ohkuma, M., S. Noda, Y. Hongoh and T. Kudo. (2001). Coevolution of symbiotic systems of termites and their gut microorganisms. *RIKEN Review*. 41:73-74
- Pearce, M.J. (1997). *Termites. Biology and pest management.* UK: CAB International, UK.
- Puche, H. and N.Y. Su. (2001). Tunnel formation by *Reticulitermes flavipes* and *Coptotermes formosanus* (Isoptera: Rhinotermitidae) in response to wood in

sand. Journal of Economic Entomology. 94(6): 1398-1404.

- Robson, S.K., M.G. Lesniak, R.V. Kothandapani, J.F.A. Traniello, B.L. Thorne and V. Fourcassie. (1995). Non random search geometry in subterranean termites. *Naturwissenschaften*. 82: 526-528.
- Reinhart, J.,H. Hertel and M.Kaib. 1997. Systemic search for food in the subterranean termite *Reticulitermis* santonensis De Feytaud (Isoptera: Rhinotermitidae). *Insects Sociaux*. 44: 147-158
- Roisin, Y. (2000). Diversity and evolution of caste patterns. In Abe, T., D.E. Bignell, M. Higashi. *Termites: evolution, sociality, symbioses, ecology*. Netherlands: Kluwer Academic publisher.
- Sajap A.S. (1999). Detection of foraging activity of *Coptotermes curvignathus* (Isoptera: Rhinotermitidae) in a *Hevea brasiliensis* plantation in Malaysia. *Sociobiology*. 33(2): 137-143.
- Sajap, A.S., L.C. Lee, and M.S. Zahriman. (2009). Elimination of subterranean termite colonies with Hexaflumuron in an improved bait matrix, preferred textured cellulose (PTC). *Sociobiology*. 53(3): 891 901.
- Sajap, A.S. and Wahab, Y.A. (1997). Termites from selected building premises in Selangor, Penisular Malaysia. *The Malaysian Forester*. 60(4): 203-215.
- Sajap A.S., S.S. Amit and J.J. Welker. (2000). Evaluation of hexaflumuron for controlling the subterranean termite *Coptotermes curvignathus* (Isoptera: Rhinotermitidae) in Malaysia. *Journal of Economic Entomology*. 93(2): 429-433.
- Sajap A.S., L.T.L. Maria, F.B. Ahmad and M.H. Sahri. (2006). Feeding response of subterranean termite, *Coptotermes curvignathus* (Isoptera: Rhinotermitidae) to *Azadirachta excelsa* (Meliaccae) extractives and its timber. *Sociobiology*. 48(2): 447-455.
- San, H.P. and C.K. Ling. (2008). Solid hardwood flooring resistance to termite (*Coptotermes curvignathus*) under laboratory condition. *Malaysian Forester*. 71(2): 131-138.
- Selkirk, K.E. (1982). Pattern and place, an introduction to the mathematics of geography. New York: Cambridge University Press.
- Shellman-Reeve, J.S. (1994). Limiting nutrient availability: nest preference, competition, cooperative nest defence. *Journal of Animal Ecology*. 63: 931-932.
- Sudharto, Ps., A. (2001). Sipayung and R. Desmier de Chenon. Termites A new problem on oil palm plantations in Indonesia. In *PORIM International Palm Oil Conference*. Proceedings of the Porim International Palm Oil Conference.
- Su, N.Y. (1991). Evaluation of bait-toxicant for suppression of subterranean termite populations. *Sociobiology*. 19: 211-220.
- Su, N.Y. (1994). The termite bait age dawns. Pest Control. 62: 32-38.

- Su, N.Y. and P. Bardunias. (2005). Foraging behaviour of subterranean termites (Isoptera: Rhinotermitidae): Food discovery and movement of termites within established galleries. In *Proceeding of the Fifth International Conference on* Urban Pest.
- Su, N.Y. and H. Puche. (2003). Tunnelling activity of subterranean termites (Isoptera: Rhinotermitidae) in sand with moisture gradients. *Journal of Economy Entomology*. 96: 88-93.
- Su, N.Y. and R.H. Scheffrahn. (1988). Foraging population and territory of the Formosan Subterranean termite (Isoptera: Rhinotermitidae) in an urban environment. *Sociobiology*. 14(2): 353-359.
- Su, N.Y. and R.H. Scheffrahn. (1990). Potential of insect growth regulator as termiticides: A review. *Sociobiology*. 17: 2.
- Su, N. Y., P. M. Ban and R. H. Scheffrahn. (1991). Suppressing of foraging population of the Formosan subterranean termite (Isoptera: Rhinotermitidae) by field application of slow acting toxicant bait. *Journal of Economic Entomology*. 84: 1525-1531.
- Su, N.Y., P.M. Ban and R.H. Scheffrahn. (2000). Control of *Coptotermes havilandi* (Isoptera: Rhinotermitidae) with Hexaflumuron Baits and a Sensor Incorporated into a monitoring and baiting program. *Journal of Economic Entomology*. 93: 415-421.
- Su, N.Y., R.H. Scheffrahn and P.M. Ban. (1995). Effect of sulfuramid-treated bait blocks on field colonies of the formosan subterranean termite (Isoptera: Rhinotermitidae). *Journal of Economic Entomology*. 88: 1343-1348.
- Su, N.Y., M. Tamashiro, J.R. Yates, and M.I. Harverty. (1982). Effect of behaviour on the evaluation of insecticide for prevention of or remedial control the Formosan subterranean termite. *Journal of Economy Entomology*. 75: 188-193.
- Su, N.Y., M. Tamashiro, J.R. Yates and M.I. Haverty. (1984). Foraging behaviour of the Formosan subterranean termite (Isoptera: Rhinotermitidae). *Environmental Entomology*. 13: 1466-1470.
- Sukartana P., G. Surmarni, S. Broadbent. (2009). Evaluation of Chlorfluazuron in controlling the subterranean termite *Coptotermes curvignathus* (Isoptera: Rhinotermitidae) in Indonesia. *Journal of Tropical Forest Science*. 21(1): 13-18.
- Supriana, N. (1988). Feeding preference behaviour of *Cryptotermes cynocephalus* Light and *Coptotermes curvignathus* Holmgren on twenty eight tropical timbers. *Jurnal Penelitian dan Pengembangan Kehutanan*. 4(2): 1-5.
- Synder, T.E. (1948). *Our enemy the termite*. New York: Comstock Publishing Co., Inc.
- Tamashiro, M., J.R. Yates, P.Y. Lai, J.K. Fujii and N.Y. Su. (1980). Size and structure of *Coptotermes formosanus* Shiraki colonies in Hawaii. In *Proceeding 16th International Congress of Entomology*.

Thapa, R.S. (1981). Termites of Sabah. Malaysia: Sabah Forest Department.

- Tho, Y.P. (1992). *Termite of Peninsular Malaysia* Malayan Forest Records No. 36. Malaysia: FRIM.
- Tho, Y.P. and L.G. Kirton. (1992). The economic significance of *Coptotermes* termites in Malaysian forest, In Proceedings of the 3rd International conference on plant protection in the tropic. 1990. Volume IV. Malaysian Plant Protection Society Kuala Lumpur. Imprint year 1990 published.
- Thompson, J.D., D.G. Higgins and T.J. Gibson. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. *Nucleic Acids Research*. 22:4673-4680.
- Thorne, B.L. (1982). Termite-termite interactions: workers as an agonistic caste. *Psyche.* 89: 133-150.
- Traniello, J.F.A. and R. Leuthold. (2000). Behaviour and ecology of foraging in termites. In Abe, T., D.E. Bignell and M. Higashi. *Termites: evolution, sociality, symbioses, ecology* (pp. 141-168). Netherlands: Kluwer Academic publisher.
- Tsunoda, K., H. Matsuoka and T. Yoshimura. (1998). Colony elimination of *Reticulitermes speratus* (Isoptera: Rhinotermitidae) by bait application and the effect on foraging territory. *Journal of Economic Entomology*. 91: 1383-1386.
- Vargo, E.L. and V. Parman. (2012). Effect of Friponil on Subterranean termite colonies (Isoptera: Rhinotermitidae) in the field. *Journal of Economic Entomology*. 105(2): 523-532.
- Waller, D.A. (1991). Feeding by Reticulitermes spp. Sociobiology. 19: 91-99.
- Waller, D.A. and J.P. La Fage. (1987a). Food quality and foraging response by subterranean termite *Coptotermes formosanus* Shiraki (Isoptera: Rhinotermitidae). *Bulletin of Entomological Research*. 77: 417-424.
- Waller, D.A. and J.P. La Fage. (1987b). Nutritional ecology of termites. In Slanky, F.Jr., Rodriguez. *Nutritional Ecology of Insects, Mites and Spiders* (pp. 487-532). New York: Wiley and sons.
- Weesner, F.M. (1969). External anatomy. In Krishna, K. and F.M. Weesner. *Biology* of *Termites. Volume 1* (pp. 19-44). New York and London: Academic Press.
- Wood, B.J. (1968). *Pests of oil palm in Malaysia and their control*. Kuala Lumpur: The Incorporated Society of Planters.
- Yeoh, B.H. and C.Y. Lee. (2007). Tunnelling activity, wood consumption and survivorship of *Coptotermes gestroi*, *Coptotermes curvignathus* and *Coptotermes kalshoveni* (Isoptera: Rhinotermitidae) in the laboratory. *Sociobiology*. 50(3): 1087-1096.
- Yeap, B.K., A.S. Othman, V.S. Lee and C.Y. Lee. (2007). Genetics relationship

between *Coptotermes gestroi* (Wasmann) and *Coptotermes vastator* Light (Isoptera: Rhinotermitidae). *Journal of Economic Entolomology*. 100: 467-474.

BIODATA OF STUDENT

Chan Seow Phan was born in Ipoh, Perak, Malaysia on the 03 October 1984. He did his primary education at the Sekolah Kebangsaan Methodist A.C.S. Ipoh, Perak and continued his secondary schooling at Sekolah Menengah Methodist A.C.S. Ipoh Perak where he obtained his Penilaian Menengah Rendah (PMR), Sijil Peperiksaan Malaysia (SPM) and Sijil Tinggi Pelajaran Malaysia (STPM). He started tertiary education at Universiti Putra Malaysia and obtained a Second Class Upper B. Sc. Degree in Bioindustry in 2008. His intended academic interest in the future in pursuing research on entomology.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2	97	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3	96	95	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4	96	95	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5	97	95	99	99	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6	97	95	99	99	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7	96	95	99	99	99	99	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8	97	95	99	99	100	100	99	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9	96	95	99	99	99	99	99	99	-	-	-	-	-	-	-	-	-	-	-	-	-
10	96	95	99	99	99	99	99	99	100	-	-	-	-	-	-	-	-	-	-	-	-
11	96	94	99	99	99	99	99	99	98	99	-	-	-	-	-	-	-	-	-	-	-
12	94	93	97	97	97	97	98	97	96	98	97	-	-	-	-	-	-	-	-	-	-
13	94	95	97	97	97	97	97	97	96	96	96	95	-	-	-	-	-	-	-	-	-
14	95	95	96	96	97	97	97	97	96	96	96	95	98	-	-	-	-	-	-	-	-
15	95	95	95	95	96	96	95	96	96	96	95	94	97	97	-	-	-	-	-	-	-
16	96	96	96	96	96	96	96	96	96	96	95	94	97	98	99	-	-	-	-	-	-
17	96	96	96	96	96	96	96	96	96	96	95	94	97	98	99	100	-	-	-	-	-
18	95	95	96	96	96	96	96	96	96	96	95	94	97	98	99	99	99	-	-	-	-
19	95	95	96	96	96	96	96	96	96	96	95	94	97	98	99	99	99	100	-	-	-
20	96	96	96	96	96	96	96	96	96	96	95	94	97	98	99	100	100	99	99	-	-
21	96	96	96	96	96	96	96	96	96	96	95	94	97	98	99	100	100	99	99	100	-

The distance matrix between Coptotermes curvignathus sample sequence and NCBI database sequence

TUNNEL LENGTH AND TUNNEL	INITIATION FOR	FOOD PRESENT AND
FOOD ABSENT ARENA		

Direction	Replication	Tunnel le	ength (cm)	Tunnel	initiation
		Food absent	Food present	Food absent	Food present
North	1	85.7	375.92	0	2
	2	228.89	307.07	1	0
	3	253.15	385.09	0	1
	4	43.34	397.18	0	1
	5	0	171.61	1	1
	6	103.15	446.96	1	1
	7	65.7	307.66	0	1
	8	166.37	465.56	1	1
	9	81.4	239.37	3	2
	10	90.3	394.1	1	1
	11	150.05	329.84	1	2
	12	158.80	464.27	0	0
	13	111.39	203.52	0	1
	14	270.50	225.37	0	1
Northeast	1	118.87	431.22	1	0
	2	104.63	355.1	0	2
	3	230.25	182.39	0	1
	4	225.34	248.04	0	3
	5	0	263.63	0	3
	6	100.85	287.75	1	2
	7	161.86	85.69	0	3
	8	87.03	16.23	2	1
	9	62.05	303.12	0	2
	10	248.1	146.9	0	2
	11	92.08	247.57	0	1
	12	211.41	342.54	1	0
	13	41.91	214.6	0	2
	14	77.03	331.23	1	0
East	1	114.99	141.17	0	1
	2	318.51	202.14	2	1
	3	106.04	188.86	0	1
	4	106.19	243.79	0	1
	5	84.44	220.11	0	1
	6	177.5	97.3	0	1
	7	0	130.26	1	0
	8	153.25	184.43	0	1
	9	125.58	293.56	4	1
	10	44.87	124.71	2	1
	11	99.83	193.04	1	0
	12	182.21	216.98	1	2
	13	204.37	100.95	0	0

	14	180.5	134.44	1	0
Southeast	1	156.34	294.79	1	1
	2	133.45	404.39	0	0
	3	505.49	435.96	0	1
	4	49.5	131.26	0	2
	5	31.33	341.35	0	1
	6	169.28	248.32	1	3
	7	194.13	209.73	0	3
	8	196.97	315.06	0	0
	9	7.53	309.17	1	1
	10	59.97	184.95	1	2
	11	49.34	422.63	2	1
	12	190.86	212.37	0	0
	13	83.52	103.22	0	2
	14	0	83 54	0	0
South	1	235.26	125 48	1	1
2000	2	245.91	241.84	1	0
	3	241.45	379.21	0	0
	4	163 14	253 7	ů 0	3
	5	68.88	290.63	Ĵ	3
	6	272 73	382.99	1	3
	0 7	182.58	207.82	0	1
	8	274 55	174 17	0	2
	9	84 75	264 13	2	1
	10	205 73	162.63	1	0
	11	122 42	342 54	2	1
	12	158.26	355.95	2	1
	12	76.9	327.06	0	1
	14	230.69	229.44	1	1
Southwest	1	257.14	393.07	1	1
Southwest	2	381.46	205.06	0	2
	2	263.08	425.53	0	0
	5 Л	89.26	200.80	0	1
	+ 5	207 47	263.60	1	2
	5	297.47	203.09	1	2 1
	07	201.44 76 55	257.56	1	1
	8	86.60	150.63	1	1
	0	80.09	240.8	1	1 2
	9 10	05.10	240.8	0	2 1
	10	93.19 200.76	J.00 255 22	2	1
	11	200.70	233.32	2	1
	12	90.75	104.27	0	1
	13	233.37	11.03	1	1
West	14	221.03	297.7	∠ 1	1
west	1	131.70	210.95	1	1
	2	105.91	219.85	1	1
	5 1	022.78	44J./ 210.02	U 1	0
	4 5	/U./U /17 75	310.02 334 94	1	0
	5 6	417.73	224.04 262.67	U 1	1
	0	U 200 54	203.0/	1	1
	/	209.54	U	1	2

	8	157.34	0	2	0
	9	18.49	41.11	1	1
	10	269	162.25	2	2
	11	25.62	318.12	1	1
	12	208.73	157.74	1	0
	13	125.1	0	2	2
	14	292.19	235.05	0	2
Northwest	1	276.57	234.6	0	0
	2	303.51	144.29	0	2
	3	572	351.83	0	0
	4	100.66	305.44	0	1
	5	287.81	231.82	1	1
	6	70.38	153.3	0	0
	7	48.78	0	2	1
	8	0	0	0	3
	9	66.74	122.7	0	4
	10	181.55	264.65	0	0
	11	175.88	314.43	1	2
	12	0	210.72	1	2
	13	153.92	146.57	1	2
	14	116.01	139.81	1	0

Food absent	Tunnel Branching in length (cm)			Tunnel Branch in Percentage			
archa	Primary	Secondary	Tertiary	Primary	Secondary	Tertiary	
1	652.73	397.47	13.53	40.93	24.92	0.85	
2	566.37	236.63	590.13	40.65	16.99	42.36	
3	0	0	829.62	0	0	100	
4	242.19	54.71	1206.18	16.11	3.64	80.25	
5	439.28	9.04	1035.19	29.61	0.61	69.78	
6	755.34	508.42	113.17	54.86	36.92	8.22	
7	537.49	275.85	273.52	29.7	15.24	15.11	
8	650.9	356.85	1239.55	28.96	15.88	55.16	
9	1363.8	380.1	113.32	44.4	12.38	3.69	
10	1171.82	473.87	556.54	40.52	16.38	19.24	
11	1469.86	555.07	549.51	43.46	16.41	16.25	
12	636.34	323.13	483.12	36.87	18.72	27.99	
13	755.07	187.44	703.78	34.4	8.54	32.06	
14	569.11	170	232.56	51.53	15.39	21.06	

LENGTH OF EACH TUNNEL BRANCHING IN FOOD ABSENT ARENA

Food	Tunnel Bran	nching in leng	th (cm)	Tunnel Branch in Percentage			
arena							
	Primary	Secondary	Tertiary	Primary	Secondary	Tertiary	
1	557.51	279.94	3087.15	12.33	6.19	68.28	
2	1026.81	508.74	2519.56	22.01	10.91	54.01	
3	421.14	35.52	3396.79	10.45	0.88	84.26	
4	207.9	71.96	2298.84	7.74	2.68	85.54	
5	1182.24	448.18	1452.7	33.42	12.67	41.06	
6	1683.77	365.33	1021.67	54.83	11.9	33.27	
7	835.7	125.88	914.67	38.51	5.8	42.15	
8	1716.77	515.32	274.96	68.48	20.55	10.97	
9	689.97	538.44	212.67	44.25	34.53	13.64	
10	1131.13	221.75	1006.04	46.73	9.16	41.56	
11	781.15	285.91	424.44	44.23	16.19	24.03	
12	1309.39	578.07	1577.73	36.06	15.92	43.45	
13	1176.1	691.29	796.19	40.92	24.05	27.7	
14	338.04	258.43	907.43	14.97	11.44	40.18	

LENGTH OF EACH TUNNEL BRANCHING IN FOOD PRESENT ARENA

ANOVA TABLE FOR TUNNEL LENGTH IN EACH DIRECTION IN NO FOOD ARENA

Source	DF	Sum of	Mean square	F value	Pr>F
		square			
Model	7	78694.457	11242.065	0.88	0.5253
Error	104	1329129.793	12780.094		
Total	111	1407824.249			
Direction	7	78694.45669	11242.06524	0.88	0.5253ns

CV = 72.4665

ns = Non significant

Direction	Frequency	Percentage	Test	Cumulative	Cumulative
			Percentage	Frequency	Percentage
North	9	11.69	12.50	9	11.69
Northeast	6	7.79	12.50	15	19.48
East	12	15.58	12.50	27	35.06
Southeast	6	7.79	12.50	33	42.86
South	12	15.58	12.50	45	58.44
Southwest	11	14.29	12.50	56	72.73
West	14	18.18	12.50	70	90.91
Northwest	7	9.09	12.50	77	100.00

CHI SQUARE FOR TUNNEL INITIATION IN NO FOOD ARENA

ANOVA TABLE FOR TUNNEL BRANCHING IN LENGTH IN NO FOOD ARENA

Source	DF	Sum of	Mean	F value	Pr>F
		square	square		
Model	2	1290070.090	645035.045	5.45	0.0082
Error	39	4613660.657	118298.991		
Total	41	5903730.748			
Tunnel	2	1290070.090	645035.045	5.45	0.0082**
Branch					

CV = 66.6359

ANOVA TABLE FOR TUNNEL BRANCHING IN PERCENTAGE IN NO FOOD ARENA

Source	DF	Sum of	Mean	F value	Pr>F
		square	square		
Model	2	0.55974582	0.27987291	3.84	0.0300
Error	39	2.84227755	0.07287891		
Total	41	3.40202337			
Tunnel	2	0.55974582	0.27987291	3.84	0.0300*
Branch					
CV = 88.1	125				
*	Significant	at	р	\leq	0.05

REGRESSION ANALYSIS USED TO DETERMINE THE DECREASING TUNNEL LENGTH EXCAVATED

Source	DF	Sum of square	Mean square	F value	Pr > F
Model	1	925554	925554	18.00	0.0081
Error	5	257035	51407		
Total	6	1182588			
Variable	DF	Parameter estimate	Standard error	T value	Pr > T
Intercept	1	987.774	116.573	8.47	0.0004**
Day	1	-34.775	8.19556	-4.24	0.0081**

 $r^2 = 0.7827$

CV = 34.75

N = 7

ANOVA TABLE FOR TUNNEL LENGTH IN EACH DIRECTION IN FOOD PRESENT ARENA

0.0014
0.0014**

CV = 45.7159

Direction	Frequency	Percentage	Test	Cumulative	Cumulative
			Percentage	Frequency	Percentage
North	15	11.72	12.50	15	11.72
Northeast	22	17.19	12.50	37	28.91
East	11	8.59	12.50	48	37.50
Southeast	17	13.28	12.50	53	50.78
South	18	14.06	12.50	83	64.84
Southwest	15	11.72	12.50	98	76.56
West	12	9.38	12.50	110	85.94
Northwest	18	14.06	12.50	128	100.00

CHI SQUARE FOR TUNNEL INITIATION IN FOOD PRESENT ARENA

ANOVA TABLE FOR TUNNEL BRANCHING IN LENGTH IN FOOD PRESENT ARENA

Source	DF	Sum of	Mean square	F value	Pr > F
		square			
Model	2	8019520.43	4009760.21	9.16	0.0005
Error	39	17081446.42	437985.81		
Total	41	25100966.85			
Tunnel	2	8019520.427	4009760.213	9.16	0.0005**
Branch					

CV = 73.3917

ANOVA TABLE FOR TUNNEL BRANCHING IN PERCENTAGE IN FOOD PRESENT ARENA

~	55	~ ^		- 1	
Source	DF	Sum of	Mean	F value	Pr > F
		square	square		
	2	0.00(01040	0.41000004	0.07	0.0000
Model	2	0.83601849	0.41800924	9.87	0.0003
Error	39	1.65155654	0.04234760		
Total	41	2.48757502			
Tunnel	2	0.83601849	0.41800924	9.87	0.0003**
Branch					
Dianon					

CV = 64.5284

ANOVA TABLE FOR TUNNEL LENGTH IN FOOD PRESENT AND ABSENT ARENAS

Source	DF	Sum of	Mean square	F value	Pr>F
		square	-		
Model	8	465706.945	58213.368	4.51	<.0001
Error	215	2777340.900	12917.865		
Total	223	3243047.845			
Direction	7	120339.0725	17191.2961	1.33	0.2369ns
Food source	1	345367.8725	345367.8725	26.74	<.0001**

CV = 58.2055

ns = Non significant

CHI SQUARE FOR TUNNEL INITIATION FOR DIRECTION IN FOOD PRESENT AND ABSENT ARENAS

Direction	Frequency	Percentage	Test	Cumulative	Cumulative
			Percentage	Frequency	Percentage
North	24	11.71	12.50	24	11.71
Northeast	28	13.66	12.50	52	25.37
East	23	11.22	12.50	75	36.59
Southeast	23	11.22	12.50	98	47.80
South	30	14.63	12.50	128	62.44
Southwest	26	12.68	12.50	154	75.12
West	26	12.68	12.50	180	87.80
Northwest	25	12.20	12.50	205	100.00

CHI SQUARE FOR AMOUNT OF TUNNEL INITIATION IN FOOD PRESENT AND ABSENT ARENA

Food source	Frequency	Percentage	Test	Cumulative	Cumulative
			Percentage	Frequency	Percentage
No Food	77	37.65	50	77	37.56
Food	128	62.44	50	205	100.00

ANOVA TABLE FOR TUNNEL BRANCHING IN LENGTH IN FOOD PRESENT AND ABSENT ARENAS

Source	DF	Sum of square	Mean square	F value	Pr> F
Model	31	17199067.5500	554808.6300	1.70	0.0440
Error	52	16927840.9600	325535.4000		
Total	83	34126908.5100			
Food	1	3122210.9160	3122210.9160	9.59	0.0031**
Rep	13	1477941.1300	113687.7790	0.35	0.9793
Food* Rep	13	3289324.9910	253024.9990	0.78	0.6796ns
Tunnel	2	6918703.8960	3459351.9480	10.63	0.0001**
Food*Tunnel	2	2390886.6210	1195443.3100	3.67	0.0322ns
Food	1	3122210.9160	3122210.9160	12.34	0.0038**
Rep	13	1477941.130 0	113687.779 0	0.45	0.9188

CV = 80.4791

ns = Non significant

ANOVA TABLE FOR TUNNEL BRANCHING IN PERCENTAGE IN FOOD	
PRESENT AND ABSENT ARENAS	

Source	DF	Sum of	Mean	F value	Pr > F
		square	square		
Model	31	1.7407	0.0561	0.70	0.8519
Error	52	4.1521	0.0798		
Total	83	5.8928			
Food	1	0.0032	0.0032	0.04	0.8398ns
Rep	13	0.2326	0.0178	0.22	0.9974
Food* Rep	13	0.1090	0.0083	0.11	1.0000ns
Tunnel	2	1.3709	0.6854	8.58	0.0006**
Food*Tunnel	2	0.0248	0.0124	0.16	0.8565ns
Food	1	0.0032	0.0032	0.39	0.5417ns
Rep	13	0.0178	0.0178	2.13	0.0927

CV = 90.3825

ns = Non significant

TREND ANALYSIS OF MONTHLY RAINFALL AND PERCENTAGE INFESTATION IN SITE 1 AND SITE 2 IN SEMANOK OIL PALM PLANTATION.

Source	DF	Sum of square	Mean square	F value	Pr > F
Model	1	169.40	169.140	1.13	0.3227
Error	7	1047.478	149.639		
Total	8	1216.88222			
Variable	DF	Parameter estimate	Standard error	T value	Pr > T
Intercept	1	28.0752	6.8596	4.09	0.0046
rainfall	1	0.01159	0.01090	1.06	0.3227ns

 $r^2 = 0.1392$

CV = 36.03

N = 9

MONTHLY RAINFALL DATA FROM APRIL 2010 TILL MARCH 2012 IN TANIKU 1, TANIKU 2, SUNGAI BALIM AND SUNGAI TRUS OIL PALM PLANTATIONS.

		Rainf	all (mm)	
Months	Taniku 1	Taniku 2	Sungai Balim	Sungai Trus
April 2010	257.50	257.50	192.00	233.00
May 2010	245.00	245.00	205.00	344.30
Jun 2010	348.50	348.50	243.00	272.50
July 2010	330.00	330.00	264.00	514.66
August 2010	359.00	359.00	369.00	404.50
September 2010	405.50	405.50	456.00	653.70
October 2010	278.00	278.00	268.00	514.00
November 2010	354.50	354.50	353.00	620.00
December 2010	346.00	346.00	316.00	796.00
January 2011	571.00	571.00	487.00	1046.50
February 2011	392.00	392.00	139.00	144.95
March 2011	345.00	345.00	107.00	278.03
April 2011	334.00	334.00	327.00	543.00
May 2011	274.50	274.50	258.00	223.90
June 2011	352.50	352.50	285.00	346.95
July 2011	174.50	174.50	132.00	137.33
August 2011	156.50	156.50	189.00	276.30
September 2011	259.50	259.50	226.00	166.50
October 2011	233.50	233.50	180.00	283.00
November 2011	217.50	217.50	261.00	257.50
December 2011	293.00	293.00	413.00	301.00
January 2012	373.50	373.50	250.00	400.00
February 2012	322.00	322.00	226.00	136.00
March 2012	240.50	240.50	178.00	231.00

INFESTATION INCIDENCE IN SUNGAI TRUS ESTATE FROM APRIL 2010-MARCH 2012

	Infestation incident			
Months	Su	ungai Trus Esta	te	
	Trunk	Spear	Basal	
April 2010	62	33	0	
May 2010	86	16	0	
Jun 2010	101	18	0	
July 2010	73	30	0	
August 2010	53	13	0	
September 2010	38	7	0	
October 2010	66	10	0	
November 2010	98	23	0	
December 2010	146	26	0	
January 2011	102	30	0	
February 2011	46	13	0	
March 2011	66	24	0	
April 2011	48	40	0	
May 2011	37	5	0	
June 2011	65	9	0	
July 2011	148	28	0	
August 2011	63	14	0	
September 2011	69	71	0	
October 2011	104	42	0	
November 2011	41	17	0	
December 2011	58	17	0	
January 2012	169	30	0	
February 2012	47	15	0	
March 2012	63	19	0	

INFESTATION INCIDENCE IN SUNGAI BALIM ESTATE FROM APRIL 2010-MARCH 2012

	Infestation incident				
Months	Su	ngai Balim Esta	ate		
	Trunk	Spear	Basal		
April 2010	159	25	0		
May 2010	243	45	0		
Jun 2010	206	36	0		
July 2010	198	22	0		
August 2010	258	33	0		
September 2010	175	24	0		
October 2010	180	38	0		
November 2010	259	38	0		
December 2010	345	54	0		
January 2011	359	62	0		
February 2011	325	43	0		
March 2011	265	28	0		
April 2011	253	30	0		
May 2011	322	30	0		
June 2011	278	27	0		
July 2011	235	25	0		
August 2011	204	21	0		
September 2011	266	35	0		
October 2011	239	35	0		
November 2011	361	38	0		
December 2011	310	36	0		
January 2012	314	28	0		
February 2012	213	15	0		
March 2012	204	47	0		

INFESTATION INCIDENCE IN TANIKU 1 ESTATE FROM APRIL 2010-MARCH 2012

	Infestation incident				
Month	,	Faniku 1 Estate			
	Trunk	Spear	Basal		
April 2010	248	144	0		
May 2010	315	176	0		
Jun 2010	282	213	0		
July 2010	223	149	0		
August 2010	287	93	0		
September 2010	166	78	0		
October 2010	273	107	0		
November 2010	380	118	0		
December 2010	402	96	0		
January 2011	313	75	0		
February 2011	338	46	0		
March 2011	235	46	0		
April 2011	293	61	0		
May 2011	220	55	0		
June 2011	212	88	0		
July 2011	199	73	0		
August 2011	112	58	0		
September 2011	379	101	0		
October 2011	264	73	0		
November 2011	371	84	0		
December 2011	371	64	0		
January 2012	311	57	0		
February 2012	346	56	0		
March 2012	355	38	0		

INFESTATION INCIDENCCE IN TANIKU 2 ESTATE FROM APRIL 2010-MARCH 2012

	Infestation incident			
Months	r	Taniku 2 Estate		
	Trunk	Spear	Basal	
April 2010	32	127	0	
May 2010	52	97	0	
Jun 2010	48	91	0	
July 2010	70	101	0	
August 2010	51	86	0	
September 2010	68	98	0	
October 2010	52	44	0	
November 2010	65	65	0	
December 2010	92	86	0	
January 2011	89	53	0	
February 2011	65	31	0	
March 2011	64	22	0	
April 2011	54	20	0	
May 2011	35	29	0	
June 2011	46	26	0	
July 2011	67	20	0	
August 2011	54	15	0	
September 2011	35	22	0	
October 2011	6	0	0	
November 2011	54	28	0	
December 2011	42	18	0	
January 2012	24	11	0	
February 2012	31	1	0	
March 2012	45	0	0	

TREND ANALYSIS OF MONTHLY RAINFALL AND TOTAL INFESTATION INCIDENCES IN SUNGAI TRUS OIL PALM PLANTATION.

Source	DF	Sum of square	Mean square	F value	Pr > F
Model	1	1881.51	1881.51	1.04	0.3193
Error	22	39867	1812.16		
Total	23	41749			
Variable	DF	Parameter estimate	Standard error	T value	Pr > T
Intercept	1	84.69	17.32	4.89	< 0.0001
rainfall	1	0.04	0.04	1.02	0.3193ns

 $r^2 = 0.0451$

CV = 42.59

N = 24

TREND ANALYSIS OF MONTHLY RAINFALL AND TOTAL INFESTATION INCIDENCES IN SUNGAI BALIM OIL PALM PLANTATION.

Source	DF	Sum of square	Mean square	F value	Pr > F
Model	1	6785.996	6785.996	1.61	0.2184
Error	22	92986	4226.62		
Total	23	99772			
Variable	DF	Parameter estimate	Standard error	T value	Pr > T
Intercept	1	245.41	38.40	6.39	< 0.0001
rainfall	1	0.17354	0.13696	1.27	0.2184ns

 $r^2 = 0.068$

CV = 22.33

N = 24

TREND ANALYSIS OF MONTHLY RAINFALL AND TOTAL INFESTATION INCIDENCES IN TANIKU 1 OIL PALM PLANTATION.

Source	DF	Sum of square	Mean square	F value	Pr > F
Model	1	4381.7733	4381.7733	0.56	0.4627
Error	22	172518	7841.707		
Total	23	176899			
Variable	DF	Parameter estimate	Standard error	T value	Pr > T
Intercept	1	327.277	68.714	4.76	< 0.0001
rainfall	1	0.159	0.21318	0.75	0.4627ns

 $r^2 = 0.0248$

CV = 23.49

N = 24

TREND ANALYSIS OF MONTHLY RAINFALL AND TOTAL INFESTATION INCIDENCES IN TANIKU 2 OIL PALM PLANTATION.

Source	DF	Sum of square	Mean square	F value	Pr > F
Model	1	7430.530	7430.530	3.41	0.0782
Error	22	47891	2176.854		
Total	23	55321			
Variable	DF	Parameter estimate	Standard error	T value	Pr > T
Intercept	1	32.633	36.204	0.90	0.3772ns
rainfall	1	0.20752	0.11232	1.85	0.0782ns

 $r^2 = 0.1343$

CV = 48.017

N = 24

BIODATA OF STUDENT

Chan Seow Phan was born in Ipoh, Perak, Malaysia on the 03 October 1984. He did his primary education at the Sekolah Kebangsaan Methodist A.C.S. Ipoh, Perak and continued his secondary schooling at Sekolah Menengah Methodist A.C.S. Ipoh Perak where he obtained his Penilaian Menengah Rendah (PMR), Sijil Peperiksaan Malaysia (SPM) and Sijil Tinggi Pelajaran Malaysia (STPM). He started tertiary education at Universiti Putra Malaysia and obtained a Second Class Upper B. Sc. Degree in Bioindustry in 2008. His intended academic interest in the future in pursuing research on entomology.