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Levulinic acid (LA) can be produced from both C6 and C5 carbohydrates 
via dehydration and hydrolysis processes of biomass. This study focuses 
on the production of LA from oil palm mesocarp fiber (OPMF). From 
proximate and thermogravimetric analysis (TGA), it was found that OPMF 
has 21.16 - 29.73% of cellulose, hemicellulose 21.81 – 27.61%, lignin 
10.39 – 30.80%, ash 6.39% and extractive 25.23%. It is difficult to produce 
high yield of LA from the biomass due to generation of humins during 
hydrolysis reaction. Moreover, the high content of silica bodies on OPMF 
surface also causes lower sugar production which affects the formation of 
LA. Thus, pretreatment is needed to improve the yield of LA.  
 

This study aimed to investigate the effect of several pretreatments on the 
synthesis of LA. Four pretreatments were conducted; acid pretreatment, 
ultrasonic-assisted acid pretreatment, alkali pretreatment and ultrasonic-
assisted alkali pretreatment. Sulfuric acid (H2SO4) and sodium hydroxide 
(NaOH) were used as catalysts in pretreatment. For acid and alkaline 
pretreatments, samples were pretreated with different temperatures (60 
°C, 80 °C and 100 °C). The parameter for ultrasonic-assisted pretreatment 
was sonication power (40%, 60% and 80%). The highest content of HMF 
produced after pretreatment from all pretreatments was 1.71% pretreated 
by 6% (v/v) sulphuric acid pretreatment without ultrasonic at 100 ⁰C. Direct 
hydrolysis of biomass was proposed after it was discovered that most of 
the sugars after pretreatment were present in the liquor. The maximum 
yield of LA was 20.54% obtained from direct acid hydrolysis of sample 
which was pretreated at 100 ⁰C using 6% (v/v) H2SO4 solution. The results 
on morphological structure of treated OPMF fiber after SEM analysis 
showed the evidence of silica bodies removal from the surface of OPMF 
fiber thus allowed for a direct exposure of acid pretreatment and acid 
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hydrolysis. FTIR analysis suggested that the formation of carbonyl groups 
indicates the formation of LA in hydrolysis samples. TGA results indicated 
that the sample which produced highest amount of levulinic acid had 
lowest activation energy in the reaction. 
 
 
The second objective is to the study effect of process conditions on the 
hydrolysis of OPMF into LA using Response Surface Methodology (RSM). 
The pretreatment method chosen in this step was based on the results 
obtained from the first objective. The pretreated samples were hydrolyzed 
in acid hydrolysis reactor. Three parameters were investigated; reaction 
time (2 – 4 hours), acid concentration (1 - 3% (v/v) H2SO4) and 
temperature of reaction (120 – 160 °C). The highest content of LA 17.88% 
was produced at the temperature 160 ⁰C, using 3% sulphuric acid 
concentration for 4 hours. Since these are the highest conditions for each 
parameter, the optimized condition could not be determined due to the 
limitation of reactor specification for acid hydrolysis reaction.  



© C
OPYRIG

HT U
PM

iii 
 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Master Sains 

 

SINTESIS ASID LEVULINIK DARIPADA SERAT MESOKARP KELAPA 
SAWIT MELALUI KAEDAH HIDROLISIS ASID 

 
 

Oleh 
 
 

NOR AKHLISAH BINTI ZULKIPLI 

November 2018 
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Asid levulinik (LA) boleh diperolehi daripada kedua-dua C5 dan C6 
karbohidrat melalui tindak balas dehidrasi dan hidrolisis. Kajian ini 
mengfokuskan kepada penghasilan asid levulinik daripada serat mesokarp 
kelapa sawit (OPMF). Melalui analisis penganggaran dan termogravimetri 
(TGA), OPMF mempunyai selulosa sebanyak 21.16 – 29.73%, 
hemiselulosa sebanyak 21.81 – 27.61%, lignin sebanyak 10.39 – 30.80 %, 
6.39% abu dan 25.23% hasil ekstraktif. Didapati bahawa kandungan asid 
levulik yang tinggi sukar diperolehi disebabkan oleh penghasilan humin 
semasa tindak balas hidrolisi. Tambahan pula, banyak jasad silika yang 
terdapat pada OPMF juga menyebabkan penghasilan gula menjadi rendah 
dan memberi kesan kepada penghasilan asid levulinik.  
 
  
Kajian ini bertujuan untuk mengkaji kesan empat prarawatan ke atas 
penghasilan asid levulinik (LA) iaitu prarawatan asid, prarawatan asid 
dengan bantuan ultrasonik, prarawatan alkali, dan prarawatan alkali 
dengan bantuan ultrasonic. Asid sulfurik (H2SO4) and natrium hidroksida 
(NaOH) telah digunakan sebagai pemangkin dalam prarawatan. Untuk 
prarawatan asid dan alkali, sampel diprarawat dengan menggunakan suhu 
yang berbeza (60 °C, 80 °C dan 100 °C). Parameter untuk prarawatan 
ultrasonik adalah kuasa ultrasonik (40%, 60% dan 80%). Kandungan HMF 
yang paling tinggi adalah 1.71% diprarawat menggunakan 6% asid sulfurik 
pada suhu 100 ⁰C melalui kaedah prarawatan asid tanpa ultrasonik. 
Hidrolisis secara langsung ke atas biojisim telah disarankan selepas 
menemukan kebanyakan gula selepas prarawatan telah dialihkan ke 
dalam cairan prarawatan. Kadar kandungan maksimum asid levulinik yang 
dihasilkan adalah 20.54% diperoleh daripada hidrolisis asid secara 
langsung ke atas sampel yang diprarawat pada suhu 100 ⁰C 
menggunakan 6% (v/v) asid sulfurik. Hasil pada struktur morfologi 
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terhadap serat OPMF selepas analisis SEM menunjukkan bukti bahawa 
jasad silica telah dibuang daripada permukaan serat OPMF dan 
membenarkan pendedahan langsung prarawatan dan hidrolisis asid. FTIR 
mengesahkan pembentukan asid levulinik dalam sampel hidrolisis melalui 
ikatan karbonil. Hasil TGA pula menunjukkan bahawa sampel yang 
menghasilkan asid levulinik yang tinggi mempunyai tenaga pengaktifan 
yang rendah dalam tindak balas.  
 
 
Objektif kedua adalah untuk mengkaji kesan keadaan hidrolisis ke atas 
OPMF terhadap asid levulinik dengan menggunakan Response Surface 
Methodology (RSM). Kaedah prarawatan yang dipilih dalam langkah ini 
adalah berdasarkan hasil yang diperoleh daripada objektif pertama. 
Sampel yang telah diprarawat, dihidrolisis dalam reaktor hidrolisis asid. 
Tiga parameter telah dikaji; masa tindakbalas (2 – 4 jam), kepekatan asid 
(1 – 3% (v/v) H2SO4) dan suhu tindakbalas (120 – 160 °C). Kandungan 
asid levulinik tertinggi adalah 17.89% diperoleh pada suhu 160 °C 
menggunakan 3% kepekatan asid sulfurik selama 4 jam. Asid levulinik 
paling tinggi terhasil pada keadaan parameter yang paling ekstrem maka 
keadaan yang optimum tidak dapat ditentukan disebabkan oleh 
keterbatasan kebolehan reaktor yang digunakan untuk tindak balas 
hidrolisis asid. 
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CHAPTER 1 
 

INTRODUCTION 

 

1.1 Background 
 
 
1.1.1 Energy Generation and Chemical Production from Biomass 
 
 
In the past years, unstable fuel price has affected the economy of many 
countries. Moreover, the use of fossil fuel which yields more carbon and 
sulphur leads to major environmental concerns including the global 
warming and acid rain (Hossain et al., 2016). These two mentioned issues 
are considered as challenges and need to be resolved by developing new 
technologies especially the development of alternative fuel resources 
(Chiesa and Gnansounou, 2014). These concerns have escalated the 
development and application of alternative energies such as wind, 
biomass, hydro, and solar (Hossain et al., 2016). Moreover, the research 
on the use of biomass as alternative energy sources has also increased 
lately due to its abundant supply. Generally, most of energy sources are 
used in two ways which are as a source of fuel or energy and second as 
raw materials in the production of chemicals.  
 
 
Biomass, is one of the renewable resources which is widely available and 
can be considered as one of the promising affordable options for energy. 
Forestry, agriculture, waste and industry are known to be the sources of 
biomass (Sadhukhan et al., 2018). They have their own potential to be 
converted into energy, chemical and other bio-products in various 
applications. Many types of waste biomass can be explored for examples; 
agricultural crops, food residuals, municipal solid wastes and animal 
waste. Agricultural wastes are by-products generated from agricultural 
industry. Embedded carbon released from combustion of biomass is 
seized during the growth of biomass thus alleviate the negative impact of 
using fossil fuels. 
 
 
In addition, lignocellulosic biomass, a renewable source of carbon, has the 
potential to be converted into many chemicals such as levulinic acid (LA), 
furfural, ethanol and 5-hydroxymethylfurfural (HMF) (Alonso et al., 2013b). 
Three main components of lignocellulosic biomass are cellulose, 
hemicellulose and lignin, which can be converted into monomer sugars 
such as glucose, fructose and xylose and then be converted into 
chemicals by process such as enzymatic or chemical hydrolysis (Alonso et 
al., 2013b). Basically, biomass needs to be converted into reducing sugars 
at the first place before it is to be converted into bio-based chemicals and 
biofuels as shown in Figure 1.1 below. Levulinic acid (LA) is one of 
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chemicals produced from biomass. The simultaneous degradation of both 
hemicellulose and cellulose is one of the main challenges in utilizing 
liqnocellulosic biomass. One of the most common thermochemical 
methods used to accomplish this process is acid hydrolysis  (Sweygers et 
al., 2017; Wettstein et al., 2012). The process is carried out in the 
presence of acid catalyst. Routes for LA synthesis by acid hydrolysis are 
shown in Figure 1.2.  
 
 
However, the presence of lignin slows down the reaction of acid 
hydrolysis. Thus, pretreatment was needed to improve the hydrolysis 
reaction. The examples of pretreatment are chemical pretreatment, 
physical pretreatment and biological pretreatment. Chemical pretreatments 
such as acid and alkali pretreatment are the most commonly applied 
techniques to remove lignin from lignocellulosic materials (Sun et al., 
2016). During both pretreatments, the ester linkages in lignin and 
hemicellulose are easily broken down under alkaline and acidic condition 
(Palamae et al., 2014). Aqueous pretreatments such as dilute sulfuric acid 
and dilute alkali for example dilute sodium hydroxide have the advantages 
that they do not use organic solvents which can be expensive and can be 
carried out in batch reactors in laboratory studies (Bhagia et al., 2016). 
Ultrasonic pretreatment is also widely used for biomass conversion. It 
should remove hemicellulose and disrupt the barrier of lignin (He et al., 
2017). Previous study found that ultrasonic waves can escalate the 
chemical reaction such as hydrolysis, resulted from the thermal effects, 
mechanical and cavitation of the ultrasound (Yu et al., 2018). 
 
 

 
Figure 1.1: Flow of biomass conversion into biofuels and bio-
chemicals (Alonso et al., 2013b).
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Figure 1.2: Acid hydrolysis reaction mechanism for LA synthesis. (Weingarten et al., 2012) 
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1.1.2 Oil Palm Biomass 
 
 
Oil palm is known to be one of the potential sources of biomass. According 
to Ul Islam et al. (2016), Malaysia is stated as one of the foremost trading 
countries for oil palm plantation as well as in industrial productions. In 
2011, 5 million hectares of land in Malaysia was utilized for palm oil 
plantation (Ul Islam et al., 2016). Oil palm industry has significantly 
contributed to the Malaysia’s economy especially in the plantation and 
manufacturing industry. Malaysia is also recognized as world’s leading 
exporter of palm oil (Mumtaz et al., 2010). Oil palm is often regarded as 
the most economic and productive oil crop (Ohimain and Izah, 2017). This 
is because oil palm can be extracted to produce edible oil known as palm 
oil and palm oil can be used as fuel via direct combustion (Nipattummakul 
et al., 2012). Among 17 major oils traded in edible oil and fat market 
worldwide, palm oil is one of the main edible oils while palm kernel oil is 
used mainly in the oleo chemical industry (Zainudin et al., 2009). 
 
 
Palm oil is produced from the mesocarp (fiber) of the palm fruit while palm 
kernel oil is produced from the nut (kernel) of the fruit. In terms of chemical 
characteristics, palm oil contains mainly palmitic acid and oleic acid while 
lauric acid is the main fatty acid in palm kernel oil. Both palm oil and palm 
kernel oil can be utilized in many applications such as food, soaps, 
biodiesel and oleo chemicals either with or without any pretreatment.  
 
 
Over the years, Malaysian palm oil industry has produced around 53 
million tons of waste annually. However, a recent research shows a 
significant increase of oil palm solid residues at 80 million tons of dry 
residues in 2010, and estimated at 100 million by the year 2020 (Umar et 
al., 2014). Oil palm biomass can be categorized into several types such as 
oil palm trunks, oil palm empty fruit bunches (OPEFB), oil palm fronds 
(OPF), oil palm leaves, palm kernel shells (PKS) and oil palm mesocarp 
fibers (OPMF) and palm oil milling effluent (POME) (Ahmad et al., 2016; 
Mohammad et al., 2012). Products and by products of oil palm is shown in 
Figure 1.3.  
 
 
Basically, large quantities of oil palm biomass ended as wastes from the 
palm oil industry after oils (crude palm kernel oil and crude palm oil) were 
extracted from Fresh Fruit Bunch (FFB) as we can see in Figure 1.3.The 
production rates of the oil palm biomass with respect to the production rate 
of FFB are shown in Table 1.1. Recently, these biomasses present as 
readily available supply of raw materials for the production of green 
chemicals to curb the environmental issues.  
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Figure 1.3: Products and by-products from oil palm biomass (Zafar, 

2018) 
 
Table 1.1: Production Rates of Oil Palm Biomass with Respect to FFB 
(Malaysia Energy Statistics Handbook, 2016). 

Biomass available 
from Palm Oil 

Industry 

% from FFB 
Quantity 

Quantity million 
tonnes 

OPEFB 23 21.24 
OPMF 13 12.00 
PKS 6 5.54 

POME 60 55.40 
   

 

1.2 Problem Statement 

 
 
The commercially available LA is produced from carbohydrates and has 
limited success due to its high cost of raw materials for production. 
However, there are still many unexploited options of raw materials such as 
lignocellulosic biomass containing other carbohydrates and high starch 
that can be explored as an alternative raw material. Through many 
researches, they found that oil palm biomass including Oil Palm Mesocarp 
Fibre (OPMF) are considered as lignocellulosic biomass because their 
main components comprise of cellulose, hemicellulose and lignin. These 
lignocellulose biomasses can be converted into carbohydrates and be 
used to produce arrays of green chemicals including LA. The conversion of 
oil palm biomass from cellulose into levulinic acid can be seen in Figure 
1.4 below. Unfortunately, most of OPMF are used as fuel in boilers and 
lack of research using OPMF available in literature for production of LA. 
This is because, previous research only utilized OPMF to produce sugars 
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such as glucose and xylose. It is expected that OPMF can produced high 
amount of levulinic acid via hydrolysis reaction.  
 
 
OPMF is recalcitrant in nature due to the highly crystalline nature of the 
cellulose and the lignin content. The successful conversion of 
lignocellulosic biomass needs an effective pretreatment as an important 
step to optimize the process of conversion into reducing sugar before 
production of LA. Various pretreatment techniques have been explored to 
improve the efficiency of hydrolysis reaction and it was found that acid 
pretreatment and alkaline pretreatment are the common pretreatment 
applied. Ultrasonic pretreatment also has been proved to enhance the 
production of sugar. Lack of studies carried out the combination of acid or 
alkaline pretreatment with ultrasonic technology. Combination of 
pretreatment methods, for example, ultrasonic-assisted acid pretreatment 
and ultrasonic-assisted alkaline pretreatment would improve the efficiency 
of biomass conversion in the overall process. 
 
 
Previous works have only reported on pretreatments of OPMF for 
production of sugars, not on the effect of pretreatment on the production  
of LA. Through pretreatment, OPMF is expected to produced high amount 
of sugars which can be attributed to high yield of HMF and LA. 
Characterization studies are important to establish the morphological and 
structural changes due to pretreatment methods and acid hydrolysis 
reaction. However, only limited studies are reported on characterization of 
OPMF after hydrolysis and related to the changes with respect to levulinic 
acid synthesis. 
 

 
Furthermore, no attempt has been done to study the optimization of LA 
production from OPMF via acid hydrolysis reaction in order to improve LA 
content and productivity. If the parameters affecting acid hydrolysis 
reaction conditions are optimized, the production of LA by this reaction is 
expected to be more efficient and higher yield of LA can be obtained. 
 
 

 

 
Figure 1.4: Chemical routes of biomass conversion into levulinic acid 
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1.3 Objectives 

 
 
The objectives of this research are as follows: 
 
 

1. To evaluate the effects of different pretreatment methods on 
formation of levulinic acid (LA) via acid hydrolysis of oil palm 
mesocarp fiber (OPMF)and characterization of OPMF. 
 
 

2. To study the effects of process conditions on conversion of 
OPMF into LA via acid hydrolysis using Response Surface 
Methodology (RSM). 

3.  
 

1.4 Scope of Work 

 
 
The scope of work for this research is primarily on the acid hydrolysis of 
OPMF for LA production. The research began by comparing several 
methods of pretreatment which were ultrasonic pretreatment, acid 
pretreatment and alkali pretreatment. For all pretreatments, effect of acid 
or alkali concentrations were investigated.  Other parameter for ultrasonic 
pretreatments was on ultrasonic power while for acid and alkali 
pretreatments, both were investigated on effect of temperature. Effects of 
process conditions on conversion of LA were studied using Response 
Surface Methodology (RSM). Parameters involved in this study were effect 
of acid concentration, effect of temperature and effect of reaction time. The 
characterization of OPMF was also carried out. The properties investigated 
include moisture, lignin, cellulose and hemicellulose content.  
 
 
1.5 Thesis Outline 
 
 
This reports comprises of five chapters. Chapter 1, the introductory 
chapter, provides the background of study, the problem statement, 
objectives and scope of work. Chapter 2 gives detailed analysis of 
literature review which includes review on lignocellulosic materials, 
application of oil palm biomass, various pretreatment methods used, LA 
production and parameters that affected the hydrolysis reaction. All 
materials and methods are discussed in Chapter 3. Chapter 4 comprises 
the results and discussions namely on characterization of OPMF using 
proximate analysis, moisture analysis, TGA analysis, FTIR analysis, 
effects of several pretreatments on acid hydrolysis and Response Surface 
Methodology study on effects of process conditions on LA contents. 
Finally, chapter 5 concludes the present research work and provides the 
recommendations for future works. 
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