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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment  of 

the requirement for the degree of Doctor of Philosophy 

MATHEMATICAL MODELS FOR TAR CRACKING AND CHAR 

REACTIONS IN A BUBBLING FLUIDISED BED REACTOR 

By 

AHMED ABDULMAJEED MOHAMMED AL-OGAIDI 

January 2019 

Chairman :   Associate Professor Salmiaton Ali, PhD 

Faculty :   Engineering 

Tar is a contaminant product produced from the devolatilisation of the biomass in the 

gasification process which consists of a collection of organic compounds. The formation 

of tar depends on the gasifier setup and operating conditions, and can cause blockage in 

downstream equipment and facilities. Therefore, it is essential to reduce its levels 

through examining the effects of the parameters on its formation. In this research, two 

separate models were built to represent devolatilisation stage in the upper part and 

fluidized-bed stage in the down part of a lab-scale fluidized-bed gasifier of top feeding 

configuration. 

The upper part of the reactor was modelled using a pseudo-equilibrium model (PEM) 

which employed yield correlations for tar, bio-oil, char, gas composition, and CH4 

obtained from experimental work at temperature range of 650 – 850ºC. Two parameters 

were investigated: temperature (650 – 850ºC) and carrier gas flow rate (10 – 30 L/min). 

The results showed a good prediction for tar yield with low root mean square (RMS = 

0.003) compared to experiments, and conversion (59.7%) compared to experiments 

(51.5%) at 850 ºC. The change of flow rate showed slightly increase of tar yield. Fair 

predictions obtained for other products. 

The down part of the reactor was modelled for the gasification reactions of char using 

two-phase model. The char diffusion equation was imposed in the model to estimate the 

carbon conversion and oxygen consumption. Moreover, the effects of two parameters on 

char reactions were investigated: temperature (650 – 850ºC) and equivalence ratio (ER) 

(0.2 – 0.4). The results showed that carbon conversion, oxygen consumption and final 

tar yield were 33 wt%, 66 vol.%, and 5 g/Nm3, respectively. Meanwhile, the yield of CO 

increased progressively while CO2 increased considerably when temperature increased. 

The change of ER (0.2 – 0.4) decreased the yield of CO and CO2. 
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The temperature has a major effect on the tar yield and conversion in the upper part of 

the reactor. Meanwhile, the implication of a correction factor for steam reforming 

reaction (SRMR) in the PEM is important for better predictions of the yield of CO and 

CH4 produced from the devolatilisation. On the other hand, the high location of the 

feeding point reduces the carbon conversion and oxygen consumption, and decouples 

the reactions of tar with O2 and CO2 which consequently reduce the yield of H2 and CO. 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

 

iii 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

 

 

PEMODELAN PENGGASAN TANAN BUAH KOSONG DALAM REAKTOR 

LAPISAN TERBENDALIR GELEMBUNG 

 

 

Oleh 

  

 

AHMED ABDULMAJEED MOHAMMED AL-OGAIDI 

 

 

Januari 2019 

 

 

Pengerusi  :   Profesor Madya Salmiaton Ali, PhD 

Fakulti  :   Kejuruteraan 

 

 

Tar adalah produk pencemar yang dihasilkan daripada penyahmeruapan biomas dalam 

proses pengegasan yang terdiri daripada pengumpulan sebatian organik. Pembentukan 

tar bergantung kepada penyediaan pengegas dan keadaan kendalian, dan boleh 

menyebabkan halangan pada peralatan dan kemudahan hilir. Oleh itu, adalah penting 

untuk mengurangkan tahapnya dengan mengkaji kesan parameter terhadap 

pembentukan tar. Dalam kajian ini, dua model berasingan telah dibina untuk mewakili 

peringkat penyahmeruapan di bahagian atas dan lapisan terbendalir di bahagian bawah 

pengegasan lapisan terbendalir tatarajah suapan atas.  
 

 

Bahagian atas reaktor dimodelkan dengan menggunakan model pseudo-keseimbangan 

(PEM) yang menggunakan korelasi hasil untuk tar, bio-minyak, arang, kandungan gas, 

dan CH4 yang diperolehi daripada kerja uji kaji pada julat suhu 650 - 850ºC. Dua 

parameter telah disiasat: suhu (650 – 850ºC) dan kadar aliran gas pembawa (10 – 30 

L/min). Keputusan menunjukkan ramalan yang baik untuk hasil tar dengan punca min 

kuasa dua yang rendah (RMS = 0.003) berbanding dengan uji kaji, dan penukaran 

(59.7%) berbanding dengan uji kaji (51.5%) pada 850 ºC. Perubahan kadar aliran 

menunjukkan sedikit peningkatan hasil tar. Ramalan yang sederhana diperolehi untuk 

produk lain.  

 
 

Bahagian bawah reaktor dimodelkan untuk tindakbalas pengegasan arang menggunakan 

model dua fasa. Persamaan peresapan arang telah dikenakan dalam model untuk 

menganggarkan penukaran karbon dan penggunaan oksigen. Tambahan lagi, kesan dua 

parameter terhadap tindakbalas arang telah disiasat: suhu (650 – 850ºC) dan nisbah 

kesetaraan (ER) (0.2 – 0.4). Keputusan menunjukkan penukaran karbon, penggunaan 

oksigen dan hasil tar akhir adalah 33 %berat, 66 %isipadu, and 5 g/Nm3, masing-masing. 
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Sementara itu, hasil CO meningkat secara progresif manakala CO2 meningkat dengan 

ketara apabila suhu meningkat. Perubahan ER (0.2 – 0.4) menurunkan hasil CO dan CO2. 

 

 

Suhu mempunyai kesan utama pada hasil tar dan penukaran di bahagian atas reaktor. 

Sementara itu, implikasi faktor pembetulan untuk tindakbalas pembentukan semula stim 
(SRMR) dalam PEM penting untuk ramalan yang lebih baik hasil CO dan CH4 yang 

terhasil daripada penyahmeruapan. Sebaliknya, lokasi yang tinggi titik penyuapan 

mengurangkan penukaran karbon dan penggunaan oksigen, dan menyahgandingkan 

tindakbalas tar dengan O2 dan CO2 di mana akibatnya menurunkan hasil H2 dan CO.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

Gasification is a process of producing valuable products such as gases and oil from 

carbonaceous wastes, and biomass is one of them. This process occurs in environments 

with deficient in oxygen and requires heat, while combustion needs a sufficient amount 

of oxygen to take place and releases heat. Different mediums such as air, oxygen, steam 

and carbon dioxide are used in this process, and these mediums are called gasification 

agents. The main purpose of this process is to produce useful gases such as H2, CO, CO2, 

CH4 and light hydrocarbons. Many parameters affect the yield of these gases: 
temperature and type of gasification agents. These gases can be used in downstream 

facilities as a fuel to produce heat, electricity, and the like.  

Thomas Shirley first attempted to realise gasification in 1659, doing experiments with 

methane, formally so-called carbureted hydrogen. After that, in Britain, the awareness 

of using by-product gas accompanied the pyrolysis of coal increased, especially because 

of overuse of wood and the need to light the streets. However, in 1733 scientists still did 

not believe in coal-gas as a beneficial source of energy. The period of time from 1798–

1802 witnessed a great development in the use of this gas, however, especially after 

William Murdoch used to light the main building of the Soho Foundry, followed by his 

astonishing presentation of gas lighting. Meanwhile, in 1804, a coal-gas lighting patent 

was awarded to a German, Friedrich Winzer.  

In its history, the gasification process has experienced major developments in order to 

compensate for the shortage in fossil fuels, as happened in the Second World War (Basu, 

2010). Nowadays, the potential energy demands and consumption have increased 

worldwide. According to the International Energy Agency (IEA) (International Energy 

Agency, 2015), the estimates of total primary energy supply (TPES) in 2013 reached 

1.575 × 1017 Wh (watt-hour). The main source of energy was coal for the period between 

2000 and 2012 followed by oil and natural gas. Also, the hydropower and renewable 

energy contributed in the total energy consumption (British Petroleum Global, 2018; 

United Nations & World Energy Council, 2018). Along with increasing the energy 

demands, the global warming emissions also increased which eventually raise the global 

temperature. To keep the global temperature increase around 2°C required decreasing 

75% of carbon emissions by 2050 (Azar & Lindgren, 2018). 

The attention and plans toward production renewable energy have increased 

significantly, especially in the countries of high biomass production. In South East 

Asia’s countries, the resulted wastes are mainly from the industries of palm oil. In 2014, 

Malaysia processed 95.38 Mt (million tonnes) of fresh fruit bunch (FFB) of which the 



© C
OPYRIG

HT U
PM

 

2 

empty fruit bunch (EFB), mesocarp fibre (MF), palm kernel shell (PKS), and palm oil 

mill effluent (POME) were 7.34, 7.72, 4.46, and 63.9 Mt, respectively (Malaysia 

Biomass Industries Confederation, 2017). According to this, tar issues arise when 

demand on syngas production increase. The tar is a main nuisance in thermal conversion 

processes such as gasification and pyrolysis which is unavoidable byproduct.  

This complex product can be defined as a condensable organic mixture which mainly 
consist of oxygenated hydrocarbons, typically containing single-ring to five-ring 

aromatic hydrocarbons.  

The tar components can be distinguished through splitting the tar into four classes 

according to the temperature and residence time as the main criteria for the classification 

(Evans & Milne, 1987). Class 1 comprises the products of the primary pyrolysis, 

essentially cellulose-derived products, which is released at low temperature (500 ºC) 

(Gómez-Barea & Leckner, 2010). This class consist of acetol, guaicol, acetic acid, and 

anisole (Morf, 2001). Class 2, produced in the range (500– 1000 ºC), and mainly 

comprises phenolics and olefins. Class 3 consist of alkyl tertiary products (methyl 

derivatives of aromatics, such as toluene and indene), formed between 650 and 1000 ºC.  

Class 4 is for the aromatic compounds without substituents such as benzene, 

naphthalene, anthracene and pyrene, which formed above 750 ºC (Gómez-Barea & 
Leckner, 2010). At severe gasification conditions (very high temperature), the tar 

converts to refractory tar which hard to destroy compared to primary and secondary tars 

due to polymerization reactions tendency increase (Srinivas et al., 2013). Therefore, the 

reduction of tar concentration in the syngas is an essential goal for production of clean 

energy.  

The advantages of using clean energy comprise decreasing the emissions of greenhouse 

gas resulted from burning fossil fuels, and enhancing the economic through lowering the 

dependency on a specific type of energy supply. Thus, design and engineering of 

specialized processing units such as gasification for syngas production, and pyrolysis for 

bio-oil or char production became among priorities of biomass producing countries. 

Basically, major modifications on gasification was according to preliminary studies by 
means of mathematical models or specialised simulation programs.  

The gasification modelling has become one of the basic activities for studying and 

developing this process and other related ones, such as pyrolysis and combustion. 

Nowadays, most important companies and institutions around the world adopt and use 

this activity. In addition, it has often been the main focus of conferences and symposia. 

The criteria applied in the modelling of this process is in optimizing synthesis gas 

production, understanding the complex behaviour of gasification, reducing tar yield, and 

estimating the power produced from the biomass integrated gasification combined cycle 

(BIGCC). 
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1.2 Problem Statement 

Tar is a problematic side product formed during devolatilisation of biomass at 

temperature range (300– 500ºC). It is a black, thick, highly viscous, wide-range 

hydrocarbons mixture condense in colder parts of the unit. Ambitious utilization of 

syngas affected by the high concentration of tar. In particular, tar formation can cause 

blocking in downstream equipments such as gas coolers, filter elements, pipes, valves, 

heat exchangers and engine suction channels, and cause catalyst deactivation. Moreover, 

adherence problems appear on turbine blades, and tar also considered as a corrosive 

material. As a result, the total efficiency is decreased and the cost of the process is 

increased.  

Hence, it is substantial to estimate the tar levels (or concentration) before using syngas 

as a fuel in internal combustion engine (ICE) which has tolerance for tar. The target 

concentration of tar for fuel applications is below 5 mg/m3 (Srinivas et al., 2013). Despite 

tar concentration in the syngas is a crucial issue for downstream utilization, its influence 

on the mass balance is insignificant. However, the influence of tar concentration is more 

evident on the heat balance because of its high energy density. In general, gasification 

unit comprises four stages take place simultaneously: drying, devolatilisation (or 

pyrolysis), gasification, and combustion. The tar formed during devolatilisation stage 

can experience secondary reactions in the vapour phase (homogenous) such as thermal 

cracking. Hence, more realistic devolatilisation model coupled with kinetic of the 

secondary reactions is required to describe the decomposition of EFB.  

Due to complexities of devolatilisation mechanism which consist of many non-

elementary reactions, equilibrium model (EM) is adopted in many published works for 

preliminary estimation of gas composition. This model assumes that equilibrium is 

reached in the outlet streams since the devolatilisation takes place rapidly. At 

equilibrium, the system attained more stable composition when its Gibbs free energy is 

minimized. In fact, the equilibrium is not achieved under practical conditions due to low 

temperature used in fluidised-bed gasifier between 700 and 900 ºC, where extreme 

conditions required for water-gas shift reaction (WGSR) to reach equilibrium (above 

1000 ºC). As a result, EM predicts gas composition free of CH4, tar, and char. In addition, 

the model overestimates the yields of H2 and CO, and underestimate the yield of CO2 

(Gómez-Barea & Leckner, 2010). The formation and destruction of tar are not 

predictable using EM as well (Srinivas et al., 2013).  

To sum up, the aim of EM is to predict the maximum composition of devolatilisation 

products. Moreover, high temperature and long enough residence time are required for 

the proper application of EM (Gómez-Barea & Leckner, 2010). On the other hand, many 

studies of gasification unit use the kinetic approach of individual gas species to compute 

the gas composition released from devolatilisation, neglecting the interaction of the bulk 

gas. This interaction mainly occurs through WGSR and among the species (H2, CO, CO2, 

and H2O), where the produced composition is considered as an input for gasification 

stage. The chemistry of tar destruction affected by kinetic and equilibrium reactions 
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which represented by thermal decomposition of tar and WGSR, respectively (Simell et 

al., 1997).  

Regarding tar modelling, some works model the tar using an empirical formula (CkHlOm) 

which estimates the composition of tar based on three atoms (carbon, hydrogen, and 

oxygen). In other words, the type of tar (primary, secondary, and tertiary) which is 

classified according to its formation temperature and residence time is not explicitly 
represented, but it is lumped. In fact, the tar is very reactive substance and can change 

its composition from oxygenated to multi-aromatic compounds depending on the 

operating conditions of the gasification process. Moreover, modelling the tar as 

hydrocarbon compounds other than CH4 are not thermodynamically stable. In other 

words, these hydrocarbons in EM can considered not thermodynamically favourable 

species (Yan et al., 2005). 

Unlike equilibrium calculations, pseudo-equilibrium model (PEM) has better results 

compared to EM. It improves the predictions through inclusion empirical relations and 

kinetic models of kinetically limited-conversion products such as tar, bio-oil, and CH4 

as well as correction factor for WGSR deviation from equilibrium. Moreover, this model 

allows to solid carbon, tar, and CH4 to be included in the outlet stream. The model is 

capable to capture the changes in the operating conditions of devolatilisation such as 
temperature and carrier gas flow rate. The model is capable to estimate the carbon and 

WGSR conversions as part of the model rather than being as inputs. 

Mixing is one of the significant issues in fluidised-bed reactors, especially for top 

feeding reactors where different products distribution obtained (Corella et al., 1988). In 

fact, the carbon and tar conversion depend on the location of the feed point. The closer 

feed point to the air inlet result in maximum conversion of carbon due to high 

consumption of O2 (Goyal et al., 2010). In addition, there is a considerable difference 

between feeding at the top or the bottom of the gasifier unit. In the latter case, pyrolysis 

products pass through whole bed which provide good mixing and reduce tar content. As 

a result, the yield of the permanent gases increase due to tar cracking in the hot bed 

(Radmanesh et al., 2006). In other words, the movement of solid and gas in the bed and 
freeboard greatly affects the efficiency of carbon conversion and tar content of the gas 

(Gómez-Barea & Leckner, 2010). Many studies in literature modelled the fluidised-bed 

using two-phase theory which assumes perfect mixing of solid in emulsion phase since 

the modeled reactors are bottom feeding. However, in case of top feeding, the fuel 

particles are of different shapes and physical properties from the inert bed material (sand) 

which tend to float on the top of the bed during the devolatilisation due to jet release of 

the volatiles (Gómez-Barea & Leckner, 2010). The produced char from the 

devolatilisation sinks into the bed, where meets the hot air. Thus, a significant percentage 

of O2 may be exhausted because of combustion reactions take place to some extent. The 

use of an equation describing the diffusion of char inside the bed is essential to estimate 

the conversion of carbon and consumption of O2 during this stage.   
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1.3 Scope of Work 

The purpose of this work is to model uncatalyzed tar cracking (thermal cracking) taking 

place in a lab-scale gasifier. This gasifier is a bubbling fluidised-bed reactor of 

dimensions (inside diameter = 40 mm; height = 600 mm), using EFB as the biomass 

source. The complexity of the fluidised-bed reactor comprises a considerable number of 

interactions take place simultaneously among chemical and physical processes. As a 

consequence, obtaining a reasonable and tractable model requires simplifications. The 

useful approach for simplification in modelling a fluidised-bed gasifier (FBG) is based 

on identification of rate-determining processes. In other words, it means to distinguish 

between transport (movement by convection and dispersion) and conversion processes 
according to their time difference. Three conversion processes occur inside the FBG with 

different rates: devolatilisation, char combustion, and char gasification.    

Devolatilisation has faster rates compared to the gasification and combustion of char, 

which is distinguished to be the first stage takes place in the gasification unit. Thus, the 

devolatilisation of the EFB was modelled to occur upon the entry of the reactor. In fact, 

the EFB is very reactive under high thermal conditions because of high volatile matter 

content which reaches around 83 wt% (Mohammed, 2011), and small particles size used 

in this research with average diameter of 0.4 mm (obtained in this study). Compared to 

mixing rates inside the FBG, the devolatilisation is faster than mixing, this especially 

holds for narrow lab-scale FBG, as reported by Gómez-Barea and Leckner (2010). 

Hence, the completion of the devolatilisation proceeds in the freeboard (FB) of the FBG, 
and separated from the fluidised sand bed. Moreover, the produced gas and vapours from 

this stage leave the FB due to small residence time compared to char reactions. In other 

words, the gasifying agent can not reach the char because of slow rates of diffusion. 

Therefore, the bulk gas from the devolatilisation do not interact with the products of char 

gasification reactions (Kaushal et al., 2010). 

The PEM was applied to model the devolatilisation of the EFB in a top-feeding fluidised-

bed reactor. For that purpose, an experimental work conducted for EFB devolatilisation 

in a fluidised-bed reactor at high temperatures (650– 850 ºC). Due to system limitations, 

an increment of 100 ºC was used. The devolatilisation experiments carried out at this 

range because much higher EFB decomposition obtained than that which would be at 

low temperatures. In other words, primary decomposition and secondary reactions 

(represented by tar vapours cracking) tend to occur simultaneously. Particularly, tar 
cracking reactions take place at temperatures higher than 600 ºC (Fagbemi et al., 2001). 

Moreover, the devolatilisation represents the first stage in each gasification units which 

normally operate at this range. Consequently, the final gas yield is higher compared to 

low temperatures. The aim of the experiments is to obtain empirical relations between 

the yield of devolatilisation products (H2, CO, CO2, CH4, bio-oil, tar, and char) and 

temperature. In addition, the kinetic parameters for both the primary and secondary 

reactions lumped in a global mechanism and estimated. These parameters along with 

empirical relations considered as inputs required for PEM.  
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The liquid bio-oil was also considered in the PEM due to its importance as an energy 

carrier resulted from the decomposition of lignocellulosic biomass such as EFB (Becidan 

et al., 2007). In fact, the bio-oil is a complex organic mixture of low and high molecular 

weight oxygenated compounds (Kaushal & Abedi, 2010). Moreover, the bio-oil has high 

energy density and maximum yield of 42% obtained from EFB pyrolysis at 500 ºC, 

which undergoes further cracking at higher temperatures (Chang, 2014; Mantilla et al., 
2014).  The criteria of the PEM represented by deduction the atoms of carbon, hydrogen, 

and oxygen from the yield of unconverted tar, bio-oil, and CH4.  

Kinetic models for the tar and bio-oil cracking as well as steam reforming of CH4 were 

adapted from literature. A plug-flow reactor was used to evaluate the conversion of the 

tar, bio-oil, and CH4 in the FB section of the reactor. The deviation of WGSR from 

equilibrium was estimated using a correction factor (fWGSR). This factor equals to the 

ratio of the experimental (Kexp) and the theoretical equilibrium constants (KWGSR). Later, 

solving the atomic balance equations for the carbon, hydrogen, and oxygen result in the 

pseudo-equilibrium composition. Then, the final gas composition was evaluated from 

the overall material balance. Two component models represented the tar and bio-oil. For 

tar, toluene (C7H8) was chosen because it is a secondary tar evolved at temperature above 

650 ºC. While, phenol (C6 H6 O) is the most abundant component in the bio-oil.  
Although, the tar and bio-oil have a large number of components, only a few considered 

in modelling for reasons of simplicity and lack of kinetic data availability. In sum, the 

model has the capability to capture the variations in process conditions such as 

temperature and carrier gas flow rate. Moreover, it is applicable to different types of 

biomass depending on their proximate and ultimate analysis.   

For the bottom part of the reactor, the produced char from the previous stage 

(devolatilisation) tends to sink inside the FBG. This part was modelled according to the 

two-phase theory of fluidisation for estimation of carbon conversion and oxygen 

consumption, where the bed is divided into two phases, representing the bubble and 

emulsion. The bubble phase comprises only gas-gas reactions, while gas-solid and gas-

gas reactions occur in the emulsion. The gasification and combustion reactions of char 
were modelled according to their speed of reaction. In fact, the combustion of char is the 

fastest among char reactions.  

Particularly, the gasification reaction of char (char-carbon dioxide reaction) is six to 

seven orders of magnitude slower than combustion (Basu, 2010). Therefore, the 

combustion reactions were modelled in a separate sub-model, considering the evolution 

of char inside the bed. The outputs of this model representing the inputs for the 

gasification reactions sub-model, where the gasification reactions take place together 

with char mixing. Hence, kinetic reactions equations were adapted from literature as a 

function of char mass fraction along bed height. Semi-empirical fluid-dynamic 

correlations were used to estimate gas-flow parameters. For instance, bubble velocity, 

minimum fluidisation velocity, bubble size, and bed voidage at minimum fluidisation 

velocity are very important in fluidisation systems. Despite the empirical nature of the 
flow-dynamics, the fluidisation model (FM) has been applied successively and widely 

for modelling FBG.  
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1.4 Research Objectives 

The main goal of this research is to build a model that predicts tar yield and its conversion 

from a bench-scale fluidised-bed reactor, applied as a gasifier that uses EFB as a 

feedstock under different conditions. The specific objectives are as follows: 

i. to evaluate the physical properties of EFB, char, and sand, and thermal 

behaviour of EFB through estimating the kinetic parameters of the 

devolatilisation stage on a bench-scale fluidised-bed reactor at different 

temperatures;     

ii. to  estimate the tar yield and its conversion as well as bio-oil, char, and gaseous 

products (H2, CO, CO2, CH4, and N2) resulted from the devolatilisation stage 
using pseudo-equilibrium model;  

iii. to estimate carbon conversion and O2 consumption  in gasification stage using 

two-phase model; 

iv. to investigate the effects of temperature and carrier gas on the yield of tar and 

remaining devolatilisation products, and the effects of temperature and 

equivalence ratio (ER) on the yield of gasification sub-model.   

 

 

1.5 Thesis Layout 

The layout of the thesis includes the following chapters: 

Chapter 1 presents the introduction, problem statement, research objectives, scope of the 

research, and thesis layout. 

Chapter 2 discusses oil palm as an energy source, the main constituents and thermal 

behaviour of lignocellulosic biomass, the thermal processes of biomass, the principles 

of chemical equilibrium and kinetic, types of gasifiers, fluidised-bed reactors and 
fluidisation regimes, segregation behaviour in fluidised bed reactors, Geldart’s 

classification of particles, gasification models, and biomass tar. 

Chapter 3 details the research methodology, including the materials, experimental 

procedure and setup, characterisation of fuel and bed material, products recovery and 

analysis, devolatilisation sub-model assumptions and equations, combustion sub-model 

equations, gasification sub-model assumptions and equations, and hydrodynamic model 

assumptions. 

Chapter 4 presents the method of characterisation of physical properties for both EFB 

and sand. Further discusses the experimental work results, and shows the yield 

correlations for species. 
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Chapter 5 reveals the results of devolatilisation sub-model and validates with the 

experimental work (this study) on the same system. 

Chapter 6 presents the effects of char mixing on carbon conversion and O2 consumption 

through applying sub-models for the combustion and gasification which consist of 

combustion and gasification reactions, respectively. 

Chapter 7 is about testing the aforementioned sub-models response (devolatilisation, 
gasification, and combustion) by changing each process parameter. 

Finally, Chapter 8 offers the thesis’s conclusions and recommendations for future work.    
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