
 
 

UNIVERSITI PUTRA MALAYSIA 
 
 
 
 
 

EXPERIMENTAL AND NUMERICAL INVESTIGATION ON FRICTION 
DRILLING OF DIFFICULT-TO-MACHINE MATERIALS 

 

 
 
 
 
 
 
 
 
 

SHAYAN DEHGHAN 
 
 
 
 
 
 
 
 
 
 
 
 

FK 2019 47 
 



© C
OPYRIG

HT U
PM

February 2019 i 

EXPERIMENTAL AND NUMERICAL INVESTIGATION ON FRICTION 
DRILLING OF DIFFICULT-TO-MACHINE MATERIALS 

By 

SHAYAN DEHGHAN 

Thesis Submitted to the School of Graduate Studies, Universiti Putra 
Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of 

Philosophy 



© C
OPYRIG

HT U
PM

iii 

All material contained within the thesis, including without limitation text, logos, 
icons, photographs and all other artwork, is copyright material of Universiti Putra 
Malaysia unless otherwise stated. Use may be made of any material contained 
within the thesis for non-commercial purposes from the copyright holder. 
Commercial use of material may only be made with the express, prior, written 
permission of Universiti Putra Malaysia. 

Copyright © Universiti Putra Malaysia 



© C
OPYRIG

HT U
PM

i 

DEDICATIONS 

To all of my love; 

My Father & My Mother 



© C
OPYRIG

HT U
PM

i 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Doctor of Philosophy. 

EXPERIMENTAL AND NUMERICAL INVESTIGATION ON FRICTION 
DRILLING OF DIFFICULT-TO-MACHINE MATERIALS 

By 

SHAYAN DEHGHAN 

February 2019 

Chairman : Mohd Idris Shah Bin Ismail, PhD 
Faculty  : Engineering 

Friction drilling is a non-conventional hole-making process that utilizes a rotating 
conical drilling tool to penetrate workpiece and create a hole by forming a 
bushing without generating chip. In metallurgy, difficult-to-machine materials are 
defined as materials which have great toughness, high work-hardening and low 
thermal conductivity. Since the difficult-to-machine materials are receiving 
increasing attention in extreme applications, friction drilling offers a great 
potential for product fabrication. However, the major challenge of friction drilling 
on difficult-to-machine materials is the difficulty of machining that leads to poor 
friction drilling performance and short tool life. In this study, the friction drilling on 
difficult-to-machine materials of stainless steel AISI304, titanium alloy Ti-6Al-4V 
and nickel-based alloy Inconel718 using drilling tool of tungsten carbide was 
experimentally and numerically investigated. Experimental results revealed that 
the thermal and mechanical properties of work-materials, spindle speed and feed 
rate have great influence on the formation of bushing and tool life. To achieve 
maximum number of acceptable drilled-holes, the optimum process parameters 
for AISI304 are spindle speed 1000 rpm and feed rate 105 mm/min, for Ti-6Al-
4V are spindle speed 1000 rpm and feed rate 145 mm/min, and for Inconel718 
are spindle speed 1500 rpm and feed rate 145 mm/min. The maximum frictional 
heating is generated at bushing completion stage, where the conical region of 
drilling tool is contacted to drilled hole-wall. The higher thrust force was occurred 
in initial contact between drilling tool and workpiece, and consequently the 
circular grooves and work-material adhesion have proven that abrasive and 
adhesive wear occurred on center and conical regions of drilling tool, 
respectively. The maximum abrasive wear, adhesive wear and oxidative wear 
are occurred on drilling tools which drilled AISI304, Ti-6Al-4V and Inconel718, 
respectively. The developed numerical model can well represent the real 
process of friction drilling, and stress and temperature distributions on workpiece 
and drilling tool. It also can effectively demonstrate the heating distribution on 
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workpiece, material softening and bushing formation. The numerical results 
indicated that severe stress occurs at the tool contact surface and adjacent 
region in the initial penetration. The inverse relationship between stress and 
temperature demonstrate the phenomenon of frictional heating and softening of 
the work-material in friction drilling which forms the bushing. Furthermore, the 
high plastic strain occurs on the hole-wall, which is the contact surface between 
drilling tool and work-material and it depends on the tool movement along the 
drilling path. The main contribution of this study is determining the effect of 
process parameters on drilling tool performance, bushing formation quality, 
thrust force and tool wear for friction drilling of difficult-to-machine materials with 
approach to improve friction drilling performance and reduce tool wear. Moreover 
the developed finite element modeling can provide a prediction for friction drilling 
process. In overall, this work demonstrated the behaviors of chip-less friction 
drilling on difficult-to-machine materials that can offer a great potential for a new 
product design and manufacturing. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah. 

PENYIASATAN EKSPERIMEN DAN BERANGKA DALAM PENGGERUDIAN 
GESERAN BAHAN SUKAR-UNTUK-DIMESIN 

Oleh 

SHAYAN DEHGHAN 

Februari 2019 

Pengerusi : Mohd Idris Shah Bin Ismail, PhD 
Fakulti : Kejuruteraan 

Penggerudian geseran adalah proses pembuatan-lubang bukan-konvensional 
yang menggunakan alat gerudi kon berputar untuk menembusi bahan kerja dan 
menghasilkan lubang dengan membentuk sesendal tanpa menghasilkan cip. 
Dalam metalurgi, bahan sukar untuk mesin ditakrifkan sebagai bahan yang 
mempunyai ketangguhan yang tinggi, pengerasan kerja yang tinggi dan 
kekonduksian terma yang rendah. Disebabkan bahan sukar-untuk-dimesin 
menerima perhatian yang semakin meningkat dalam aplikasi ekstrem, 
penggerudian geseran menawarkan potensi besar untuk fabrikasi produk. 
Walau bagaimanapun, cabaran utama penggerudian geseran pada bahan 
sukar-untuk-dimesin adalah kesukaran pemesinan yang membawa kepada 
prestasi penggerudian geseran yang tidak lemah dan hayat alat yang pendek. 
Dalam kajian ini, penggerudian geseran pada bahan sukar-untuk-dimesin keluli 
tahan karat AISI304, aloi titanium Ti-6Al-4V dan aloi berasaskan nikel 
Inconel718 menggunakan alat gerudi tungsten carbide disiasat secara 
eksperimen dan berangka. Keputusan eksperimen menunjukkan bahawa sifat 
terma dan mekanikal bahan kerja, kelajuan gelendong dan kadar suapan 
mempunyai pengaruh yang besar terhadap pembentukan sesendal dan hayat 
alat. Untuk mencapai bilangan maksimum lubang gerudi yang boleh diterima, 
parameter proses optimum untuk AISI304 adalah kelajuan gelendong 1000 rpm 
dan kadar suapan 105 mm/min, untuk Ti-6Al-4V adalah kelajuan gelendong 
1000 rpm dan kadar suapan 145 mm/min, dan untuk Inconel718 adalah kelajuan 
berputar 1500 rpm dan kadar suapan 145 mm/min. Pemanasan geseran 
maksimum dijana pada peringkat penyiapan sesendal, di mana kawasan kon 
pada alat gerudi bersentuhan dengan dinding-lubang yang digerudi. Daya 
tujahan yang lebih tinggi telah berlaku dalam sentuhan awal antara alat gerudi 
dan bahan kerja, dan seterusnya alur bulat dan lekatan bahan kerja telah 
membuktikan bahawa haus melelas dan melekat masing-masing berlaku di 
kawasan pusat dan kon pada alat gerusi. Haus melelas, melekat dan 
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pengoksidaan maksimum masing-masing berlaku pada alat gerudi yang 
menggerudi AISI304, Ti-6Al-4V dan Inconel718. Model berangka yang 
dibangunkan dapat mewakili proses sebenar penggerudian geseran, dan 
distribusi tekanan dan suhu pada bahan kerja dan alat gerudi. Ia juga dapat 
menunjukkan distribusi pemanasan secara berkesan pada bahan kerja, 
pelembutan bahan dan pembentukan sesendal. Hasil berangka menunjukkan 
bahawa tekanan yang teruk berlaku pada permukaan alat dan rantau 
bersebelahan dalam penembusan awal. Hubungan songsang antara tekanan 
dan suhu menunjukkan fenomena pemanasan geseran dan pelembutan bahan 
kerja dalam penggerudian geseran yang membentuk sesendal. Selain itu, 
terikan plastik yang tinggi berlaku pada dinding-lubang yang merupakan 
permukaan sentuhan antara alat gerudi dan bahan kerja dan ianya bergantung 
kepada pergerakan alat di sepanjang jalan penggerudian. Sumbangan utama 
kajian ini adalah menentukan kesan parameter proses pada prestasi alat gerudi, 
kualiti pembentukan sesendal, daya dorong dan haus alat untuk penggerudian 
geseran pada bahan sukar-untuk-dimesin dengan pendekatan untuk 
meningkatkan prestasi penggerudian geseran dan mengurangkan haus alat. 
Selain itu pemodelan elemen terhingga yang dibangunkan untuk penggerudian 
geseran dapat memberikan ramalan untuk penggerudian geseran proses. 
Secara keseluruhannya, kerja ini menunjukkan tingkah laku penggerudian 
geseran tanpa-cip pada bahan sukar-untuk-dimesin yang boleh menawarkan 
potensi besar untuk reka bentuk dan pembuatan produk baru. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background and Motivation 

The fact that hole-making process is one of the most important operations in 
industry is undeniable. Friction drilling is a green non-traditional hot-shear 
machining technology, that is used for sheet metal hole making by friction, 
(Streppel & Kals, 1983). During this process the temperature increases, 
subsequently the material structure becomes soft and bushing is formed with a 
thickness of about three times larger than original workpiece thickness. The 
contribution of friction drilling is to increase the effectiveness of thread length and 
screw coupling, which is used for load clamping in joining application (Miller & 
Shih, 2006; Miller et al., 2005). Since friction drilling is a clean and chipless 
process with no cutting fluids, this hole-making process is defined as a green 
manufacturing process. Hence, it can fulfill the needs of dry machining. 

Joining devices to sheet metal, tubing, or thin-walled profiles in an effective way 
is a manufacturing challenge in most of the industries. Friction drilling can 
simplify the joining process (Miller & Shih, 2006). It has some significant 
advantages including fast process, no additional components, cost effective, 
simplified production, high quality and green manufacturing (Ozek & Demir, 
2013b). Friction drilling is an excellent alternative for hole stamping and nut 
welding, which needed for attaching a device to sheet metal in order to reliability 
and process cost. Complicated robot used for nuts welding to sheet metal is 
replaced with simple friction drilling machining center. Friction drilling is not a 
material removal process and all drilled-hole material is transformed to form a 
bushing. Therefore, friction drilling process reduces waste of material. Moreover, 
friction drilled-hole connection is lighter than weld nuts or thread insert 
connection (Miller, 2006). 

The main act in this process is friction leading to raising the temperature of 
process, increasing the material ductility and extruding onto the both sides of the 
drilled workpiece, respectively. In general, high heat generation changes the 
material properties and microstructural characteristics (Miller et al., 2006a; 
2005). Moreover, friction increases erosion and wear dramatically. In other 
words, material degradation, erosion and wear have significant effects on quality 
and quantity of the process (Miller et al., 2007). 

To generate heating and softening of material by frictional force, the spindle 
speed in friction drilling is higher than that in conventional drilling. To control 
material motion and bushing formation, the feed rate in friction drilling is lower 
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than that in conventional drilling (Miller, 2006). Therefore, spindle speed and feed 
rate are two main quantity variables, which are known as process parameters, 
in friction drilling process (Streppel & Kals, 1983). Optimum spindle speed and 
feed rate lead to the sufficient heat generation that improves the bushing 
formation quality and reduces the tool wear (Ku et al., 2010). 

Difficult-to-machine materials are referred to as the materials which generate 
extreme heating, subsequently produce excessive tool wear and poor process 
performance during the machining operation (Shokrani et al., 2012). The difficult-
to-machine materials such as austenitic stainless steel AISI304, titanium alloy 
Ti-6Al-4V and nickel-based alloy Inconel718, having unique metallurgical 
properties, are widely applied in automotive, aerospace, nuclear and medical 
industries. However, they usually accompanies with low productivity, poor 
surface quality, and short tool life (Shokrani et al., 2012). The attractive 
advantages of austenitic stainless steel AISI304 are excellent corrosion 
resistance, high work-hardening rate, modest thermal conductivity, high 
temperature oxidation and good formability (Chow et al., 2008). Titanium-based 
alloys such as Ti-6Al-4V is readily regards as difficult-to-machine materials. It is 
often used in the aircraft industry due to the good compromise between 
mechanical resistance and tenacity, together with its low density and excellent 
corrosion resistance (Zhu et al., 2017). Nickel-based alloy Inconel718 is suitable 
to apply for high temperature conditions with creeping, corrosion and thermal 
shock resistance. Due to this, it may be often used in extreme environments such 
as aerospace and aircraft industry, gas turbine blades, seals and jet engine 
(Yang et al., 2012). Thus, the most significant issues that should be addressed 
in friction drilling of difficult-to-machine materials are friction drilling performance, 
product quality, and tool life. 

 Mechanism of Friction Drilling 

Friction drilling involves five stages as shown in Figure 1.1. At the beginning, the 
drilling tool comes into the initial contact with the workpiece. The friction on 
contact surface, generating by axial force and angular velocity from drilling tool 
to workpiece, increases the temperature and softens the workpiece. The peak 
point of stress is also occurred in this step. At the second step, workpiece is 
softened, extruded, and pushed sideward and upward by drilling tool. Initial 
bulging in lower surface of workpiece, leading to the bushing formation, is also 
started in this step. At stage three, drilling tool enters to the softened workpiece 
and conical region is encompassed by melted and softened material. In 
sequence, drilling tool pierces the workpiece and bushing formation is begun. 
The peak point of temperature, which affects bushing formation, occurs in this 
step. At the fourth step, the drilling tool penetrates inside the workpiece more 
and pushes aside the workpiece-material. While the contact interface between 
tool and workpiece changes from conical to cylindrical region, bushing formation 
is completed. The process is finished when the drilling tool’s shoulder pushes 
downward the softened back-extruded workpiece-material to form boss. 

https://en.wikipedia.org/wiki/Gas_turbine
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Meanwhile, the temperature reduces and distributes uniformly around the hole-
wall. Finally, at the fifth stage, the drilling tool retracts and leaves the completed 
drilled-hole, while the temperature reduces gradually. 

 

Figure 1.1: Stages in friction drilling process 

 Applications of Friction Drilling 

Recently, a new method of friction drilling to join thin-walled flat profiles or multi-
chamber hollow profiles have been presented (see Figure 1.2). In this method, 
friction drilling has been used to form a closed drilled-hole along the thickness of 
thin-walled profiles. Thin-walled structure has specific function in the lightweight 
construction. Moreover, using detachable joints in thin-walled structure can be 
seen as a unique advantage for lightweight construction (Biermann & Liu, 2014). 
Another method of friction drilling with approach to joining dissimilar materials 
have also been developed (see Figure 1.2). This method, calling flow drill 
screwdriving, is a one-sided thermo-mechanical joining process that has evolved 
from friction drilling. This process is able to form an bushing, thread-form the 
workpiece, and be tightened to provide a clamp load among the sheets (Urbikain 
et al., 2016; Skovron et al., 2015). As respect to the wide capabilities and unique 
advantages of friction drilling, which have been increased enormously in various 
industries, it is strongly believed that, this process can be applied on a broader 
scale of various fields. These include any plug connections in different fields such 
as automotive, aerospace, household appliance and other industries (Miller, 
2006). Seat frame, exhaust system parts, fuel rail, seat handle, foot pedal and 
oxygen sensor are some examples of friction drilling applications in automotive 
industry. Moreover, friction drilling can be used to produce wheel frame of 
bicycle. 
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Figure 1.2: Example of applications of friction drilling 

1.2 Problem Statement 

Friction drilling is a non-traditional green hole-making process that is widely used 
in automotive and aerospace industries (Bilgin et al., 2015; Skovron et al., 2015; 
Biermann & Liu, 2014; Somasundaram et al., 2012). However, there is not any 
fundamental study to cover all aspects of this process. Although difficult-to-
machine materials are applied in various fields of industry, especially aerospace 
and nuclear, less attention has been paid to friction drilling of them (Chow et al., 
2008; Lee et al., 2007; Miller et al., 2005) and thus, more study is still needed. 
Insufficient friction drilling performance and excessive tool wear are the most 
important challenges and obstacles in friction drilling of difficult-to-machine 
materials (Lee et al., 2009, 2007; Miller et al., 2005). Hence, the improving of 
friction drilling performance and increasing the tool life are two critical issues that 
should be developed more. To improve friction drilling performance, a 
comprehensive study on correlation between associated physical processes of 
friction drilling and thermo-mechanical behaviors of the process parameters is 
necessary. The effect of these parameters on production quality and tool life are 
also required to study (Ozler & Dogru, 2013). Friction drilling increases thickness 
for threading and available clamp load, and simplifies joining process (Demir & 
Özek, 2014). Therefore, it has a wide range of applications in industry. On the 
other hand, difficult-to-machine materials are widely used in different fields of 
industries such as automotive, aerospace and medical (Sun et al., 2009; 
Baddoo, 2008; Henderson et al., 2004; Gurrappa, 2003). To improve the quality 
of hole-making for clamping and joining of difficult-to-machine materials, study 
on performance and analyzing effects of process parameters on performance 
are necessary. 

Frictional heat generation leads to the softening material and subsequently 
forming the bush and degradation of the drilling tool. This highlights a deep study 
on temperature and thrust force of the process (Fernández et al., 2010). 
Meanwhile, investigation on effect of thermal properties of material and process 
parameters are crucial. Analyzing the experimentally measured temperature and 
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thrust force help to better undestanding of frictional heat generation. The 
obtained results contribute to improve friction drilling performance and reduce 
tool wear by controling the heat generation and the thrust force in critical stages. 

Tool wear is one of the noticeable parameters in all of the manufacturing 
processes (Lee et al., 2009; Miller et al., 2007). Since tool wear affects the 
characteristics and tolerances, which are achievable, it is a significant concern 
that must be received more attention (Miller et al., 2007). The excessive tool 
wear in friction drilling of difficult-to-machine materials more highlights the 
necessity of a fundamental study on tool condition and microstructural analysis 
of tool wear under different process parameters. 

The finite element modelling is a powerfull tool to analyze complex problems like 
deformation, stress and temperature. It also has capable to show distribution of 
heat generation on workpiece-tool interface, softening of heated-up region and 
bushing formation, effectively. Moreover, simulation can prevent wasting 
material and time by replacement of experiments with simulation. However, the 
application of numerical analysis in friction drilling needs to be developed deeply 
(Miller & Shih, 2007). As tool condition is an important concern in friction drilling 
process, Miller (2006) recommended to extend finite element modelling for 
studying stress and temperature distribution in drilling tool during the friction 
drilling. Moreover, due to the main role of friction in this process, a study on 
frictional dissipation energy can help to better understanding of frictional heating 
generation effect on friction drilling performance. In general, there is not any 
consistent model for this process and no study has considered the effects of 
friction and heat generation on drilling tool. According to the issues and defects 
mentioned above, a fundamental study on friction drilling of difficult-to-machine 
materials is needed to conduct. In sequence, the issues need to be given a high 
consideration in this research to improve friction drilling performance and reduce 
tool wear are listed below: 

1. Due to the lack of study on effects of process parameters on friction drilling 
performance and tool wear for difficult-to-machine materials, a study in this 
area may improve the productivity of process. 

2. Frictional heat generation and thrust force, which have main act in friction 
drilling process, should be studied. The sufficient heat generation, which 
optimizes the thrust force, may help to improve the process performance and 
reduce the tool wear. 

3. Since the insufficient or extreme heat generation has wrecking effect on 
product and tool life, microstructure of drilling tool and workpiece is important 
to analyze. 
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4. A better understanding of how frictional heat generation softens the material 
and forms the bushing may help to predict and control frictional heat 
generation during the process. Therefore, a finite element modelling is 
useful. 

1.3 Research Objectives 

The main aim of this thesis is identifying the effect of process parameters on 
drilling tool performance, bushing formation quality, thrust force and tool wear 
that contributes to improve friction drilling performance and reduce tool wear for 
friction drilling of difficult-to-machine materials. To achieve this aim, the present 
study’s objectives are set out as follows. 

1. To determine the friction drilling performance and analyze the response 
variables in friction drilling of the difficult-to-machine materials. 

2. To measure and analyze the temperature and thrust force for better 
understanding of friction and heat generation. 

3. To characterize the tool condition and microstructural change of workpiece 
by analyzing the wear, surface chemistry, and degradation of workpiece and 
drilling tool. 

4. To develop a thermo-mechanical finite element model for analyzing the 
temperature and stress fields and also plastic deformation of the workpiece-
material and drilling tool. 

1.4 Significance of the Study 

Friction drilling plays a key role in the future productivity of green manufacturing 
fields. From an enviromental point of view, it is well-known that ecological issues 
are taking relevance in the manufacturing industries.These industries represent 
14% of the worldwide employment and it should be stated that it contributed in 
the USA economy with $2.25T in the last year (Pereira et al., 2019). On the other 
hand, from the technical point of view, the surface quality of friction drilled-hole 
is more appropriate and the formed bushing provides a perfect base for next 
production steps, such as threaing or joining processes. The significance of this 
work is to study friction drilling of difficult-to-machine materials, which has a wide 
range of applications in aircraft, medical equipments and automobiles, with 
approach to improve process performane and reduce tool wear. The friction 
drilling process, which increases the effectiveness of thread length and screw 
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coupling for load clamping in joining application, can play significant role in 
various fields if performance and tool life are improved. Finite element modelling, 
as a strong tool for understanding the frictional heat generation on workpiece-
tool interface, that helps to improve the friction drilling performance and control 
the tool condition during the process is developed deeply. It worth to mentioning 
that the effect of frictional heat generation on drilling tool has not been studied 
yet. In other words, since friction drilling is a thermal process with excessive 
mesh distortion and large deformation of the material, a more comprehensive 
and consistent thermo-mechanical model that includes sufficient damage criteria 
and advance meshing techniques is needed to study. 

The findings of this study are expected to contribute for providing useful 
knowledge about mechanism of friction drilling of difficult-to-machine materials 
which have high resistance to corrosion and wear. They are also enhance the 
applicability of hole-making process in aerospace and medical industries, where 
difficult-to-machine materials are widely used. 

1.5 Scope and Limitations of Research 

The scope of this thesis focuses on experimental and numerical studies in friction 
drilling of difficult-to-machine materials. Experimental section is dedicated to a 
fundamental study on performance of friction drilling process, measurements of 
temperature and thrust force, and microstructural analysis of workpiece and 
drilling tool. In numerical analysis part of this study, finite element analysis of 
stress, strain and temperature of workpiece and drilling tool, which has not yet 
been fully analyzed in previous research works, is conducted. 

1. This thesis is only limited on capability of computer numerical control (CNC) 
milling machine OKUMA MX-45VA for spindle speed and feed rate ranges. 

2. The material used for drilling tool is tungsten carbide (WC), and austenitic 
stainless steel AISI304, titanium alloy Ti-6Al-4V and nickel-based alloy 
Inconel718 are for workpieces. 

3. Since the design of drilling tool has direct relationship with frictional heat 
generation, material softening and bushing formation, the drilling tool is 
designed and fabricated based on the literature (Ku et al., 2011; Lee et al., 
2009; Chow et al., 2008). 

4. The process parameters are spindle speed and feed rate. The process 
parameters ranges are selected based on references and capability of CNC 



© C
OPYRIG

HT U
PM

 

8 
 

 

machine. Moreover, the design of experiment (DOE) is carried out using full 
factorial method. 

5. The drilling tool performance and tool wear for friction drilling were analyzed 
up to 20 drilling runs. 

6. Since friction drilling is a dry machining process, experiments are conducted 
without cutting fluid. 

7. According to heat generation during the friction drilling, which does not reach 
to melting point, and similar structural state of the heat affected zone (HAZ) 
to that of the base of material, which is caused by rapid cooling, heat affected 
zone (HAZ) is not covered in this study (Eliseev et al., 2017). 

8. As the secondary process is required (i.e. threading) after friction drilling, the 
surface roughness is not measured. 

9. To analyze tool wear, tool condition and microstructural changes of 
workpiece are characterized by scanning electron microscope (SEM) and 
energy dispersive spectrometry analysis (EDS). 

10. Since friction drilling is not a material removal process and all material from 
drilled-hole is transformed to create a bushing, material removal rate is not 
considered. 

11. The finite element modelling is developed using ABAQUS software. The 
stress, plastic strain and temperature distributions on workpiece and drilling 
tool are investigated. 

1.6 Structure of Thesis 

This thesis presents the research work on experimental and numerical analysis 
on friction drilling of difficult-to-machine materials, and it consists of five chapters. 
Contents of each chapters are briefly described as follows: 

Chapter 1 presents an introduction to friction drilling, which contains background 
and motivation, basic mechanism, and process applications. Problem statement, 
objectives and scope of thesis are also stated in this chapter. 
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Previous works on friction drilling and related topics are reviewed in Chapter 2. 
This chapter also includes different drilling processes and difficult-to-machine 
materials. Since wear, which is caused by interaction between drilling tool and 
workpiece, is significant concern in friction drilling process, different mechanisms 
of tool wear are also reviewed. In addition, basic information and governing 
equations related to finite element modelling are presented. 

In Chapter 3, the equipment and methods using in experimental work and 
numerical analysis are described. This chapter starts with explanation of main 
equipments used in experimental work. In sequence, a geometrical model for 
drilling tool is designed. The properties of workpiece and drilling tool are also 
considered. In section of experimental work, the measurement methods of 
bushing height, hardness, roundness, temperature, thrust force, and 
microstructure are presented. Model development and simulation of friction 
drilling are presented in the section of finite element method. 

The experimental and numerical results are discussed in Chapter 4. 
Experimental results section covers friction drilling performance, temperature, 
thrust force and microstructural alteration. The second section is started with 
validation of numerical results with experimental results. Then, stress, strain and 
temperature distribution on workpiece and drilling tool are discussed. 

Chapter 5 is dedicated to present conclusion of this research work. The main 
contribution of this thesis to the friction drilling of difficult-to-machine materials 
and some recommendations for future works are given in this chapter. 
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