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Faculty: Engineering

Cognitive Radio (CR) has been emerged as a promising technology for solving the
spectrum scarcity and underutilization issues. The CRs allow unlicensed users, a.k.a.
secondary users (SUs), to opportunistically use licensed bands without causing inter-
ference to the bands licensed users, a.k.a. primary users (PUs). Channel rendezvous
is a fundamental and vital process for exchanging control messages and establishing
communications between SUs in CR Ad-hoc networks (CRAHNs). Due to the major
drawbacks of the dedicated common control channel (CCC) rendezvous approach,
channel hopping (CH) has been emerged as an alternative approach for achieving
blind rendezvous without the need of any predefined CCC. However, the absence of
clock synchronization and neighborhood information as well as the spectrum het-
erogeneity among SUs in CRAHNs imposes great and unique design challenges for
the blind CH scheme. Further challenges arise from the limitation and fluctuating
of channel availabilities which are varied according to the nature, dynamics, and
density of PUs that are licensed to use the target spectrum. The previous research
works on blind rendezvous have mainly focused on designing the CH sequence for
ensuring rendezvous within a finite time while ignoring some practical issues such
as the rendezvous in CRAHNs operating under fast PU dynamics or highly-dense
PU networks. Besides, most of the existing works still rely on some unpractical
assumptions or take long time to establish rendezvous. Therefore, designing blind
rendezvous schemes that can cope with the aforementioned challenges and limita-
tions while minimizing the rendezvous latency at the same time is an important and
open area that needs to be studied and improved.

In this research, efficient blind schemes are proposed to establish deterministic and
fast pairwise rendezvous in different types of CRAHNs. Firstly, three CH schemes
are developed for rendezvous in slow-varying CRAHNs where channel availabili-
ties are not varying during the rendezvous process. The first two schemes called,
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Slow and Quick CH (QS-CH), and Interleaved Slow, Quick and Fixed CH (IQSF-
CH), are designed to provide rendezvous in single-radio CRAHNs where each SU
in the network has only a single radio. On the other hand, the third scheme called
Multi-Grid-Quorum CH (MGQ-CH) is designed for multi-radio CRAHNs where SUs
exploit multiple radios. The three proposed schemes utilize only the unrestricted
local available channels for generating their CH sequences which is desirable in dis-
tributed heterogeneous CRAHNs. Theoretical analysis and extensive simulations are
conducted to demonstrate the proposed schemes efficiency in providing guaranteed
rendezvous within bounded and short time-to-rendezvous (TTR). The simulation re-
sults show that significant TTR reductions up to 68%, 73%, and 60% can be achieved
by the proposed single-radio and multi-radio schemes, respectively, as compared to
other related previous works in the literature.

Second, two adaptive nested cyclic-quorum-based CH schemes, called NCQ-CH and
MNCQ-CH, are proposed for rendezvous in fast-varying CRAHNs where channel
availabilities can vary during the rendezvous process. The proposed schemes are
augmented with efficient channel ranking and quorum selection mechanisms for gen-
erating and adapting the CH sequence on the fly which make them robust to the
fast PU dynamics. The simulations results show that the proposed schemes can
reduce the TTR up to 49%, as compared to other existing adaptive CH schemes
while providing better PU detection accuracy.

Finally, two blind coprimality-based sector hopping (SH) schemes called, Prime and
Even SH (PES-SH), and Interleaved PES-SH (IPES-SH), are proposed to establish
sector rendezvous in directional antenna CRAHNs where SUs are equipped with
single directional antenna CRs. The proposed SH schemes are then combined with
a Ranked Quick and Slow CH (RQS-CH) scheme in order to establish simultaneous
sector and channel rendezvous. The theoretical analysis and simulations results
demonstrate the developed schemes efficiency where they can reduce the rendezvous
delay significantly up to 85% and 55%, as compared to other existing related works.
Furthermore, the results demonstrate that the proposed schemes are more resistant
to rendezvous failures under high density PU networks, as compared to the omni-
directional antenna rendezvous paradigm.
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Radio Kognitif (CR) telah muncul sebagai teknologi yang menjanjikan penyelesaian
masalah kekurangan spektrum dan isu-isu kurang penggunaan. CRs membenarkan
pengguna tidak berlesen, a.k.a. pengguna sekunder (SU), untuk menggunakan
jalur berlesen secara oportunis selagi mereka tidak menyebabkan sebarang gangguan
kepada pengguna berlesen band, pengguna utama (PU). Pertemuan saluran adalah
proses asas dan penting untuk menukar mesej kawalan dan mewujudkan komunikasi
antara SU dalam rangkaian CR Ad-hoc (CRAHNs). Disebabkan oleh kekurangan
dalam cara pertemuan saluran kawalan umum dedikasi (CCC) yang dikhususkan,
saluran hopping (CH) telah muncul sebagai alternatif untuk mencapai pertemuan
buta tanpa memerlukan mana-mana CCC yang telah ditetapkan. Walau bagaimana-
pun, ketiadaan penyegerakan jam dan maklumat kejiranan serta spektrum hetero-
gen di kalangan SU telah mengenakan cabaran reka bentuk yang tinggi dan unik
untuk skema CH buta. Cabaran lebih lanjut timbul daripada batasan dan turun
naik daripada ketersediaan saluran yang berbeza-beza mengikut sifat, dinamik, dan
kepadatan PU yang dilesenkan untuk menggunakan spektrum tersasar. Kerja-kerja
penyelidikan terhadap pertemuan buta sebelum ini telah menumpukan perhatian
kepada perancangan urutan CH untuk memastikan pertemuan dalam masa ter-
batas sambil mengabaikan beberapa isu praktikal seperti pertemuan di CRAHN
yang beroperasi di bawah dinamik PU yang cepat atau rangkaian PU yang sangat
padat. Selain itu, sebahagian besar kerja yang ada masih bergantung pada beber-
apa anggapan dan sekatan yang tidak praktikal untuk membimbing pertemuan atau
masih menyebabkan kelewatan pertemuan yang sangat panjang. Oleh itu, perekaan
skema pertemuan buta yang dapat menampung cabaran dan batasan yang diny-
atakan di samping meminimumkan latensi pertemuan pada masa yang sama adalah
satu topik kajian yang penting dan terbuka yang perlu dipelajari dan diperbaikkan.
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Dalam kajian ini, skim pertemuan buta yang cekap telah dicadangkan untuk mewu-
judkan pertemuan pasangan yang pantas dan berketentuan dalam pelbagai jenis
CRAHNs. Pertamanya, tiga skim CH telah diwujudkan bagi pertemuan dalam
CRAHNs yang berlainan-lambat dimana ketersediaan saluran tidak bervariasi se-
masa proses pertemuan. Skim pertama iaitu Perlahan dan Cepat CH (QS-CH), dan
skim kedua iaitu Antara Lembaran Lampat, Cepat dan CH Tetap (IQSF-CH), telah
direka untuk menyediakan pertemuan dalam CRAHNs radio tunggal di mana setiap
SU dalam rangkaian hanya mempunyai satu radio. Sebaliknya, skim ketiga iaitu
Multi-Grid-Kuorum CH (MGQ-CH) adalah direka untuk CRAHN berbilang radio
apabila SU mengeksploitasi pelbagai radio. Tiga skema yang dicadangkan hanya
menggunakan saluran tempatan tak terhad yang tersedia untuk menghasilkan uru-
tan CH, cara ini sesuai untuk CRAHNs heterogen teragih. Analisis matematik dan
simulasi yang luas dijalankan untuk menunjukkan kecekapan skim yang dicadan-
gkan dalam menyediakan pertemuan yang dijamin dalam tempoh masa pertemuan
yang singkat dan terhingga. Hasil simulasi menunjukkan bahawa pengurangan TTR
yang signifikan sehingga 68%, 68%, dan 60% boleh dicapai oleh skim radio tung-
gal dan multi-radio yang dicadangkan, berbanding dengan literatur sedia ada yang
berkaitan.

Kedua, dua skim CH suai bersarang yang berasaskan kitaran dan kuarza, yang di-
panggil NCQ-CH dan MNCQ-CH, dicadangkan untuk pertemuan dalam CRAHN
yang cepat berubah di mana ketersedian saluran boleh bertukar semasa proses perte-
muan. Skim yang dicadangkan telah ditambah dengan mekanisme pemilihan ke-
dudukan saluran dan kuorum cekap untuk menjana dan menyesuaikan urutan CH
dengan serta-merta, dan turut menjadikannya lasak dalam dinamik PU yang cepat.
Hasil simulasi menunjukkan bahawa skim yang dicadangkan dapat mengurangkan
TTR sehingga 49%, berbanding dengan kerja pertemuan suai yang sedia ada sambil
memberikan ketepatan pengesanan PU yang lebih baik.

Akhirnya, skim sektor hopping (SH) berasaskan comprimality buta yang dipanggil,
Perdana dan Genap SH (PES-SH), dan Antara Lembaran Perdana dan Genap SH
(IPES-SH), dicadangkan untuk menwujudkan pertemuan sektor dalam antena be-
rarah CRAHN di mana SU dilengkapi dengan CR antena berarah tunggal. Skim
SH yang dicadangkan kemudiannya digabungkan dengan skim Cepat dan Lam-
bat Berpangkat CH (RQS-CH) untuk menubuhkan pertemuan sektor dan saluran
serentak. Hasil analisis teori dan simulasi menunjukkan kecekapan skema yang
dibangunkan di mana ia dapat mengurangkan masa pertemuan dengan signifikan
sehingga 85% dan 55%, berbanding dengan kerja berkaitan yang lain. Tambahan
pula, keputusan menunjukkan bahawa skim yang dicadangkan lebih tahan terhadap
kegagalan pertemuan bagi rangkaian PU berkepadatan tinggi, berbanding dengan
paradigma pertemuaan antena omni-arah.
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CHAPTER 1

INTRODUCTION

Owing to the rapid development of new wireless services and applications, the num-
ber of wireless devices increases exponentially over the last decade, which result
in a tremendous demand for the wireless spectrum. However, the radio spectrum
which is suitable for wireless communications is a naturally limited and scarce re-
source. According to the traditional spectrum assignment policy, a large portion
of the radio spectrum has been statically licensed by the national authorities and
agencies to several wireless communication systems. These licensed spectrum bands
are assigned to license holders for an exclusive use on a long-term basis within given
geographical regions. Meanwhile, a small portion of the spectrum bands is left as
unlicensed such as the ISM bands, which facilitate several short-range and indoor
wireless communications such as the WLANs and Bluetooth, among others. How-
ever, these unlicensed bands are overcrowded due to the huge bandwidth demand
by the applications which utilize them ( e.g., voice/video calling, gaming, media
steaming, etc).

1.1 Overview

Although the spectrum majority have been statically assigned to licensees, several
statistical studies and real-life measurements conducted by the Federal Communi-
cation Commission (FCC) and other regulatory agencies indicate that most of the
licensed spectrum bands are heavily underutilized [1, 2, 3, 4]. This results in a spec-
trum inefficiency problem as illustrated in Figure 1.1.a. According to FCC, up to
85% of the spectrum that is licensed to existing wireless communication systems are
underutilized most of the time even in the crowded urban areas where the spectral
usage is intensive. These investigations revealed that the spectrum scarcity problem
can be contrasted if the already licensed spectrum is exposed in a more efficient
and flexible manner [5, 6]. Therefore, Dynamic Spectrum Access (DSA) has been
proposed as a new communication paradigm and alternative policy for spectrum
management to solve the spectrum scarcity and underutilization issues [7].

The DSA paradigm enables a dynamic and opportunistic exploitation of the tem-
porarily unoccupied or underutilized portions of the licensed spectrum, a.k.a. Spec-
trum Holes or White Spaces (see Figure 1.1.b). In DSA, the unlicensed users a.k.a.
secondary users (SUs) can opportunistically access and utilize the white spaces to
establish their communications. Nevertheless, whenever the licensed users a.k.a.
primary users (PUs) reappear on their licensed spectrum, SUs must vacate the re-
claimed spectrum holes immediately and move to other spectrum holes for proceed-
ing their transmissions [6, 8]. This is in order to avoid causing interference to PUs
since PUs have the absolute priority to access their licensed spectrum. In this sit-
uation, Cognitive Radio (CR) has been emerged as the promising technology to
realize DSA due to its capability of sensing/capturing the radio spectrum, learning
from the interactions with the surrounding environment, and adapting the internal
state [9, 10, 11].
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(a) Spectrum underutilization [4]. (b) Spectrum hole concept [5].

Figure 1.1: Spectrum underutilization and the spectrum holes.

In Cognitive radio networks (CRNs), SUs are equipped with CRs which allow them to
sense the channels of the target licensed spectrum and detect the idle/available ones
for opportunistically sharing them with the co-located PUs. A channel is decided
to be available for the SU if the channel is idle from any PU activities. However,
once the PUs become active on their licensed channels, the SUs must vacate the
corresponding channels to avoid causing unacceptable interference to PUs which
makes these channels unavailable. Therefore, In CRNs, the channel availability
is position-varying (depends on the position of the SU relative to PUs) and time-
varying (depends on the appearance time of co-located PU signals) [12]. This spatial
and temporal varying channel availability is the main unique trait that distinguishes
CRNs from the traditional wireless networks.

Although a lot of research and development efforts have been made in CRNs, these
efforts had mainly focused on the physical layer aspects such as spectrum sensing
and interference mitigation. However, enabling opportunistic operation through CR
technology necessitates the addressing of other aspects in the upper layers such
as rendezvous, neighbor discovery, and device coordination in the MAC layer. In
this thesis, the rendezvous issue is addressed which plays a crucial role in CRN
configuration and connectivity. The research is specially focusing on the distributed
CR Ad-Hoc Networks (CRAHNs) due to their challenging features such as self-
organizations and heterogeneity, which are derived from the absence of network
infrastructure.

1.2 Rendezvous in Cognitive Radio Networks

In CRAHNs, every SU has its own available channel set which is determined after
the spectrum sensing stage. To start data transmissions, SUs need to meet each
other on a commonly-available channel in order to exchange control messages and
setup their data communication links. This process is called channel rendezvous,
which is a fundamental and a vital process for initiating the connection of SUs
data communications. However, implementing rendezvous on available channels is
non-trivial and challenging. The difficulty mainly comes from the fact that before
rendezvous, SUs are oblivious of each other’s information and even they might un-
aware of each other existence. According to that and since SUs may reside in distinct
channels, they have no consensus about which common channel they have to switch
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into simultaneously for achieving rendezvous.

A simple approach that is widely-adopted in the literature to achieve rendezvous is
the dedicated common control channel (CCC) e.g., [13, 14, 15, 16, 17, 18]. In this
approach, one of the licensed channels which is assumed to be a globally available for
all SUs is assigned as the CCC for exchanging the control messages. Although this
approach can simplify the rendezvous process, it has several drawbacks. Firstly, the
maintaining of a channel that is a globally available to all SUs is infeasible in practical
CRAHNs. This is due to the spectrum heterogeneity among SUs which is caused by
the spatial and temporal variations of the channel availabilities. Secondly, the CCC is
susceptible to long-time blocking by PUs where PUs may continuously occupy/block
the CCC for a long time [19, 20]. Thirdly, the CCC is also susceptible to early
saturation by SUs where it may become congested under heavy loads. Finally, the
CCC is vulnerable and easy target for jamming attacks [21, 22, 23].

To overcome the drawbacks of CCC, Channel hopping (CH) has been emerged as an
alternative approach in the literature for blind rendezvous which require neither CCC
nor prior knowledge of the other SUs available channel sets. In the CH approach,
each SU generates its CH sequence independently and keeps hopping on the channels
in a time-slotted manner according to the generated CH sequence for achieving
rendezvous with its potential neighbors. The rendezvous occurs between a pair of
neighboring (i.e., in-range) SUs when they hop simultaneously during the same time
slot on a channel that is a commonly-available for both of them. At that time, SUs
can perform a three-way handshake to exchange different control messages and set
up their data transmission links.

Take Figure 1.2 as an example, where there is a licensed spectrum of five channels
that are owned by PUs. Meanwhile, there are several SUs which can only utilize
the licensed spectrum channels in an opportunistic fashion (i.e., without causing
interference to the co-located PUs). Suppose that PU1 occupies channels {1, 2},
PU2 occupies channel {5}, PU3 occupies channel {3}, and PU4 occupies channels
{4}. It can be seen that not all the channels are available for the SUs. The local
available channel set (ACSs) for each SU, as shown by the adjacent blue lists, is
determined according to the channels idleness from any co-located PUs’ activities.
Now, consider the pair of neighboring SUs (SUX and SUY ) which have only one
common channel between their ACSs (channel 4) and suppose they perform the CH
scheme in [24] for generating their CH sequences. As shown in Figure 1.2.a, SUX

and SUY can achieve rendezvous on channel 4 After 11 time slots. On the other
hand, consider the pair of neighboring SUs (SUV and SUZ) which have identical
ACSs and which hop on the channels randomly. As illustrated in figure 1.2.b, the
rendezvous between SUV and SUZ may not be achieved within a finite time. This
demonstrate that if the CH scheme is not designed properly, it may not ensure
rendezvous between SUs even if they have identical ACSs.

The blind CH scheme can be designed by following either asymmetric or symmet-
ric role approach. In the asymmetric-role approach, SUs are assumed to have pre-
assigned roles (either as a sender or a receiver) before starting the rendezvous process
where they follow different methods to generate the CH sequences. On the other
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(a) Rendezvous is achieved between SUX and (b) Rendezvous not occur between SUV
SUY when performing the CH scheme in [24] and SUZ when perform random CH

Figure 1.2: An illustrative example of channel hopping in CRAHNs.

hand, the symmetric-role approach have no pre-assigned roles where SUs generate
their CH sequences using the same method. While the former approach can signif-
icantly minimize the rendezvous delay, its role-based design limits its applications,
for example, the SU can not work as a forwarder (i.e., receive packets from one SU
and then forward it to another SU) due to the pre-role assignment.

To work properly in a practical CRAHN, the blind rendezvous scheme should satisfy
the following properties:

(i) Asynchronous Scenario: In CRAHNs, each SU may start its CH at different
instant of time. Therefore, the blind rendezvous scheme must support both syn-
chronous and asynchronous scenarios.

(ii) Homogeneous and heterogeneous channel availability models: In multi-channel
CRAHNs, two models are often considered to describe the channel availability for
neighboring SUs; the homogeneous model and the heterogeneous model. In the
homogeneous model, SUs have the same set of available channels. Meanwhile, the
SUs have different sets of available channels in the heterogeneous model, but there
must be at least one commonly-available channel between SUs in order to ensure
rendezvous. The blind rendezvous scheme is required to work under both models due
to their importance in practice [25]. The homogeneous model is applicable when SUs
are located close to each other in a small geographical area (relatively smaller than
their distances to PUs). Meanwhile, the heterogeneous model is applicable when the
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SUs geographical locations are far from each other. However, establishing rendezvous
under the heterogeneous model is more difficult due to the fewer commonly-available
channels between SUs.

(iii) Guaranteed Rendezvous: Due to the failure of the random CH in ensuring ren-
dezvous, most of the existing blind rendezvous schemes construct their CH sequences
based on different mathematical tools, trying to achieve deterministic rendezvous
within a finite time. The performance of the rendezvous scheme is generally eval-
uated by the time-to-rendezvous (TTR) which is defined as the number of time
slots required for SUs to rendezvous once they have started the rendezvous process.
However, in the asynchronous environment, SUs may start the rendezvous process
at different times and hence the TTR is usually in-equable. Thus, the Average TTR
(ATTR) and maximum TTR (MTTR) are considered as the primary metrics to
evaluate the TTR performance. The MTTR indicates the required TTR for a guar-
anteed rendezvous in the worst case which is important to prove the deterministic
rendezvous provided by the CH scheme.

1.3 Problem Statement

Due to its advantages over the CCC approach as well as its more feasibility in
practice, the CH-based rendezvous approach is one of the significant research di-
rections in CRNs that got more and more attention recently. However, designing
distributed CH rendezvous schemes that can support the three fully-blind require-
ments mentioned before (i.e., asynchronous, heterogeneous, and deterministic) while
minimizing the TTR performance metrics is a very difficult and challenging task. In
the literature, there has been a proliferation of different CH-based schemes that were
proposed to provide blind rendezvous in CRNs. The majority of these schemes were
mainly designed for slow-varying CRAHNs where channel availabilities are usually
stable after the sensing stage and will not change during the rendezvous process.
However, the existing blind schemes have at least one of the following limitations:

(i) Limited local available channels: To ensure rendezvous within a finite time,
most of the existing asymmetric and symmetric role CH-based rendezvous schemes
generate their CH sequences based on the whole global channel set (GCS) in the net-
work. However, due to the spatial and temporal variations in channel availabilities
as well as the limitation of SUs sensing capabilities, the local available channel set
(ACS) for each SU in practice is usually a small subset of the global set [26, 24, 27].
Thus, by following the global-based generated CH sequences, SUs would waste a lot
of time attempting rendezvous on uncertain channels (i.e., the unavailable or even
the randomly-replaced1 channels). This can result in extensively long TTR espe-
cially when the number of unavailable channels is large. Even though some recent
works were designed based on the local ACS, they failed to solve the issue efficiently
where they either impose some unpractical restrictions or still produce relatively

1Some of the global-channels-based schemes try to enhance their performance by randomly
replacing the unavailable channels in the frames of their CH sequence with available ones. This
replacement strategy is not effective and still results in high MTTR.
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long TTR. In light of this, it is necessary to develop new blind asymmetric and
symmetric role CH schemes which generate their CH sequences efficiently based on
the unrestricted local ACSs only for better rendezvous performance.

(ii) Multi-radio rendezvous: Most of the existing CH schemes have been focusing
on the single-radio rendezvous where each SU is equipped with a single CR that can
only access one channel during each time slot. However, due to the sharply dropping
cost of the wireless RF transceivers, equipping SUs with multiple cognitive radios can
significantly accelerate the rendezvous process and improve the performance with an
acceptable slight increase in the cost [28, 29]. In the literature, only few works have
been designed to address the multi-radio rendezvous problem in CRAHNs. However,
these works failed to solve the issue efficiently since some of them still generate long
global-channel-based CH sequences while others adopted inefficient mathematical
tools to generate their local-channel-based CH sequences. Therefore, it is desirable
to develop a new blind and efficient multi-radio CH scheme that generate sequences
based on the local ACSs only and which can establish faster rendezvous in multi-
radio CRAHNs.

(iii) Fast PU dynamics: The majority of existing CH schemes were not designed or
tailored for CRAHNs operating under fast PU dynamics, where channel availabilities
can vary during the rendezvous operation itself. Ignoring these channel variations
by the existing schemes when applied in such dynamic environments can produce
an extremely long TTR and high collisions with PUs [30, 31]. Thus, it is desirable
to develop an efficient CH-based scheme that is robust to the rapid PU dynamics
in such fast-varying CRAHNs for establishing rendezvous with short TTR and high
PU detection accuracy.

(iv) High density PU networks: All the existing CH-based rendezvous schemes
were designed with omni-directional antennas relaying on a common assumption
for their success to achieve rendezvous, which is the existence of at least a single
commonly-available channel between the pair of communicating SUs. However, re-
laying on such assumption would not be precise for CRAHNs that are highly crowded
with PUs. In such networks, the large number of active PUs can vary the channel
availabilities dramatically among the neighbouring SUs especially when the total
number of channels in the network is small. This may lead to the non-existence
of any common available channel between a pair of neighboring SUs and hence the
failure of their rendezvous process. For example, consider the simple CRAHN in
Figure 1.3a which consist of two SUs that are coexisting with four PUs over a li-
censed spectrum of two channels. As the SUs are equipped with omni-directional
antennas, if the sender SU performs channel rendezvous with its intended receiver,
the rendezvous message is scattered towards all the directions. Thus, it can cause
interference to all the surrounding PUs within its transmission range which is repre-
sented by the dashed circle. However, due to the interference restriction imposed by
the CR concept, this is not acceptable since SUs can use only the channels that are
idle from any PU activities within their transmission range. Accordingly, it is obvi-
ous that the probability of having at least one commonly-available channel between
a pair of SUs under omni-directional antennas is very low since the transmission
range is wide and large.
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(a) Unsuccessful channel rendezvous (b) Successful channel rendezvous

under omni-directional antennas. under directional antennas.

Figure 1.3: Scenarios for pairwise channel rendezvous in a CRAHN of
two channels.

One approach to overcome this serious rendezvous problem is by equipping SUs with
directional antennas instead of the conventionally used omni-directional ones due to
their inherent capabilities in extending the transmission range while limiting the
interference [32]. In such scenario, if the sender SU performs channel rendezvous
using directional antennas as shown in Figure 1.3b, its rendezvous message is only
sent towards a specific direction. This indicate that directional antenna can limit
the interference to PUs better than the omni-directional antenna due to its narrower
and directed transmission range. Therefore, the probability of having commonly-
available channels between SUs is higher which consequently enhance the probability
of successful channel rendezvous significantly.

A thorough search of the existing literature yielded that the works in [32, 33] are
the only proposals that address the rendezvous problem in Directional CRNs (DIR-
CRNs). However, these works failed to solve the issue efficiently where the former
assumes that neighboring SUs have pre-knowledge of each other’s information before
rendezvous (i.e, not blind) while the later incur very long rendezvous delay. Further-
more, these works were only designed for asymmetric-role environment where SUs
have pre-assigned roles (i.e., SU is either a sender or receiver). Therefore, it is nec-
essary to develop new efficient and blind asymmetric-role as well as symmetric-role
schemes that are able to achieve fast and guaranteed rendezvous in DIR-CRAHNs.

1.4 Research Objectives

The aim of this thesis is to develop distributed and blind rendezvous schemes that are
capable of providing guaranteed and fast rendezvous in different types of CRAHNs.
The research specific objectives are as follows:

• To design and develop efficient single-radio CH rendezvous schemes for slow-
varying CRAHNs where each SU is equipped with a single cognitive radio.

• To design and develop an efficient multi-radio CH rendezvous scheme for slow-
varying CRAHNs where each SU is equipped with multiple CRs.
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• To design and develop efficient adaptive CH rendezvous schemes that are ro-
bust to rapid PU dynamics in the fast-varying CRAHNs.

• To design and develop efficient rendezvous schemes for DIR-CRAHNs where
each SU is equipped with a directional antenna CR.

1.5 Research Scope

This thesis is mainly focusing on the problem of enabling a pair of SUs to rendezvous
in a commonly-available channel within a finite and short time for the purpose of link
establishment in CRAHNs. The follow-on tasks after initial rendezvous such as the
handshaking [34] and channel contention procedures [35] as well as the transmission
of data packets [36, 37] are outside the scope of this thesis. Moreover, the developed
schemes in this research assumed that SUs can detect their local available channels
sets based on spectrum sensing. However, the spectrum sensing technique [38, 39]
is a research issue in itself which is beyond the scope of this thesis.

While the main focus of this thesis is on the pairwise rendezvous, it is worthy to point
out that multicast rendezvous (i.e,. rendezvous of multiple SUs) can be achieved eas-
ily through establishing a series of pairwise rendezvous processes that consequently
allow all the SUs in the multicast group to follow a common hopping sequence for
establishing rendezvous.

1.6 Main Contributions

The contributions in this thesis address the pairwise rendezvous problem in different
types of CRAHNs. The main contributions can be summarized as follows:

• Single-radio Matrix-based Channel Hopping rendezvous schemes for
slow-varying CRAHNs
Two matrix-based CH schemes are proposed to provide asynchronous channel
rendezvous in slow-varying CRAHNs; one asymmetric-role approach, called
QS-CH, and one symmetric-role approach, called IQSF-CH. The proposed
schemes utilize only the unrestricted local ACSs for generating their CH se-
quences which is desirable in distributed heterogeneous environments. The-
oretical analysis for the MTTR upper-bounds of the proposed schemes have
been carried out to prove their guaranteed rendezvous under the homogeneous
and heterogeneous channel availability models. Furthermore, extensive simu-
lations are conducted to study the performance of the developed schemes and
illustrate their superior performance as compared to other existing single-radio
CH-based rendezvous schemes.

• A multi-radio Quorum-based Channel Hopping rendezvous scheme
for slow-varying CRAHNs
An efficient multi-grid-quorum CH scheme, called MGQ-CH, is proposed to
provide asynchronous channel rendezvous in multi-radio slow-varying CRAHNs.
The guaranteed rendezvous provided by the developed scheme is proved by de-
riving the theoretical upper-bound of its MTTR under the homogeneous and
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heterogeneous channel availability models. Furthermore, extensive simulations
are conducted to evaluate the developed scheme performance and illustrate
its efficiency as compared to other existing multi-radio CH-based rendezvous
schemes.

• Adaptive Quorum-based Channel Hopping rendezvous schemes for
Fast-varying CRAHNs
To provide rendezvous in fast-varying CRAHNs, two nested cyclic-quorum
based CH schemes that are robust to fast PU dynamics are proposed. The
proposed schemes (refereed as NCQ-CH and MNCQ-CH) are augmented with
online adaptation capabilities to further enhance their robustness to PU dy-
namics. The online adaptation is achieved through suitable channel ranking
and quorum selection mechanisms that are efficient in estimating the fast PU
dynamics. Extensive simulations are conducted to demonstrate the superior
performance of the proposed schemes under fast PU dynamics, in terms of
the TTR and PU detection accuracy, as compared with existing rendezvous
schemes in the literature.

• Combined Sector and Channel Hopping Schemes for efficient ren-
dezvous in Directional-antenna CRAHNs
Firstly, two blind coprimality-based sector hopping (SH) schemes are proposed
to establish sector rendezvous in DIR-CRAHNs; one is an asymmetric-role
approach, called PES-SH, and the other is a symmetric-role approach, called
IPES-SH. The proposed SH schemes are then combined with an efficient ranked
CH scheme, called RQS-CH, in order to provide simultaneous sector and chan-
nel rendezvous between SUs in DIR-CRAHNs. To prove the guaranteed ren-
dezvous of the proposed schemes, theoretical analysis for the upper-bounds
of their rendezvous delay metrics have been conducted. Furthermore, exten-
sive simulation comparisons with other related directional antenna rendezvous
schemes are conducted to illustrate the significant out-performance of the de-
veloped schemes.

1.7 Organization of the Thesis

The thesis outline is presented in Figure 1.4. Each chapter in this thesis discusses
the problems of establishing rendezvous in a different CRAHN type and presents
the proposed schemes to solve these problems. The remainder of thesis is organized
as follows:-

Chapter 2 elaborates the CR technology and its functionalities as well as the ar-
chitectures of the CRNs. It also presents a comprehensive review of the previous
rendezvous schemes in the literature.

Chapter 3 presents the blind rendezvous schemes that are proposed for establish-
ing rendezvous in the single-radio slow-varying CRAHNs. This chapter contains two
main sections. The first section presents a new asymmetric-role blind CH rendezvous
scheme that is proposed to provide rendezvous when SUs have pre-assigned differ-
ent roles prior to the rendezvous process. Meanwhile, the second section presents
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Figure 1.4: Outline of the thesis.

the symmetric-role blind CH rendezvous scheme which does not require the pre-
assignment of the sender/receiver role.

Chapter 4 presents the grid-quorums-based rendezvous scheme that is developed to
provide rendezvous in multi-radio slow-varying CAHRNs.

Chapter 5 presents the two adaptive CH-based rendezvous schemes that are proposed
for establishing rendezvous in fast-varying CRAHNs. This chapter contains two main
sections. The first section presents the nested designs of the two robust CH schemes
while the second section presents the adaptive channel ranking and quorum selection
mechanisms.

Chapter 6 presents the combined sector and channel hopping schemes that are pro-
posed for providing efficient blind rendezvous in DIR-CRAHNs. This chapter con-
tains three main sections. The first two sections present the design and analysis for
the asymmetric-role as well as the symmetric-role SH schemes that are proposed to
provide sector rendezvous between SUs. Meanwhile, the third section presents the
design and analysis for the overall solutions which combine the SH schemes with
an efficient ranked CH scheme in order to establish successful sector and channel
rendezvous simultaneously.

Finally, chapter 7 concludes the thesis and provide directions for future research.
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