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Faculty :  Engineering 

For many years, the Malaysian oil palm industry has been facing the challenge of 
reduced rate of palm oil yield due to sizeable difference between the crop’s actual yield 
and the crop’s genetic yield potential. This gap has grown wider over time and has been 
of great concerned since oil palm is a very important commodity that contributes 
significantly to the country’s GDP. Currently, Malaysia has devoted a high percentage 
of the land resource and material inputs to agriculture, whereby a large proportion of 
them are used for oil palm cultivation. However, the typical yields are only 50–60% of 
the potential, and artificial intelligence research on modelling of the crop yield and 
energy consumption is still at its infancy.  

Forecasting oil palm production and selecting significant variables that effects 
production are complex activities. Accurate prediction results are required for this type 
of analysis and can provide the basis for the decisions and plans for the management of 
agricultural crops in the local, regional, and global scale. In the field of agricultural 
engineering, artificial intelligence has helped to reduced operational periods and costs. 
There was not enough information available on the implementation of neural networks 
and genetic algorithm for the prediction and selecting input variables in oil palm yield 
and output energy.   

This research presents the development of a GA and SW as a variables selection method 
in ANN and NARX models for predicting oil palm yield and output energy. Data were 
collected from 11 districts in 11 states in Malaysia for FFB and PO models, which 
includes Kedah, Kelantan, Johor, Melaka, Penang, Pahang, Perak, Selangor, 
Terengganu, Sabah, and Sarawak. The study is based on monthly data from 2005 to 
2015. In FFB and PO models, the data used 15 variables, namely: percentage of mature 
area and percentage of immature area, rainfall, rainy days, humidity, radiation, 
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temperature, surface wind speed, evaporation and cloud cover, O3, CO, NO2, SO2, and 
PM10. The study used input energy data from 8 variables for developing energy models. 
These data included human power, electricity, fuel, water, fertilizers, and seed. Data 
were collected from Peninsular Malaysia, Sabah and Sarawak over a period of 11 years 
(annual data from 2005 to 2015). 

Results showed that GA was able to select the variables correctly, while also being an 
easy-to-use variable selection tool. It proved to be more effective than the Stepwise. The 
findings of this research, using 11 years of climate change and air pollution, have 
significantly affected the oil palm production. Surface wind speed and humidity were 
recorded at an impact ratio of up to 100%, which correlated negatively on the 
productivity of oil palm plantations. Surface wind speed and humidity reduced the 
productivity of oil palm FFB plantations for 5.12 and 4.61 ton/ha/11year in the Sabah 
and Sarawak respectively. Additionally, the surface wind speed is considered the most 
essential variable recorded with an impact ratio of up to 100% on FFB in Selangor, 
Terengganu, and Kelantan while the cloud cover, average NO2 in the air, average PM10
in the air, humidity, radiation, and  O3 recorded the most significant impact up to100% 
on FFB in Perak, Melaka, Johor, Kedah, Penang, and Pahang respectively.  

Fuel consumption, water, and P-fertilizer consumption are considered the most 
important variables in oil palm plantation operations, its importance being the relative 
values of 45%, 34.3 %, and 23 %. These variables impacted oil palm operation during 
the 11 years at 67.764, 45.38, 16.24 GJ /ha for Peninsular Malaysia, Sabah and Sarawak, 
respectively. In this study, the performances of six models (namely, ANN, GA-ANN, 
SW- ANN, NARX, GA-NARX and SW-NARX) are compared with one another as well 
as with multiple linear models. The GA-NARX was chosen as the best yield model in 9 
states (Perak, Sabah, Sarawak, Selangor, Terengganu, Pahang, Kedah, Kelantan and 
Penang), while the GA-ANN was considered the best yield model recorded in Melaka 
and Johor. Additionally the GA-NARX was chosen as the best energy model in 
Peninsular Malaysia, Sarawak and Sabah, with the average accuracy percentage 
simulation being 0.95.07, 95.55 and 87.43 % respectively. 

Finally, this research concluded that a genetic algorithm is useful for selecting input 
variables in oil palm production. It is a user-friendly variable selection tool with 
excellent results compared to Stepwise, especially in a large search space. The GA-ANN
and GA-NARX models perform markedly better than the other models in the most 
training algorithms with different numbers of hidden layers. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

MERAMALKAN HASIL TANAMAN DAN TENAGA OUTPUT LAPANGAN 
UNTUK MINYAK KELAPA SAWIT MENGGUNAKAN ALGORITMA 

GENETIK DAN MODEL RANGKAIAN NEURAL

Oleh  

YOUSIF YAKOUB HILAL 

Januari 2019

Pengerusi : Profesor Ir. Azmi b. Dato’ Yahya, PhD
Fakulti  : Kejuruteraan 

Selama beberapa tahun industri kelapa sawit Malaysia menghadapi cabaran penurunan 
kadar hasil kelapa sawit disebabkan oleh perbezaan ketara antara hasil sebenar tanaman 
dengan kemampuan hasil genetik tanaman.  Perbezaan ini telah membesar dengan masa 
dan telah menjadi satu kebimbangan disebabkan kelapa sawit merupakan komiditi yang 
terpenting yang menyumbang secara signifikan kepada KDNK negara. Buat masa ini, 
Malaysia telah memperuntukkan peratusan yang tinggi dalam sumber tanah dan input 
bahan untuk pertanian dimana kadaran yang tersangat besar digunakan untuk penanaman 
kelapa sawit. Walau bagaimanapun, hasil lazimnya kelapa adalah hanya 50–60%
daripada hasil potensinya manakala penyelidikan kecerdasan buatan dalam pemodelan 
hasil tanaman dan penggunaan tenaga adalah masih pada peringkat awal.   

Peramalan pengeluaran kelapa sawit dan pemilihan pemboleh ubah yang signifikan 
dalam memberi kesan pada pengeluaran adalah akiviti yang kompleks. Dapatan ramalan 
yang tepat diperlukan untuk analisis dan yang dapat memberikan asas bagi keputusan 
dan perancangan bagi pengurusan tanaman pertanian pada skala tempatan, regional, dan 
global. Dalam bidang kejuruteraan pertanian, kemajuan dalam kecerdikan buatan telah 
dapat membantu dalam mengurangkan julat masa kendalian dan kos. Tiada terdapat 
pengetahuan yang mendalam mengenai penggunaan rangkaian neural dan algorithma 
genetik dalam ramalan dan pemilihan pemboleh ubah input bagi hasil kelapa sawit dan 
keluaran tenaga. 

Penyelidikan ini membentangkan pembangunan GA dan SW sebagai kaedah pemilihan 
pembolehubah dalam ANN dan NARX model untuk meramalkan hasil kelapa sawit dan 
keluaran tenaga. Data dikumpulkan dari 11 daerah di 11 negeri di Malaysia bagi model 
FFB dan PO, termasuk Kedah, Kelantan, Johor, Melaka, Pulau Pinang, Pahang, Perak, 
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Selangor, Terengganu, Sabah dan Sarawak. Kajian ini berdasarkan pada data bulanan 
dari tahun 2005 hingga 2015. Dalam model FFB dan PO, data telah menggunakan 15 
pembolehubah, iaitu: peratusan kawasan matang dan peratusan kawasan yang tidak 
matang, hujan, hari hujan, kelembapan, radiasi, suhu, kelajuan permukaan angin, 
penyejatan dan penutup awan, O3, CO, NO2, SO2, and PM10. Kajian ini menggunakan 
input data tenaga dari 8 pembolehubah untuk membangunkan model tenaga. Data ini 
termasuk kuasa manusia, elektrik, bahan api, air, baja dan biji. Data dikumpulkan dari 
Semenanjung Malaysia, Sabah dan Sarawak sepanjang tempoh 11 tahun (data tahunan 
2005 hingga 2015).  

Keputusan menunjukkan bahawa GA dapat memilih pembolehubah dengan betul, 
sementara ia juga merupakan alat pemilihan pembolehubah yang mudah digunakan. Ia 
terbukti lebih efektif daripada Stepwise. Dapatan kajian ini yang menggunakan 11 tahun 
perubahan cuaca dan pencemaran udara yang mempengaruhi pengeluaran kelapa sawit 
telah dilaporkan adalah signifikan. Kelajuan dan kelembapan permukaan angin 
direkodkan pada kesan nisbah sehingga 100%, yang berkorelasi negatif terhadap 
produktiviti ladang kelapa sawit. Kelajuan dan kelembapan permukaan angin telah 
mengurangkan produktiviti ladang FFB kelapa sawit masing-masing 5.12 dan 4.61 
ton/ha/11 tahun di Sabah dan Sarawak. Tambahan pula, kelajuan permukaan angin 
dianggap sebagai pembolehubah yang paling penting yang direkodkan dengan kesan 
nisbah sehingga 100% pada FFB di Selangor, Terengganu, dan Kelantan manakala 
penutup awan, purata NO2 di udara, purata PM10 di udara, kelembapan, radiasi, dan O3
mencatat kesan yang paling signifikan sehingga 100% pada FFB masing-masing di 
Perak, Melaka, Johor, Kedah, Pulau Pinang dan Pahang. 

Penggunaan bahan api, air, dan penggunaan P-baja dianggap pembolehubah yang paling 
penting dalam operasi ladang kelapa sawit, kepentingannya adalah nilai relatif 45%, 
34.3%, dan 23%. Pembolehubah ini telah mempengaruhi operasi kelapa sawit selama 11 
tahun di 67.764, 45.38, 16.24 GJ / ha masing-masing di Semenanjung Malaysia, Sabah 
dan Sarawak. Dalam kajian ini, prestasi enam model (iaitu, ANN, GA-ANN, SW-ANN, 
NARX, GA-NARX dan SW-NARX) dapat dibandingkan antara satu sama lain dan 
dengan model berganda. GA-NARX dipilih sebagai model hasil terbaik di 9 buah negeri 
(Perak, Sabah, Sarawak, Selangor, Terengganu, Pahang, Kedah, Kelantan dan Pulau 
Pinang) manakala GA-ANN dianggap model hasil terbaik yang direkodkan di Melaka 
dan Johor. Selain itu, GA-NARX telah dipilih sebagai model tenaga terbaik di 
Semenanjung Malaysia, Sarawak dan Sabah dengan purata peratusan ketepatan simulasi 
masing-masing iaitu 0.95.07, 95.55 dan 87.43%. 

Akhirnya, kajian ini telah menyimpulkan bahawa algoritma genetik adalah berguna 
untuk memilih pembolehubah input dalam pengeluaran kelapa sawit. Ia adalah pilihan 
alat pembolehubah yang mesra pengguna dengan keputusan yang cemerlang berbanding 
dengan Stepwise terutamanya dalam ruang carian yang besar. Model GA-ANN dan GA-
NARX adalah ketara lebih baik daripada model lain dalam kebanyakan algoritma latihan 
dengan bilangan lapisan tersembunyi yang berbeza. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

Oil palm is one of the most significant agricultural products in southeast Asia, Africa 
and South America. The oil palm tree (Elaeis guineensis jacq) is a monocotyledonous 
perennial plant indigenous to West Africa. The consumption of its product, palm oil, 
goes back as far as 5000 years to ancient Egypt. Oil palms are widely grown in more 
than 43 countries located mainly between 10o N and 10o S of the equator (Corley & 
Tinker, 2016). Today, products of oil palm feed are consumed in excess by three billion 
people in more than 150 countries worldwide. It is interesting to note that palm oil and 
its many derivative products are available in more than 40% of the packaged products in 
the world, and palm kernel meal is popularly used as fertilizer and livestock feed. Lately, 
there has been a growing demand for renewable energy; consequently, palm oil is widely 
used in the production of biodiesel (Fairhurst & Griffiths, 2014).  

Oil palm allocations in Indonesia (10 million hectares), Malaysia (5 million hectares) 
and Nigeria (3 million hectares) comprise approximately 10% of the world’s permanent 
cropland. Malaysia and Indonesia have been the hubs of this vibrant development, with 
both countries increasing oil palm land usage by 40% and 150%, respectively, over the 
last 10 years. Together, they now supply more than  80% of the world’s  palm oil 
production (FAO, 2016).  

The local demand for vegetable oils is predicted to grow by 36% within the next 10 
years, with biofuels making up one-third of the increase. As worldwide requirements 
continue to increase, available land decreases in the traditional production centres 
(USDA, 2015). The worldwide need for palm oil for consumption purposes is predicted 
to continue to increase as a result of world population growth, higher per capita 
consumption, and the developed world’s significant shift away from unhealthy animal 
fats to healthy vegetable oils.  In the 2014 to 2015 period, for both the EU and the US, 
per capita consumption of oils and fats was 60.5 kg and 59 kg, respectively. This 
represents a large number of consumption in comparison to developing countries such 
as India, Pakistan, and Nigeria, which possesses per capita consumption for oil and fats 
of 16.3 kg, 21.7 kg and 14 kg, respectively. With increasing income levels in the 
developing world, there will be a need for greater production levels of vegetable oil to 
satisfy the increased demand.  The oil palm fruits are considered the most efficient 
oilseed to meet the increased need as they are of relatively high productivity. Average 
annual growth in world vegetable oil production between 1990 and 2015 was palm oil 
(7.03%), Rapeseed oil (5.2%), Soybean oil (4.6%) and Sunflower oil (4.4%). Palm oil 
production was 11 and 63.5 million tons in 1990 and 2015, respectively. Its share in food 
use grew from 32.5% in 2013 and surpassed 34% by 2015 (Oil World, 2016).  
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The Malaysian agricultural sector has become one of the pillars of the national economy 
of Malaysia. The increase in demand for palm oil has resulted in the rapid growth of the 
agro-industry within Southeast Asian countries, particularly Malaysia who leads the way 
in production. The Malaysian government has emphasized the development and further 
expansion of oil palm plantations in its five-year plans in order to make the industry a 
leading contributor to the growth of the national economy (Otieno et al., 2016).  

Another important reason for the Malaysian government’s emphasis on the oil palm 
industry is to use it as an opportunity to reduce the poverty level in rural communities. 
Towards this end, the rural community has been encouraged to actively participate in the 
palm oil production activities for additional income and for a better life. The aim of the 
five-year plans is to increase the industry’s gross national income contribution from the 
present RM 52.7 billion to RM178.0 billion by 2020. On the other hand, the oil palm 
plantations are currently facing a productivity gap due to various farmers possessing 
varying farming backgrounds apart from having to face the challenge of change and 
environmental pollution (Barcelos et al., 2015; MPC ,2017). 

Oil palm is widely cultivated in several parts of the country (Otieno et al., 2015). 
Currently, oil palm is planted on 5.23 million hectares, constituting 15.8% of the total 
land area and more than 70% of agricultural land in the country (Otieno et al., 2016). 
Malaysia produces up to 19 million tons of palm oil, with an export of nearly 89% 
(USDA, 2015). It currently contributes 39% of global palm oil production and 44% of 
world exports. In terms of total oils and fats, Malaysia’s contribution to the global total 
is 12% of production and 27 % of exports of oils and fats. Ranked among the largest 
producers and exporters of palm oil and its derived products, Malaysia plays a crucial
role in meeting the increasing universal requirement for oils and fats sustainably 
(Shanmuganathan et al., 2014). 

1.2 Oil Palm Yield and Energy 

Oil palm provides the highest potential yield per hectare of all sources of vegetable oil. 
It is capable of producing double the amount of oil compared to rapeseed and almost 
four times more than soybeans, groundnut and sunflower per hectare per year. As of 
2014, the United Nations have estimated that, under the ideal management of high-yield 
breeding programmers, different varieties of oil palm can produce more than 20 tons of 
FFBs per ha per year which translates to over five tons of oil per ha per year. About 10% 
of the dry biomass of the crop comprises of the oils while 90% comprises of cellulosic 
material and fibre which can be used as second-generation materials for the production 
of biofuel (Barcelos et al., 2015). In Malaysia, there were 18 biodiesel plants producing 
a total of 2.34 million ton/yr. Both Johor and Selangor recorded five biodiesel plants 
operating in 2015, with a total production capacity of 0.99 million tons/yr. for Johor, 
followed by Selangor with 0.42 million ton/yr. Remaining eight plants with total annual 
production capacity of 0.92 million tons are located in Pahang, Perak, Sabah and 
Sarawak (MPOB, 2017). 
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The 2015 average FFB yield for the estates sector was reported at 18.48 ton/ha, a
marginal drop of 0.8 % or 0.15 ton/ha from 18.63 ton/ha registered in 2014. On the other 
hand, palm oil opening stocks were 2.02 million tons, higher by 1.4% in comparison 
with the previous year’s opening level at 1.99 million tons. Stocks for the first half of 
2015 were lower compared to stocks in the second half of 2015, due to lower supply 
caused by low production from July 2015 onwards (MPOB, 2016). 

For the last few years, environmental issues have become increasingly relevant in 
relation to economic activities and public health, both in Malaysia and globally. A 
specific concern is the atmospheric environmental problems, which in the past has been 
ignored in Malaysia but have now emerged as a significant national concern in recent 
years (Dislich et al., 2017). Globally, air pollution has become a major threat to the health 
and well-being of humans as well as plant life.   Based on the severity of the pollution 
and also the duration of exposure, air pollution can potentially be significantly unhealthy 
for humans add in the case of oil palms, negatively affect growth and yield (Kusin et al., 
2015).   

Energy is the key to agro-processing development in Malaysia. Energy and environment 
are two sides of the same coin; increasing energy consumption anywhere will be 
accompanied by increased negative effects on the environment. It is accepted that air 
pollution, acid rain, and, particularly, global climate change are the inevitable 
consequences of greenhouse gas emissions from the burning of fossil fuels.    Agriculture 
both produces and subsequently consumes energy. It uses huge supplies of locally 
available energy, namely, seed, manure and animate energy as direct and indirect energy 
sources (Eksioglu et al., 2015; Meijide et al., 2017). The direct energy includes diesel or 
gasoline fuels, human power, animal energy, fertilisers, and chemicals.  Indirect energy 
is released directly into the source of energy that is not directly put into agricultural 
activity but released through a conversion process. An example of an indirect source of 
energy is machinery. Energy input for machinery refers to the energy requirement in 
producing the machine instead of the energy required to operate the machinery. Energy 
to operate the machinery can be classified as energy input from human labour 
(Michaelides, 2012). 

It is a priority among designers and planners to develop energy-efficient agricultural 
systems that require low energy input in comparison with the output of food. This will 
lower the greenhouse gas emissions from agricultural production systems (Begum & 
Nazri, 2013; Nabavi-Pelesaraei et al., 2013a).  

1.3 Genetic Algorithm and Neural Network Hybrid  

In the oil palm industry, modelling and selecting variables play a significant role in the 
effort to understand different problems. Modelling is employed in decision making, and 
advances in computer technology have made available novel approaches for studying 
modelling. While choosing variables is for the purpose of selecting the “best” subset of 
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predictors or is defined as “finding a set of predictor variables which gives a good fit,
predicts the dependent value well and is as small as possible.” It is used to determine the 
most significant factor affecting agricultural production. 

Modelling and selecting variables can be grouped into statistical and heuristic methods. 
The statistical method is defined as “the analysis of the relationship between multiple 
measurements made on groups of subjects or objects, with the model usually containing 
systematic elements and random effects.” Mathematically, statistical modelling can be 
defined as “a set of probability distributions on the sample space.” Modelling includes 
the proper application of statistical analysis approaches with specific assumptions on 
testing the hypothesis, interpreting the data, and drawing a conclusion that can be applied 
(Kodratoff, 2014). Selection of input variables is an essential and important 
consideration in determining the ideal functional form of statistical models. The 
selection of input variables is normal in developing all statistical models and is highly 
dependent on the discovering relationships within the available data for the identification 
of appropriate predictors of the model output. Traditionally, logistic regression models 
are used as the variables selection methods (Sun et al., 2016 a). 

The heuristic approach is defined as “pertaining to the use of general knowledge based 
on experimentation, evaluating possible answers or solutions, or trial-and-error methods 
relating to solving problems by experience rather than theory and optimisation solving 
by finding values of the variables that minimise or maximise the objective function while 
satisfying the constraints. Heuristic also refers to the problem-solving method that 
requires the conception of a hypothetical answer to a problem at the beginning of an 
inquiry to provide guidance to the inquiry. The most important types of the heuristic 
approaches comprise the neural network (NN) model and genetic algorithm (GA), which 
are based on the rules of thumb and extensively employed in different fields. A very 
significant feature of neural networks is their adaptive nature where earning by example: 
substitutes for “programming” in problem-solving. This feature makes these 
computational approaches very attractive as application domains, where one possesses 
little or inadequate comprehension of the issue to be addressed, but where training data 
or examples exist (Asta, 2015). 

The notion of a neural network hinges on the human brain, which is made up of billions 
of neurons interconnected by synapses. In the same manner, NN is composed of many 
computational units which are also called neurons. The interconnections of the neurons 
dictate the characteristics of both a brain and a neural network (Da Silva et al., 2017). 
The feed forward back propagation ANN is a popular method employed to train neural 
networks. ANN has been widely applied to predict yield, energy consumption, energy 
demand, environmental problems and solve different types of issues (Chang et al., 2012). 
Currently, a nonlinear autoregressive NN with exogenous inputs NARX Time series 
prediction algorithms has been frequently used in several areas, e.g., predicting financial 
markets, weather forecasting, and complex dynamical system analysis (Khamis & 
Abdullah, 2014). 
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GAs are stochastic search approaches that provide guidance to a population of solutions 
towards an optimum employing the principles of evolution and natural genetics. 
Recently, GAs have become a popular optimisation tool for several research areas, such 
as system control, control design, and science and engineering. GAs draw inspiration 
from the evolution of populations (Mohanta & Sethi, 2011). Algorithms, which combine 
GAs and NN, have exhibited enhanced convergence properties compared to pure 
backpropagation. Such hybrid systems can locate the weights and also the architecture 
of NN, such as a number of layers, the processing elements per layer and the manner in 
which processing elements are connected. To summarize, GAs has been applied in NNs 
for three main functions: (i) train the weights of the connections, (ii) design the structure 
of the network, and (iii) locate an optimal learning rule (Chang et al., 2012; Karimi and 
Yousefi, 2012). 

1.4 Problem Statement  

Over the last decade, the Malaysian oil palm industry has been facing the challenge of 
the reduced rate of palm oil yield, caused by the sizeable difference between the actual 
production of palm oil and the crop’s genetic potential with high land usage. The gap 
has grown wider over time. The oil palm yield varies in various areas of Malaysia and is
distributed between high yield, medium and worst, which have significantly affected the 
efficiency of production. In Malaysia, current planting materials are capable of 
producing 40 tons of FFBs /ha/yr, yielding 6–7 ton of oil. However, the reality shows 
average yields to be only between 50 to 60% of this potential. In addition to other 
challenges include, the labour shortage is the most severe constraint, and presently the 
industry is highly dependent on foreign workers. Furthermore, available land for 
expansion is limited, particularly in Peninsular Malaysia where land cost is also 
significantly higher.   

The demand for palm oil continues to increase, merely expanding the oil palm 
plantations is not an advisable response. A viable response would be by way of 
increasing the output of existing plantations. Modelling in various aspects related to 
agriculture is important, given the dynamic conditions of oil palm production. Despite 
the strong need for accurate forecasts, the current status of these predictions is far from 
satisfactory. No well-defined forecasting method exists that takes into account most of 
the factors that drive yield. Although there are established models, they tend to be “one 
size fits all,” and are linear.  

The challenge in modelling oil palm yield is due to the fact that it does not follow a linear 
model. It typically takes a nonlinear growth curve. The function of a growth curve and 
production have a sigmoid form. In modelling a non-linear curve, the problem becomes 
more complex when there are additional independent variables. The major hindrance in 
modelling the behavior of yield and energy consumption are the challenge of extracting 
the constants of the mathematical models. In light of the complexity of these 
relationships, traditional data-processing techniques are unable to satisfactorily 
investigate the process and product parameters because of non-linear relationships 
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among the variables . Non-linear methods can be used to address this issue as they are 
powerful predictive tools. One method for modelling non-linear (accommodating 
multivariate) and non-parametric data is Neural Networks (NNs), which is a model-free 
estimation. Exploratory research on artificial intelligence has revealed that little has been 
done on oil palm yield and energy consumption. 

The immediate and obvious effect of adding a high number of input variables is that the 
size of an NN increase, which raises the computational burden related to querying the 
network - a significant effect in the determination of the training speed. Climatic 
phenomena, air pollutants, and energy consumption have a direct impact on oil palm 
production or yield. Environmental change is the most common stressful condition oil-
palm faces, so monitoring these related factors is beneficial for the prediction of oil palm 
yields (Corley and Tinker, 2016; Saadon et al., 2014). Thus, a lot of variables that can 
lead to maximum oil palm production should be identified. Few studies have focused on 
this differentiation with focused on a limited number of variables. As such, any of the 
factors mentioned cannot be randomly ignored as it could have an effect on the 
prediction accuracy. Selection of the most informative variables or elimination of the 
uninformative ones could enhance the performance of multivariate calibration models.   

Thus, the manner in which variables are selected is deemed an important area of 
agricultural research. One of the most common methods uses traditional statistics. 
Although generally understood and easily computed, these methods involve the 
addition/removal of one variable at a time, based on section. According to Ficken (2015), 
establishing specific variables that exert considerable effect collectively would be 
difficult because linear relationships or linear correlations consider only one parameter 
at a time. The challenges of input variables selection emerge because of (i) the number 
of available data is huge; (ii) this huge data creates redundancies due to high correlations 
between potential input variables; and (iii) some variables have slight or no predictive 
capability. Genetic algorithm which is a tool for computational optimization can be 
combined with NNs. Specifically, in cases where a large number of potential inputs are 
available, they can be used to select optimal subsets of inputs for model development. 

1.5 Research Objectives 

The main objectives of the research are to develop of a hybrid neural networks model 
with GA-selected inputs for predicting oil palm yield and energy consumption within 
the multiple areas in Malaysia, based on large-scale climate indices, types of oil palm 
areas, air pollution and energy consumption. The specific objectives and of the study are 
as follows: 

1- To develop a genetic algorithm and Stepwise as input variable selection models 
to identify the most significant variables that affect the FFB production, palm 
oil yield and output energy. 
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2- To develop and propose the preferred ANN and NARX architectures, and their 
hybrids with a genetic algorithm and Stepwise from earlier input variable 
selection model determinations for the predictions of FFB, palm oil yield and 
output energy. 

3- To develop multiple linear regression models (Mathematical Model) to predict 
FFB, palm oil yield and output energy and compare it with the final NN system. 

4- To explore the effects of the selected significant variables in the production of 
FFB, palm oil, and energy that will lead to the maximum the oil palm 
production in Malaysia. 

1.6 Scope of the Study 

This study focuses on the interactions between climate data including rainfall, rainy 
days, humidity, radiation, temperature, surface wind speed, evaporation, cloud cover and 
air pollution data as well as types of oil palm areas data, namely: O3, CO, NO2, SO2, 
PM10, the percentage of mature area and percentage of the immature area. Additionally,
the interactions between input energy data including eight variables: human power, 
electricity, fuel, water, NPK fertilizers, and seed. This research will cover the years 2005 
to 2015 to gain more accurate results on the impact of environmental sources and input 
energy over the Malaysian states.  

The selections of data which need to be used and input for the study will be based on the 
availability of data from reliable sources. The effect of some important parameters in oil 
palm yield such as in-situ soil classification, soil moisture content, etc., was not 
considered in this investigation because these data are not available in a time series 
format and furthermore the related information may vary from plantation to plantation 
even though plantations are within the same district. As well as, sometimes the 
accessibility to the data is almost impossible because these data were classified as 
confidential. 

The establishment of an integrated FFB, PO, and output energy models for the various
areas of Malaysia that contain: (i) Determine model inputs that are extremely important 
via development of two methods, namely GA and Stepwise methods, to improve the 
intelligent prediction models. (ii) Investigate the effectiveness of two architectures in 
NNs namely multi-layer feedforward backpropagation (ANN) and nonlinear 
autoregressive exogenous neural network (NARX). A comparative study will also be 
performed between the results obtains from the NNs and the results obtained from the 
multi-regression technique in a statistical approach. A comparative study will be 
performed between the results obtains from the NNs and the results obtained from the 
multi-regression technique in a statistical approach. (iii) Select hybrid model criteria by 
which the performance is evaluated as they can have a significant effect on the model 
architecture and weight optimization techniques. (iv) Determine a hybrid model 
architecture including a number of hidden nodes in hidden layers, training algorithms, 
transfer function, and a number of delays. 
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Oil palm production models have tested based on the monthly data according to the data 
classification from the reliable source (MPOB). Finally, the results and finding of this 
survey will inform the key players in Malaysian oil palm production to know some 
information about the software's which predicts the oil palm production and output 
energy. Also, let the are investors in palm oil and smallholders, research centers, 
industrial manufacturers of oil palm products, distributors and traders of Malaysian oil 
palm products know that different yields and output energy due to different types of oil 
palm areas, environmental variables, energy consumption variables, and disparities. 

1.7 Thesis Layout 

The thesis systematically consists of five main parts. Brief descriptions of the content of 
these chapters are presented below:  

Chapter 1 contains the background of the research, formulation of the problem and 
problem definition, research objectives, thesis layout has been highlighted and 
systematics writing.  

Chapter 2 reviews the various literature on the topic. This chapter contains the 
information necessary to understand the issues discussed in this study. These reviews 
related to global Importance and Oil palm Production in Malaysia, general view of the 
environment change and types of oil palm area, the concept of energy and energy sources 
in Malaysia oil palm. History and background of variables selection and genetic 
algorithm with stepwise methods, general view of ANN and NARX to problem, 
prediction and oil palm models.  

Chapter 3 discusses the Methodology, principal and understanding concept of GA, 
Stepwise, ANN, and NARX. The chapter also explains the process details of the selected 
variables and application design predictions.  

Chapter 4 contains a discussion on the implementation of the structured analysis and 
design in Chapter 3. In addition, it discusses the results from the running of the models.  

Finally, Chapter 5 contains the conclusions of the work which has been discussed in 
previous chapters, especially in Chapter 3 and Chapter 4. The final part of this chapter 
contains suggestions that were put forward for the continuation of further research. 
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