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In the wind turbine industry, damage occurs in many parts of the wind turbine, 
such as the tower, the gearbox, the shaft and the rotor blade etc., but the most 
common damage occurs in the rotor blade and the tower. More attention required 
on the structural health of the rotor blades since they play a significant role in the 
wind turbine system, accounting for 15-20% of the entire turbine cost and 
resulting in an expensive repair cost when damage occurs. The most common 
causes of rotor blade damage are wind gusts, heavy rainfall and lightning strikes. 
Over 30% is affected by thunderstorms or lightning strikes, 28.21% by heavy 
rainfall and 15.3% by strong winds. Wind turbines are susceptible to lightning 
strikes since their size is becoming larger and it is predictable that they will be 
more exposed to lightning strikes in the future. Therefore, this thesis focused on 
lightning strike behaviour with respect to rotor blades for both composite and 
biocomposite material. The literature review highlighted wind energy, lightning 
damage on rotor blades and the types of damage detection used. The main 
objective of this thesis is to determine the lightning strike behaviour with respect 
to biocomposite, hybrid and composite material. The study adopted two 
techniques: firstly, Failure Modes and Effect Analysis (FMEA) to recognise the 
failure modes and potential causes for blade damage, and secondly, the fuzzy 
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for 
assessing the potential causes that have been identified. It was found that the 
most dominant potential causes of blade damage is caused by lightning strike. 
Lightning tests were conducted for the coupon specimens and the blade 
specimens for both composite and biocomposite materials. The materials tested 
for coupon specimens are kenaf fibre, flax fibre and fibreglass with different 
configurations; without wire mesh, embedded wire mesh and outer-ply wire 
mesh in order to find the best configuration for wind turbine blade fabrication. 
The fibres were reinforced with a polyester (PE) matrix. Four types of damage 
detection were used to assess the severity of lightning damage on the composite 
and biocomposite blades, i.e. visual inspection, liquid dye-penetrant testing, 
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ultrasonic guided wave, and laser-based ultrasonic scan. Based on the NDT 
tests performed on the coupon specimens, the best configurations are either 
made of flax fibre or fibreglass with embedded wire mesh. Three different types 
of blade specimens; i.e. fibreglass, flax-fibreglass, flax were fabricated and 
subjected to lightning strike. It was found that the flax blade suffers the least 
lightning damage compared to the blade containing fibreglass. This means that, 
natural fibre can be a good alternative to synthetic fibre in wind turbine blade 
fabrication. All the techniques can detect the lightning damage in the overall 
tested materials and blade structural systems but, the most effective technique 
are ultrasonic laser-based scan because the damage size and location of the 
damage can be observed clearly.  
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KAEDAH PENILAIAN TAHAP KEROSAKAN BILAH BIOKOMPOSIT TURBIN 
ANGIN PAKSI MENEGAK (VAWT) DISEBABKAN OLEH PANAHAN KILAT 

Oleh 

SITI ZUBAIDAH BINTI MAT DAUD 

Oktober 2018 

Pengerusi : Faizal Mustapha, PhD, PEng 
Fakulti : Kejuruteraan 

Di dalam industri turbin angin, kerosakan berlaku di beberapa bahagian turbin 
angin, contohnya menara, kotak gear, aci dan bilah rotor, tetapi kerosakan yang 
paling biasa terjadi adalah kerosakan di bilah rotor dan di menara. Perhatian 
yang lebih dititikberatkan pada kesihatan struktur bilah rotor kerana ianya 
memainkan peranan yang penting dalam sistem turbin angin, yang merangkumi 
15-20% dari jumlah keseluruhan kos turbin dan mengakibatkan kos pembaikan 
yang tinggi jika berlakunya kerosakan. Punca kerosakan bilah rotor yang paling 
biasa berlaku adalah disebabkan angin ribut, hujan lebat dan panahan kilat. 
Lebih dari 30% adalah disebabkan oleh ribut petir atau kilat, 28.21% oleh hujan 
lebat dan 15.3% disebabkan oleh angin kencang. Turbin angin yang terdedah 
kepada panahan kilat kerana saiz yang semakin besar dan dijangka ia akan lebih 
terdedah kepada panahan kilat pada masa akan datang. Oleh itu, tesis ini akan 
memberi tumpuan pada tingkah laku panahan kilat terhadap bilah rotor yang 
menggunakan bahan komposit dan biokomposit. Kajian literatur merangkumi 
tenaga angin, kerosakan yang berlaku disebabkan oleh panahan kilat pada bilah 
rotor dan jenis-jenis pengesanan kerosakan yang digunakan. Objektif utama 
tesis ini adalah untuk menentukan tingkah laku panahan kilat terhadap bahan 
biokomposit, hybrid dan komposit. Kajian ini mengaplikasi dua teknik iaitu; yang 
pertama, Mod Kegagalan dan Analisis Kesan (FMEA) untuk mengenalpasti mod 
kegagalan dan punca-punca yang mengakibatkan kerosakan bilah, dan kedua, 
Teknik untuk Pilihan Pesanan oleh Kesamaan kepada Penyelesaian Ideal 
(TOPSIS) untuk menilai potensi punca-punca kerosakan yang telah dikenalpasti. 
Ia didapati bahawa punca yang paling dominan yang akan mengakibatkan 
kerosakan bilah adalah disebabkan oleh panahan kilat. Ujian kilat telah 
dijalankan untuk spesimen kupon dan spesimen bilah untuk kedua-dua bahan 
komposit dan biokomposit. Bahan yang diuji adalah gentian kenaf, gentian flaks 
dan gentian kaca dengan konfigurasi yang berlainan; iaitu tanpa menggunakan 
dawai, dawai terbenam dan dawai luar-lapis untuk mencari konfigurasi yang 
terbaik untuk fabrikasi bilah turbin angin. Semua gentian yang digunakan telah 
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diperkukuh dengan polyester (PE) matriks. Empat jenis pengesanan kerosakan 
telah digunakan untuk menilai tahap kerosakan yang disebabkan oleh kilat pada 
bilah komposit dan biokomposit, iaitu pemeriksaan visual, ujian penanda 
pewarna cecair, gelombang berpandu ultrasonik, dan imbasan ultrasonik 
berasaskan laser. Berdasarkan ujian yang dilakukan ke atas spesimen kupon, 
konfigurasi yang terbaik adalah sama ada ia diperbuat daripada gentian flaks 
atau gentian kaca dengan menggunakan dawai terbenam. Tiga jenis spesimen 
bilah; iaitu gentian kaca, flaks-gentian kaca, flaks telah difabrikasi dan dikenakan 
panahan kilat. Didapati bahawa bilah flaks mengalami kerosakan kilat yang lebih 
rendah berbanding denagn bilah yang mengandungi gentian kaca. Ini bermakna, 
serat semula jadi boleh menjadi alternatif yang baik untuk serat sentetik dalam 
fabrikasi bilah turbin angin. Semua teknik yang digunakan boleh mengesan 
kerosakan yang disebabkan oleh panahan kilat untuk keseluruhan bahan yang 
diuji dan sistem struktur bilah tetapi, teknik yang paling berkesan adalah imbasan 
ultrasonik berasaskan laser kerana saiz dan lokasi kerosakan boleh diperhatikan 
dengan jelas.  
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CHAPTER 1 

INTRODUCTION

1.1 Research Overview 

The rising concerns over the depletion of fossil fuels have increased attention in
developing renewable energy sources to overcome the crisis. Wind energy has 
become a strong contender for a renewable energy source because of its
dependability, relative cost competitiveness and good infrastructure. In the wind
industry, wind turbines can be categorised according to the turbine generator 
configuration, the turbine capacity, the airflow path relative to the turbine rotor,
the generator-driving pattern, the power supply mode and the location of the
turbine installation (Tong, 2010). Considering the direction of the turbine blade’s 
rotational axis, the wind turbine has been classified into the Horizontal Axis Wind
Turbine (HAWT) and the Vertical Axis Wind Turbine (VAWT) (Paraschivoiu,
2002; Park, Lee, Sabourin, & Park; Manwell et al., 2010; Adaramola, 2015). The
VAWT has more advantages than the HAWT as it does not need to be pointed
into the wind direction to be effective. Therefore, it can generate power in areas 
where the wind comes from a variety of directions and it can be installed much
closer to each other. Although the wind turbine is considered to be the best
solution for energy harvesting, there are still possibilities of exposure to damage.
Damage can happen in any of the wind turbine blade’s components, but the most
mentioned types are blade and tower damage (Wind Turbine Accident Data to
December 31st 2005). More attention has been focused on the structural health
of the blades as these are the most critical components in wind turbine systems.
In general, wind gusts, lightning strikes, heavy rainfall, or even bird collisions,
are responsible for wind turbine blade damage (Li, Ho, Song, Ren, & Li, 2015). 
As the size of installed wind turbines is becoming rapidly larger nowadays, this
will increase the possibilities of lightning damage for wind power plans. Since the
rotor blades are the highest part of a wind turbine, they are more exposed to
lightning strikes. Lightning can cause catastrophic failure of wind turbines, which
may lead to high maintenance costs. Lightning damage occurrence can be
visualised in Figure 1.1 and Figure 1.2. There are many damage detection
techniques in existence for wind turbine blades (D. Li et al., 2015). One of the
techniques used is non-destructive testing (NDT). This is an effective way of
detecting damage in composites, and includes ultrasonic, x-ray, thermography 
and so on.
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Figure 1. 1: Lightning strike on a turbine blade (D. Li et al., 2015) 

Figure 1. 2: Lightning damage due to lightning strike (D. Li et al., 2015) 
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1.2 Problem Statement 
 
Non-renewable energy, or conventional energy sources, i.e. from coal, oil and 
natural gas, are expected to deplete within the next century. Environmental 
concern has also increased during the 21st century due to their serious adverse 
effects on the environment in the form of greenhouse effects, air pollution and 
acid rain (Sahin, 2004; Leung and Yang, 2012; Kaygusuz, 2015). Since the 
prices of fossil fuels are not stable and are always increasing, this will also cause 
economic concern. Hence, it is very important to find the right solution so that 
electricity generation is less dependent on fossil fuel. Renewable energy comes 
from energy sources that are indigenous and essentially inexhaustible, and can 
help in reducing the dependency on fossil fuels (Joselin et al., 2007). There are 
a number of renewable energy sources exist, such as sunlight, wind, rain, tides, 
waves and geothermal heat. Among these sources, wind energy is a strong 
contender for renewable energy and is the fastest growing energy technology in 
the world; it offers technological maturity with good infrastructure (Leung and 
Yang, 2012). The use of wind energy is predicted to expand dramatically; the 
usage of it can reach 23% and it can become the second largest energy source 
compared to solar energy.  
 
 
Damage can happen in any part of the wind turbine, but the most common types 
of damage are blade and tower damage. More attention should be paid to the 
structural health of the turbine blades because they account for 15 – 20 % of the 
entire turbine cost and play a crucial role in the wind turbine system (Babu and 
Reddy, 2006; Li et al., 2014). Blade damage is not only the most costly type of 
damage to repair, requiring a longer repair time, but it can also cause severe 
secondary damage towards the wind turbine system, which could lead to 
catastrophic failure (Larsen, Moeller & Sorensen, 2003; Sahin, 2004; Babu and 
Reddy, 2006). It can be a problem to increasing the introduction of the wind 
turbine. There are many aspects that lead to wind turbine blade damage as 
mentioned by researchers such as moisture absorption, fatigue, wind gusts, 
lightning strikes, internal stress, heavy rainfall, thunderstorms, human error, 
thermal stress, corrosion, bird strikes and more (Ghoshal et al., 2000; 
Sundaresan et al., 2002; Cotton et al., 2001; Ciang et al., 2008; Chou et al., 
2013). It is important to find the most dominant causes of wind turbine blade 
damage. Being the best option for reliability analysis, Failure Modes and Effect 
Analysis (FMEA) can be used to evaluate the possible failure modes and its 
potential causes of wind turbine blade damage. In order to find the most 
dominant causes, a multi-attribute decision-making (MADM) such as Technique 
for Order Preference by Similarity to Ideal Solution (TOPSIS) can be applied in 
selecting the potential causes of wind turbine blade damage. 
 
 
Wind turbine blades are made of different kinds of material, including wood, 
steel, aluminium and composite (Sahin, 2004; Babu and Reddy, 2006). In the 
wind industry nowadays, the turbine blades are mostly fabricated of composite 
materials such as carbon fibre and glass fibre due to their good structural 
performance (Rachidi et al., 2008; Kong, Choi, & Park, 2011; Aymerich, 2012; Li 
et al., 2014). Since the usage of synthetic fibre as a reinforcing material for 
composites has increased, there has been growing global environmental 
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concern because of its non-biodegradable properties. So, there is now a 
requirement for developing sustainable materials (Mohanty et al., 2000; 
Srinivasan et al., 2014; Bharath and Basavarajappa, 2015; Yan et al., 2014). The 
usage of natural fibres is expected to become a good alternative to synthetic 
fibres in the upcoming. 
 
 
Blade damage will cause a high maintenance cost and require a longer repair 
time compared to others. So, there is a need to find effective ways or the best 
configuration to lessen the blade damage. The composite wind turbine blade 
damage can be evaluated using various non-destructive testing such as visual 
testing, acoustic emissions, C-scan, infrared thermography, laser ultrasonic 
(Drewry and Georgiou, 2007; Yun and Lim, 2013; Yang, He and Zhang, 2016), 
but the study of damage evaluation of biocomposite material is still at early stage. 
So, there is a need to find the effective ways to detect the damage in both 
composite and biocomposite blades.  
 
 
In summary, below are the research questions formulated from the problem 
statement mentioned above, and these need to be answered by the end of this 
thesis;  
 

1) What are the main dominant causes that lead to damage in VAWT 
blade? 

2) Can natural fibre be a good alternative to synthetic fibre in wind turbine 
blade fabrication? 

3) What is the best configuration to lessen the damage in VAWT blade? 
4) What are the best techniques to evaluate damage severity in turbine 

blades? 
 
 
1.3 Research Objectives 
 
The general objective of this research is to study lightning strike behaviour with 
respect to biocomposite, hybrid and composite material. Therefore the specific 
objectives for this research are: 
 
1. To define system-specific damage including types of damage and 

expected potential causes using FMEA and fuzzy TOPSIS  
2. To evaluate the best configuration on the best design parameter for 

lightning damage protection using biocomposite and hybrid composite 
material 

3. To assess the damage severity of lightning damage on a biocomposite 
and a composite blade using various NDT techniques 
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1.4 Research Scope and Limitation 
 
This study is conducted in accordance with the following scope and limitations: 
 
Scope: 
1. The research covers the potential causes for wind turbine blade damage 

in the service environment and due to natural occurrence during the 
application of FMEA and fuzzy TOPSIS. 

2. The FMEA are used to evaluate the possible blade damage and its 
potential causes and TOPSIS to select the most dominant potential 
causes. 

3. The research covers the development of Vertical Axis Wind Turbine 
blades focusing on lightning protection and lightning damages. 

4. The research covers the lightning test and non-destructive inspection 
from coupon size to the actual wind turbine blade specimen (Standard 
comply IEC 243-3, Madsen, Hansen, & Bertelsen, 2004). 

5. The research scope covering only flax as biocomposite for the 
hybridization technique 

6. Visual inspection are performed using an optical microscope as an 
optical aid to magnify the blade damage 

7. Liquid dye-penetrant testing are performed using a portable penetrant 
kit to provide maximum contrast between the damage area and its 
background 

8. Smart piezoelectric sensors of a circular disc type are bonded on the 
desired panels. The bonded sensors act as an actuator for interrogating 
and a receiver for data acquisitioning on the undamaged and damaged 
wind turbine blade specimens made from composite and bio composite 
materials. 

9. Laser-based ultrasonic scanning are conducted to detect the surface 
damage, which the results are in terms of images processed by an 
Anomalous Wave Amplitude Map (AWAM) 

 
 
Limitations: 
1. The lightning test was conducted in a laboratory environment. Due to the 

performance limitation of the 20-stage Marx Impulse Generator, only the 
4 stage of charging was used for coupon and blade test. The ranges of 
the voltages are around 40 kV to 120 kV. 

2. The coupon size is 100 x 100 mm, with the thickness ranging from 1 to 
3 mm. 

3. The blade dimensions were 530 mm length, 148 mm width and 34 mm 
thickness. 

4. Liquid dye-penetrant testing has a limitation with respect to coated or 
painted surfaces, the measurement of the damage size for the blade 
specimens were done manually. 
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1.5 Organisation of the thesis 

This thesis comprises of five chapters covering the introduction, literature review, 
methodology, results and discussion (optimisation techniques, coupon test and 
blade test) and conclusions and recommendations. Chapter one presents the 
research overview and the problem statement, followed by the research 
objectives, scope and limitations, and the organisation of the thesis. 

Chapter two presents the literature review of renewable energy focussing on
wind energy. The types of wind turbine, its components and the materials used
for wind turbine blades and the potential of biocomposite on turbine application
have been reviewed. A brief review of Failure Modes and Effect Analysis (FMEA) 
is presented concerning how to analyse the possible failure modes in wind
turbine components focussing on the turbine blade. Next, the fuzzy Technique
for Order Preference by Similarity to Ideal Solution (TOPSIS) is applied to
determine the most risky potential causes of failure. The types of wind turbine
blade damage and the damage causes are discussed in this chapter. In addition,
the damage detection processes are presented, including visual inspection,
liquid dye-penetrant, ultrasonic guided wave and laser-based ultrasonic scan.

Chapter three contains four stages of methodology. The first stage is applying
Failure Modes and Effect Analysis (FMEA) and the fuzzy Technique for Order 
Preference by Similarity to Ideal Solution (TOPSIS) to find the critical damages 
types and potential causes occurring on the wind turbine blade. Specimen
fabrication is done in stage two for both the coupon and turbine blade specimens.
Stage three of the methodology is the lightning tests for the coupon, the turbine
blade specimens and the Vertical Axis Wind Turbine (VAWT). The last stage is 
the damage detection process using visual inspection, liquid dye-penetrant
testing, ultrasonic guided wave and laser-based ultrasonic scan.

The results and discussion are presented in three sections of Chapter four. The
first section is about the FMEA and fuzzy TOPSIS for a wind turbine blade.
Section two concerns damage detection with respect to lightning damage using
non-destructive testing for the biocomposite and composite coupon specimens.
Finally, section three discusses damage detection with respect to lightning
damage using non-destructive testing for the biocomposite, hybrid composite
and composite wind turbine blade specimens.

Chapter five concludes all the work carried out and presents the key
contributions and recommendations for future study.
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