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Diabetic retinopathy (DR) and diabetic macular edema (DME) are regarded as the most 

common complications of diabetes that, if not treated accordingly, could result in 

blindness. Early diagnosis and treatment planning can be considered as an essential step 

in preventing the vision loss, but the large and growing number of diabetic patients 

coupled with difficulties in screening a high number of patients makes early diagnosis 

difficult. Additionally, most of the time, a non-trivial inter- and intra-observer 

variability can be observed, depending on the point in time or the level of experience, 

different persons or even the same person may outline the anatomical boundaries 

differently. Computer-assisted diagnosis can be used for checking the retinal condition 

at different time intervals, providing a fast and reliable way of monitoring patient’s 

condition during different time frames. However, most of the proposed methods do not 

contain any grading capabilities and are mostly designed for screening purposes.  

 

 

The proposed computer-assisted diagnosis approach starts with the segmentation of the 

blood vessels. Then, optic disk and macula regions are located and segmented. 

Removing vessels, optic disk and macula regions increases accuracy of microaneurysm 

and exudate segmentation. Finally, retinal images are classified and graded using an 

AdaBoost classification method based on features extracted utilizing first, second and 

higher order image features selected by a minimal-redundancy maximal-relevance 

feature selection approach. Being brighter than the surrounding tissue, optic disk (OD) 

causes rapid variations in image intensity. This variation can be used for locating the 

OD region. In our study, OD is located using a variance based approach with OD outline 

segmented using circular Hough transform. By leveraging the location and the diameter 

of segmented OD, it is possible to locate the macula region as its position is relatively 

constant compared to OD. In this study, an exudate segmentation approach based on 

Kirsch’s Edges method is used with the microaneurysms being segmented using 

mathematical morphology and thresholding approaches.  
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In this thesis, for each retina image, a feature vector with a fixed size is generated 

regardless of the position or the number of exudates and microaneurysms, which might 

not be properly segmented and used in an AdaBoost classifier for screening and grading 

images with possible signs of diabetic retinopathy and diabetic macular edema. The 

accuracy of the proposed diabetic grading approaches were comparable to other state of 

the art methods with an average accuracy of 0.791 and 0.974 in publicly accessible 

MESSIDOR dataset, respectively. By utilizing computer vision and machine learning 

concepts, it is possible to increase the DME detection rate considerably as CAD can 

reduce the workload of the ophthalmologists. 
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Diabetik retinopati (DR) dan edema makular diabetes (DME) dianggap sebagai 

komplikasi diabetes yang paling biasa yang, jika tidak dirawat dengan sewajarnya, 

boleh menyebabkan kebutaan. Diagnosis awal dan perancangan rawatan boleh 

dianggap sebagai langkah penting dalam mencegah kehilangan penglihatan, tetapi 

jumlah pesakit diabetes yang besar dan berkembang ditambah dengan kesulitan dalam 

menyaring sejumlah besar pesakit membuat diagnosis awal sukar. Di samping itu, 

kebanyakan masa, ketidaktentuan antara dan bukan pengamatan yang tidak remeh dapat 

dipatuhi, bergantung pada titik waktu atau tahap pengalaman, orang yang berlainan atau 

orang yang sama dapat menggariskan batas-batas anatomi secara berbeza. Diagnosis 

dibantu komputer boleh digunakan untuk memeriksa keadaan retina pada selang waktu 

yang berlainan, menyediakan cara pemantauan pesakit yang cepat dan boleh dipercayai 

semasa bingkai masa yang berlainan. Walau bagaimanapun, kebanyakan kaedah yang 

dicadangkan tidak mengandungi keupayaan penggredan dan kebanyakannya direka 

untuk tujuan pemeriksaan.  

 

 

Pendekatan diagnosis yang dibantu komputer yang dicadangkan bermula dengan 

segmen saluran darah. Kemudian, cakera optik dan kawasan makula terletak dan 

dibahagikan. Mengeluarkan kapal, cakera optik dan kawasan makula meningkatkan 

ketepatan mikroaneurisma dan pembahagian exudate. Akhir sekali, imej retina 

diklasifikasikan dan digredkan menggunakan kaedah klasifikasi AdaBoost berdasarkan 

ciri-ciri yang diekstrak dengan menggunakan ciri imej pesanan pertama, kedua dan 

lebih tinggi yang dipilih oleh pendekatan pemilihan ciri maksimal-relevansi minimum 

yang redundansi. Menjadi lebih cerah dari tisu sekitarnya, cakera optik (OD) 

menyebabkan perubahan pesat dalam keamatan imej. Variasi ini boleh digunakan untuk 

mencari kawasan OD. Dalam tesis, OD terletak dengan menggunakan pendekatan 

berasaskan varians dengan garis besar OD yang dibahagikan menggunakan 

transformasi Hough pekeliling. Dengan memanfaatkan lokasi dan diameter OD yang 

tersegmentasi, mungkin untuk mencari rantau makula kerana kedudukannya agak tetap 
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berbanding dengan OD. Dalam kajian ini, pendekatan segmentasi eksudat berdasarkan 

kaedah Kirsch's Edges digunakan dengan microaneurysms yang dibahagikan dengan 

menggunakan morfologi matematik dan pendekatan ambang.  

 

 

Dalam tesis ini, bagi setiap imej retina, ciri vektor dengan saiz tetap dijana tanpa 

mengira kedudukan atau bilangan exudates dan microaneurysms, yang mungkin tidak 

dibahagikan dengan betul dan digunakan dalam pengelas AdaBoost untuk pemeriksaan 

dan penggredan imej dengan tanda-tanda yang mungkin daripada retinopati diabetik 

dan edema makular diabetes. Ketepatan pendekatan diabetes yang dicadangkan adalah 

setanding dengan kaedah seni yang lain dengan ketepatan purata 0.791 dan 0.974 dalam 

dataset MESSIDOR yang boleh diakses secara umum. Dengan menggunakan visi 

komputer dan konsep pembelajaran mesin, adalah mungkin untuk meningkatkan kadar 

pengesanan DME dengan ketara kerana CAD boleh mengurangkan beban kerja pakar 

mata. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Diabetes is one of the leading causes of new cases of blindness worldwide. It is 

responsible for nearly 10% of the healthcare cost and the number of people suffering 

from diabetes estimated to be over 350 million by 2030 (World Diabetes, 2018). Diabetes 

is also considered as the 5th deadliest disease in the United States (Taylor and Batey, 

2012). Approximately, half of the patients with diabetes are not aware of their disease. 

Therefore, the early diagnosis of diabetes plays a crucial role in management and 

treatment planning of patients. The increase in the number of patients with diabetes can 

be attributed to urbanization coupled with environmental and social factors such as an 

unhealthy diet, obesity and reduced physical activity (Sivaprasad et al., 2012).   

 

 

Digital retinal imaging can be considered as a low-cost method of screening for diabetes 

and could be used in conjunction with computerized image processing techniques for 

automatic detection of signs of diabetes-related pathologies in retinal images. Diabetic 

Retinopathy (DR), often regarded as one of the most common complications of diabetes, 

can result in blindness if not treated accordingly as treatment of complications as a result 

of progressive and untreated DR is difficult (Kumar, 1998). Diabetic Macular Edema 

(DME), sometimes referred to as macular edema (ME), is a severe complication resulting 

from DR and could be considered as the most common cause of vision loss (Abràmoff 

et al., 2016). DME refers to the swelling of the retina in diabetic patients due to fluid 

leakage from small, dilated blood vessels. It is formed as the result of chronic damage 

due to an increased level of blood sugar within the center of the macula. The presence of 

clinically significant DME requires immediate medical intervention and laser treatment 

to prevent blindness (Nayak et al., 2008). Early diagnosis and treatment planning can be 

considered as an essential step in preventing the vision loss, but the increasing number 

of diabetic patients coupled with screening difficulties makes early diagnosis difficult. 

Imaging the vasculature network and anatomical structures in retinal images can be an 

effective tool for early detection of diabetes. As mentioned by Patton et al. (2006): “The 

retinal microvasculature is unique in that it is the only part of the human circulatory 

system that can be directly visualized non-invasively in vivo, readily photographed and 

subject to digital image analysis.” Direct ophthalmoscopy (manual inspection of retinal 

images by a specialist) is being challenged by computer-assisted diagnosis of retinal 

images. Direct ophthalmoscopy using retinal fundus images could be considered as an 

effective approach for diagnosing various retina-related diseases that can result in 

blindness such as macular degeneration and diabetic retinopathy. However, it is time 

consuming and the results cannot be easily reproduced. On the other hand, computer-

assisted diagnosis of retinal fundus images has been shown to be as accurate as direct 

ophthalmoscopy and also faster and more reliable (Abràmoff et al., 2016). 

 

 

1.1 Problem Statement 

 

 

The human eye is responsible for vision and can be considered as one of the most 

important amongst the five human senses. Often, damaged retinal structures cannot be 
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repaired. Majority of ocular diseases such as diabetic retinopathy and diabetic macular 

edema often show no early warning signs until the time that the disease has progressed 

and the treatment has become difficult. As a result, periodic retinal examinations for 

detecting early signs of ocular diseases such as changes in the blood vessel topology and 

presence of exudates are highly desired. However, manual segmentation of anatomical 

structures and grading of retinal disease by specialist ophthalmologists is a time-

consuming process. Additionally, most of the time, a non-trivial inter- and intra-observer 

variability can be observed. Depending on the acquisition time or the level of experience, 

different persons or even the same person may outline the anatomical boundaries 

differently. Therefore, a robust and reliable automatic segmentation and computer aided 

analysis for supporting the ophthalmologist during diagnosis and/or treatment planning 

is needed. 

 

 

Computer-assisted diagnosis of retinal images can be considered as an alternative to 

manual examination by ophthalmologists that can reduce the cost and complexity 

associated with grading and detecting diseases using retinal images. Computer-assisted 

diagnosis can be used for checking the retinal condition at different time intervals, 

providing a fast and reliable way of monitoring patient’s condition during different time 

frames. CAD systems for use in DR and/or DME detection makes screenings possible 

for remote locations. In areas where it might be difficult for the population to be screened 

by medical professionals, CAD systems are used for screening a large population in a 

reasonable time frame (Liesenfeld et al., 2000). Recently, two large scale benchmark 

datasets designed for use in development of CAD systems capable of screening and 

grading of DR and DME has been proposed that makes it possible to design, test and 

compare different CAD systems for ensuring an adequate sensitivity and specificity of 

any proposed CAD system. 

 

 

Automatic computer-aided screening of DR can be considered as an important factor that 

can reduce the percentage of untreated patients as it can provide reliable and automatic 

DR screening thus reducing the time, cost and the manual effort of mass screening 

(Fleming et al., 2010). While some studies focus mainly on sensitivity (recognition of 

patients having DR), the specificity (recognition of patients not having DR) of the 

screening system should also be considered in order to keep the CAD system as efficient 

as possible (Abràmoff et al., 2016). Additinally, as mentioned in (Sánchez et al., 2011), 

human grading of DR is highly subjective and depends on the examiner’s experience. 

Hence, an automatic grading system that could reduce the inter-reader variability is 

needed. Moreover, screening by a CAD system can provide a competent alternative to 

analysis of fundus images by ophthalmologists in mass and/or remote screening 

scenarios. By excluding normal images, the time required to manually check the images 

is reduced as almost 70% of images in DR screening initiatives have no sign of DR 

(Roychowdhury et al., 2014; Dupas et al., 2010). However, in order to be able to exclude 

normal cases, algorithms must possess high specificity and high sensitivity, especially in 

moderate to severe cases (sight-threatening) of DR in order to avoid misdiagnosis of 

potentially sight-threatening retinopathy. 

 

 

Nonetheless, ultimately, the purpose of using a computer-assisted diagnostic system 

should be to go beyond the binary classification of normal/abnormal images and to limit 

manual grading to images that have a certain degree of abnormality by providing the DR 
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grades. This would mean that patients would only need to be referred to an 

ophthalmologist if they presented with moderate non-proliferative DR or worse, or 

patients with signs of DME. By utilizing computer vision and machine learning concepts, 

it is possible to increase the DME and DR detection rates considerably as CAD can 

reduce the workload of the ophthalmologists as confirmed by recent large-scale studies 

(Fleming et al., 2010; Giancardo et al., 2012, Roychowdhury et al., 2014, Sreejini and 

Govindan, 2013; Zaidi et al., 2013). However, most of these method do not contain any 

grading capabilities and are mostly designed for screening purposes. Although 

beneficial, computer based grading does not only reduce the workload of the 

ophthalmologists, it can also result in better prognosis by providing a second opinion on 

patient’s condition. 

 

 

1.2 Research Aim and Objectives 

 
 

This study intends to develop an improved framework for segmentation of anatomical 

structures in the retina. Additionally, to develop computer-assisted diagnostic of retinal 

images with high accuracy by utilizing a different variety of image segmentation and 

machine learning (boosting) concepts.  The objectives of the thesis are as follows: 

 

 

i) To design an accurate retinal blood vessel, exudate and microaneurysm 

segmentation methods with using machine learning methods. 

ii) To design an accurate computer-assisted diabetic retinopathy diagnosis and 

grading method. 

iii) To design an accurate computer-assisted diabetic macular edema 

diagnosis and grading method. 

 

 

1.3 Scope and Contribution of the Thesis 

 
 

In this study, publicly accessible clinical datasets (Staal et al., 2004; Owen et al., 2009; 

Hoover et al., 2000; Decencière et al., 2014; Giancardo et al., 2012) designed to be used 

as a benchmark for different retinal vessel and computer-assisted diagnosis methods have 

been utilized. The proposed method was validated using all the images from available 

datasets and not subset of images was excluded. Furthermore, the vessel segmentation 

performance of the proposed method was validated using all the images from available 

datasets. 

 

 

First, vessel segmentation can be considered as an important step toward automated 

retina analysis tools. The segmented vessels can be used for advance retina image 

analysis such as computing the vessel tortuosity and diameter, differentiating arteries and 

veins along with measuring the arteriovenous ratio. Moreover, segmented vessels are 

routinely used as features in retinal disease classification systems that can be used in the 

identification of several systematic diseases such as stroke, hypertension or diabetes, to 

name a few. 
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Then, while some DR detection approaches are based on the number of segmented red 

lesions (Bhaskaranand et al, 2015; Hansen et al, 2004) and some DME detection 

approaches are based on the number and location of exudates (Nayak et al, 2008), a 

combination of different statistical and anatomical features are used in this study that is 

not dependent on the number of segmented anatomical markers such as exudates. In this 

study, for each retina image, a feature vector with a fixed size is generated regardless of 

the position or the number of different lesions, which might or might not be properly 

segmented. Instead, the detected lesion candidates are described as a whole by analyzing 

the exudate and red lesion (microaneurysm) candidates. This approach makes it possible 

to test and train the AdaBoost based machine learning algorithm without requiring the 

ground truth at a lesion level as only the diagnosis for each particular image is required. 

The proposed method was implemented and tested utilizing MATLAB R2016a using 

Intel Core i5 CPU running at 2.67 GHz coupled with 4 gigabytes of RAM. 

 

 

For screening cases, a yes/no decision is sufficient for referral to medical specialists as 

long as the system is able to detect any abnormalities in the retinal image, even if 

minimal. However, having a CAD approach capable of providing grades for DR and 

DME is highly desired as each grade have medically specific monitoring, treatment and 

response requirements.  

 

 

1.4 Outline of the Thesis 

 

 

The organization of the remaining chapter of the thesis is as follows: 

 

 

Chapter Two acquaintances the reader with different imaging and machine learning 

concepts related to medical imaging. Then, different problems faced during vessel and 

different retinal structure segmentation and different approaches proposed for these 

segmentations are reviewed. Finally, the advantages and disadvantages of these 

approaches are discussed and conclusions derived from previous works are presented.  

 

 

Chapter Three deals with the methodology of the developed framework and discusses 

the main ideas and approach relevant to the implementation of the different technique 

for the segmentation and classification of different structures inside the retina.  

 

 

Chapter Four deals with the medical evaluation of the obtained vessel segmentation and 

highlights the performance of the developed CAD frameworks for DR and DME. The 

proposed CAD frameworks are compared with other methods in the literature, showing 

its performance along with its weaknesses. Chapter Five summarizes the proposed 

algorithm and discusses the obtained performance and possible future works.  
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