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In-service pipelines are elongated structures which are widely employed to transport 

various types of liquid components and products in the gas, oil, and petrochemical 

industries. However, as pipelines age and encounter a number of changing 

environmental circumstances, defects such as corrosion and cracks can usually 

develop and affect the working condition of in-service pipelines. Defective pipelines 

can result in casualties, damage to the environment, litigation, high replacement costs, 

and property damage. In recent decades, ultrasonic guided waves (UGW) can detect 

corrosion and defects in pipes successfully, but the detection capabilities using the 

UGW technique are considerably affected by the complex profiles of the defects. The 

effects of notch depth, circumferential extent, frequency and pipe size on the reflection 

coefficient (RC) of the T(0,1) and L(0,2) modes were analysed numerically and 

experimentally. Good agreement was achieved between simulation and experimental 

results. The study shows that the RC of the T(0,1) mode obtained from the notches 

depends on the circumferential extent, notch depth and pipe size (diameter). A higher 

RC magnitude was obtained for 100% wall thickness notch, whereas the RC of the 

T(0,1) mode for 50% wall thickness notch was highly sensitive to frequency changes.  

Furthermore, the RC of the L(0,2) received from both notches was dependent on the 

notch depth and the pipe size. The effects of frequency on the RC was significant since 

a smaller RC magnitude was observed for the notch 50% through-wall depth than for 

the notch of 100% as the frequency changes. In addition, the propagation of the T(0,1) 

mode reflected from an axisymmetric circumferential notch (defect) with different 

depths and circumferential extents in steel pipes was parametrically studied using the 

finite element ABAQUS/Explicit software. The results show that the RC of the T(0,1) 

mode from the notch increases as the depth and circumferential length of the notch 

increase. Furthermore, the RC response is dependent on the changes in the cross-

section area of the notch. The results reveal that the T(0,1) mode is sensitive to the 

circumferential axisymmetric defects of various depths and circumferential extents. 
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This study also attempted to approach a basis to use the GW technique for defect sizing 

in different pipe sizes by obtaining the RC from notches (defects) numerically. Finally, 

the results showed that it is possible to detect and size of various circumferential 

defects in different size of pipes when the T(0,1) or L(0,2) modes were incidents using 

this simulation models.  
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Simulasi Berangka dan Eksperimen Penyiasatan Penyebaran Gelombang Ultra bunyi 

di dalam Paip beserta kecacatan. Di dalam servis saluran paip, terdapat struktur 

panjang yang mana telah digunapakai untuk menyalurkan pelbagai jenis cecair serta 

produk seperti gas, minyak dan juga industri petro-kimia. Walaubagaimanapun, 

seiring dengan usia saluran paip yang ada serta terpaksa menghadapi perubahan iklim 

yang sentiasa berubah-ubah, kecacatan seperti penghakisan dan retakan akan berlaku 

dan mengganggu kerja-kerja servis saluran paip yang ada. Kecacatan pada saluran paip 

dapat mengakibatkan kematian atau kecederaan pada mangsa, kerosakan pada 

persekitran, litigasi, kos pembinaan semula yang tinggi serta kerosakan harta-benda. 

Sejak beberapa dekad yang lalu, Penyebaran Gelombang Ultra Bunyi (UGW) ini dapat 

mengenalpasti hakisan serta kecacatan pada saluran paip dengan berkesan, tetapi 

kebolehannya untuk mengenalpasti menggunakan teknik UGW ini dipengaruhi secara 

ketara oleh profil kecacatan yang kompleks. Kesan kepada kedalaman takuk, tahap 

ukur lilit, frekuensi dan saiz paip terhadap pekali refleksi (RC), mod T(0,1) dan L(0,2) 

mod di analisa secara berangka dan secara eksperimen. Persetujuan yang bagus di 

peroleh daripada keputusan simulasi serta eksperimen. Kajian mendapati RC pada 

mod T(0,1) diperoleh daripada takuk-takuk bergantung kepada kedalaman takuk dan 

ukur lilit malah bergantung juga kepada saiz paip (diameter). Magnitud RC yang tinggi 

diperoleh untuk 100% kedalaman dinding takuk, manakala RC untuk 50% kedalaman 

dinding takuk diperoleh adalah sangat sensitif kepada perubahan frekuensi. Lebih-

lebih lagi, RC pada L(0,2) diterima daripada kedua-dua takuk adalah bergantung 

kepada kedalaman takuk serta saiz pipe. Kesan daripada frekuensi yang terdapat pada 

RC ada signifikan dimana nilai RC yang lebih kecil dilihat pada takuk 50% kedalaman 

terus-dinding lebih daripada takuk yang berada pada kedudukan 100% berikutan 

perubahan frekuensi yang berlaku. Tambahan pula, penyebaran mod T(0,1) direflek 

daripada ukur lilit axisimetri (kecacatan) dengan kedalaman serta panjang ukur lilit 

yang berbeza di dalam paip besi dikaji secara parametric menggunakan perisian 

elemen terhingga ABAQUS/Explicit. Hasil menunjukkan nilai RC pada mod T(0,1) 
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daripada takuk meningkat apabila kedalaman dan panjang ukur lilit  juga semakin  

meningkat. Tambahan pula, respon RC bergantung kepada perubahan dalam luas 

keratan-rentas takuk tersebut. Hasil mendapati mod T(0,1) sensitive kepada kecacatan 

ukur lilit asimetrik dengan pelbagai kedalaman serta panjang ukur lilit. Kajian ini juga 

bertujuan untuk mendapatkan penggunaan asas teknik GW kepada kecacatan saiz yang 

berbeza diperoleh menerusi takuk RC (kecacatan) secara berangka. Akhir sekali, hasil 

kajian menunjukkan ianya berpotensi untuk mengenal-pasti kecacatan dan nilai saiz 

ukur lilit yang berbeza bagi saiz paip yang berbeza apabila mod T(0,1) atau L(0,2) 

adalah nilai kejadian yang menggunakan model simulasi. 
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        CHAPTER 1 

1 INTRODUCTION 

1.1 Research Background  

As the backbone of gas and oil supply systems, pipeline networks can transport highly 

corrosive, high-pressure, and high-temperature content. Thus pipelines are very 

capable and reliable in meeting the demands of clients for gas and oil products at all 

times. There are several factors contributing to possible pipelines failures and to 

enhance their safety and integrity. The contributing factors include pipeline aging, 

corrosion, erosion, in-service damage, natural hazards, malfunctions, material defects, 

and interference of a third party which can result in the majority of unwanted 

consequences such as pipe defects, rupture, and puncture. Defective pipes may lead to 

fatalities, injuries, environmental damage, and loss of production. Some well-known 

failures such as the leaking oil pipeline of the corroded gas pipeline in Guadalajara 

City in Mexico (source: https://www.history.com/this-day-in-history/sewers-explode-

in-guadalajara) and the trans-Alaska pipeline system (source: https:// 

www.propublica.org/article/oil-leak-is-latest-mishap-for-toubled-alaska-pipeline-

system) are among failures that have caused human and financial losses. Thus, it is 

very important to improve the structural integrity and safety of a pipeline by 

performing regular In-Service Inspection (ISI) and, in this way, guarantee the 

protected running of the pipeline and avoid catastrophic failure (Galdos, Okuda, & 

Yagawa, 1990; Lee & Yang, 2010; Lin, Ito, Kawashima, & Nagamizo, 1999; Michael 

Lowe, 1998). Using conventional point-by-point Non-Destructive Testing (NDT) 

techniques, e.g. ultrasonic thickness gauging provides a slow process of inspection that 

raises the cost when comprehensive inspection coverage is necessary. Other NDT 

techniques for inspection including magnetic flux, eddy current, and radiography all 

require the pipe to be externally accessible. However, these techniques are often slow 

to cover the entire length of the pipe. Hence, it can be beneficial to look for a fast, 

accurate, and effective technique ideal for monitoring long distances of pipes just from 

one single transducer location to detect the regions where there might be corrosion, 

erosion or in-service damage. Whenever an initial fast monitoring test is carried out, 

conventional NDT methods can be used to focus on classifying the corrosion severity 

in the regions which have been detected earlier by the fast monitoring technique. In 

fact, the use of supplementary fast monitoring techniques helps accomplish the aims 

of detecting, locating, and sizing of defects such as corrosion and to minimise the 

overall costs of inspection. Regarding pipe inspection, one of the fast monitoring 

techniques is the pig technique that uses conventional ultrasonic bulk waves. In this 

case, the inside of the pipes can be monitored by sending an ultrasonic probe. This 

gathers the ultrasonic signals along the length of the pipe However, this method is 

really expensive when it comes to instrumentation and, additionally, it needs 

accessibility to launch and remove the pig. Hence, it is appropriate mainly for long-

distances of large-diameter pipes (Cordell, 1994; Demma, 2003a; Williamson & 

Bohon, 1994). The GWs inspection technique is another online fast monitoring 

technique which can be used for detecting corrosion, erosion, and in-service damage 
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in long-distance pipes. This technique has been widely applied in non-destructive 

evaluation because it has been recognised by many researchers or technicians as a fast, 

accurate, inexpensive, and effective technique for pipe inspection. It enables the 

inspectors to inspect pipes over tens of metres from only one single position of 

transducers distributed around the pipe circumference. In fact, the transducers excite 

cylindrically GWs and, subsequently, the waves stress the entire pipe wall and 

propagate along the pipe length. Then, they interact with all available features (such 

as corrosion patches, drains, branches, welds, etc.) which locally change the pipe 

geometry. Subsequently, the interaction will lead to wave scattering or partial 

reflection. Originally, the GWs technique was designed to inspect pipes in the range 

of 2 inch to 24 inch diameter; however, it can be used to inspect both larger and smaller 

sizes of pipe. The main application of the GWs technique is to inspect insulated pipes 

for corrosion under insulation (CUI), stainless steel pipes, high-temperature pipelines 

(<+125 °C), offshore risers (Na & Kundu, 2002; J. L. Rose, Cho, & Ditri, 1994), 

spirally welded pipes, painted pipework, road crossing sections, under supports, bridge 

piers, inaccessible pipework (i.e. buried pipes, sleeved, clamps, and cased pipes where 

rope access or scaffolding would be needed for tests using conventional NDT in the 

gas, oil, and petrochemical industries (DN Alleyne, Lowe, & Cawley, 1998; Demma, 

Cawley, Lowe, Roosenbrand, & Pavlakovic, 2004; Gan, 2010; Hirao & Ogi, 1999; 

Kundu, 2004; H Kwun, Kim, Choi, & Walker, 2004; Lebsack, 2007; Michael Lowe, 

1998; MJS Lowe & Cawley, 2006a; M. J. Lowe, D. N. Alleyne, & P. Cawley, 1998; 

Marques & Demma, 2008; Placko & Kundu, 2013; Sens, 2007). In addition, GWs 

ultrasonic testing (GWUT) can be applied to test wind turbine towers and cables, 

railway lines, offshore platform jackets and plates (the walls and floors of steel plate 

structures such as pressure vessels and storage tanks) (Catton, 2009b; Demma et al., 

2004; Na & Kundu, 2002; J. L. Rose et al., 1994; Paul Wilcox et al., 2003).  

Structural defects can result from two factors: either they can arise because of (1) 

changes in material properties such as embedded structures in surrounding materials 

or they can be due to two different materials welded together or because of (2) 

geometrical defects for example: different corrosion defects, free ends, curved 

components connected to the principal structures, and welds joining a couple of 

components together (Demma, 2003a; Demma et al., 2004). Hence, understanding the 

effects of a geometrical defect in the structure (i.e. pipe) for practical applications is 

important to improve and develop an effective monitoring or inspection strategy 

(Demma, 2003a).  

1.2 Problem Statement  

In spite of the abundance of knowledge available regarding GWs propagation in pipes 

with defects, very little work has been carried out concerning the propagation of 

ultrasonic GWs in pipes of different sizes with rectangular circumferential notches of 

different size depths. On the other hand, the interaction of the GWs with defects in 

pipes is a complicated physical phenomenon which needs greater evaluation and 

explanation in both experimental and simulated cases before the general application of 

the GWs technique. In fact, to detect a problem in a pipe, the effect of essential 
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parameters such as test frequency, defect sizes (e.g. defect depths) and the pipe 

diameter on the reflection coefficient (RC) of fundamental longitudinal or torsional 

GWs can be recognised and evaluated. (X. Wang, Peter, Mechefske, & Hua, 2010). 

Many investigations have been performed to determine the relationship between defect 

detection potential using GWs and reflections received from different types of defects 

in pipes affected by certain parameters, such as the axial and circumferential extents 

of defects, frequency changes and pipe size (diameter) (Bai et al., 2001; P Cawley, 

Lowe, Simonetti, Chevalier, & Roosenbrand, 2002; Zhou, Ichchou, & Mencik, 2009; 

W Zhu, Rose, Barshinger, & Agarwala, 1998). A recent study showed that small 

circumferential defects can be identified using the L(0,2) mode (Tan, Wang, Guo, & 

Ho, 2016). Moreover, previous studies found that the torsional T(0,1) mode around a 

pipe exhibited stronger reflection from axially aligned features or axial defects than 

the extensional (longitudinal) wave mode due to the circumferential motion of the 

former (MJS Lowe & Cawley, 2006b; Tan et al., 2016). However, in this research 

study; numerical and experimental analyses were performed to show the effects of 

notch depths, frequency and pipe size (diameter) on the RC of the T(0,1) mode from 

the circumferential notches (defects). Moreover, as yet this technique cannot provide 

a defect size. Both academics and industrialists recognise the potential for 

improvements to offer quantitative information concerning defect shapes or defect 

sizes, while providing the same fast inspection rates by using current commercial 

equipment. Therefore, the present research project focuses on the development of GWs 

technique to provide a deeper insight into the effects of various pipe sizes (4 inch, 

6 inch and 8 inch) and different defect depths (here, the pipes have two notches 

(defects) at different depths (50 % and 100 % wall thickness) on the RC received from 

longitudinal and torsional GWs propagated at various test frequencies. As such, the 

work can provide greater detail for classifying the severity of defects by calculating 

the RC from the rectangular notches acting as defects. This development can be 

regarded as part of defect sizing prediction and estimation. If this can be accomplished 

and implemented commercially, then pipe inspection will become more cost-effective 

and, thus, more widely used. Since the final objective of all NDT research is to enhance 

the early detection of structural failure which causes pipe leaks, this research aims at 

improving the capability of this technique since a key application of this technique is 

in the gas, oil, and petrochemical industries for defect identification. In fact, the results 

of experimental investigation and numerical simulation of GWs propagation in 

different pipe sizes with defects of different sizes would be helpful in improving the 

capability of the GWs technique in relation to defect detection, location, and sizing, 

particularly, under inviolable or inaccessible conditions.  

1.3 Objectives of the research  

Based on the problem statement and limitations of the current commercial GWUT, the 

main objective of this research is to develop the capability of the GWs technique for 

detection, localisation, and even sizing of different defects in different sizes of pipe. 

This can be achieved through effective finite element simulation of the GWs 

propagation in different sizes of pipe with notch models. The GWs are excited by 

excitation nodes (transducers) encircling the circumference of the simulated pipes. In 

this regard, three sizes of steel pipes (4 inch, 6 inch and 8 inch) with two 
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circumferential notches at different depths (50 % and 100 % wall-thickness) were 

simulated. The FE models were simulated using ABAQUS/Explicit software version 

6.14-1.  

In order to demonstrate the accuracy of the provided simulation, the GWs propagation 

along three steel pipes with two manufactured circumferential notches with the same 

size and position as those in the simulation, were analysed and investigated 

experimentally by employing Teletest transducer rings. Both longitudinal and 

torsional wave modes were excited to propagate along the pipe in both the simulation 

and the experiment. However, very limited prior works could be found through the 

application of the guided torsional T(0,1) wave to detect circumferential defects of 

varying depths in pipes. Moreover, past studies have indicated that the T(0,1) mode is 

not a good choice to detect circumferential defects. This is the motivation behind the 

use of the T(0,1) mode in this research to detect the varying size of circumferential 

notches in steel pipes. This approach can provide a basis to use the torsional T(0,1) for 

defect sizing in steel pipes by obtaining the RC from circumferential defects 

numerically and experimentally. Hence, there are three main questions as motivation 

to determine the greater capabilities of the GWs technique in corrosion monitoring of 

pipelines or piping systems. This technique can be usually used as a complementary 

technique along with conventional ultrasonic techniques during field inspections. One 

of the limitations of the technique is for sizing of defects. Hence this research study 

attempts to answer these three questions as follows: (1) is it possible to enhance the 

capability of the GWs technique using a novel FE simulation model for defect sizing 

in various sizes of pipes with circumferential notches (defects) of different depths and 

circumferential extent at a range of low frequencies from 30 kHz to 60 kHz; (2) is it 

possible to develop a novel finite element model to be used in the novel inspection 

system to help in the detection of circumferential defects by using the fundamental 

guided torsional T(0,1) mode; (3) what is the effect of pipe size, frequency and notch 

size (depth) on the RC received from defects.   

The principal objectives of the current study project are: 

- To numerically simulate and experimentally investigate the GWs propagation in 

three different steel pipe diameter sizes with two rectangular circumferential 

notches of different depths and location. 

- To simulate the interaction of both longitudinal and torsional GWs with defects to 

determine the RC from both notches and to verify the simulation with the 

experimental data to validate the accuracy of the numerical simulation. 

- To develop a new simulation model based on parametric studies for a 

circumferential defect in a pipe to detect and classify the severity of defects and 

also to predict the location and size of any types of defects based on the new 

introduced simulation model. 
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1.4 Scope of the study  

The scope of this study concerns the development of the GWs technique by using a 

novel finite element model. FEM was used to examine 130 different simulation steel 

pipe models (three sizes of pipes) with two circumferential notches of different depths 

and locations in the pipes. Also, the same quantity of models was used for pipes 

without notches. Simulation models followed the same sizes of pipes with notches as 

used in the experiment. However, there was a lab limitation to use the same length and 

thickness of the pipes as in the experiment (see Table 4.2). Hence, the length and 

thickness of pipes of 4 inch, 6 inch and 8 inch were different in the experiments 

whereby the simulation models followed those sizes. The simulation and experimental 

tests were carried out at a range of frequencies between 30 kHz to 60 kHz.  

Simulation and experimental verification provides a basis to conduct a parametric 

study for a novel inspection system. Ten different steel pipe models with varying 

depths and circumferential profiles were created in the parametric study. The results 

of this study yielded the RC of the two main guided wave modes (Longitudinal mode 

L(0,2) and torsional mode T(0,1)) from those notches. This novel inspection system 

not only performs detection and localisation of the defects in the different size of pipes 

but also it provides a basis for defect sizing. This developed monitoring system can be 

employed in a commercial GWs technique to enhance the efficiency of this method to 

detect, locate and size various types of defects in cylindrical structures such as pipes. 

1.5 Organisation of this thesis 

This thesis consists of five chapters, which are arranged to provide the research 

background, the literature review, the experimental tests, the simulation tests, 

parametric studies and the subsequent analysis and conclusions. The details of the 

chapters are summarised as follows: 

Chapter 1 is the motivation, and the background is introduced in this study. This 

chapter also includes the scope and objectives of the research study.  

Chapter 2 provides a summarised literature review of the GWs technique that explains 

the finite-element simulation fundamentals as well as the GWs theories regarding 

defect detection, localisation and defect sizing.  

Chapter 3 describes the created finite-element models using ABAQUS/Explicit 

version 6-14.1 and the requirements of the simulation of GWs propagation in steel 

pipes, including explicit dynamic analysis, the Hanning window function, pure mode 

selection, element type, meshing, element size, notch modelling and defining a job for 

each model. This chapter, in addition, explains the experimental test process using the 

commercial UGWs technique and its application for the detection of manufactured 

notches in three pipes (4 in, 6 in and 8 in). Also, this chapter describes the 
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axisymmetric and focusing technique for defect detection. Moreover, this chapter 

explains the parametric studies (including numerical models) that investigate the RC 

of the torsional T(0,1) mode from varying defect sizes of different depths and 

circumferential extents.  

Chapter 5 explains the simulation results and experimental verification for GWs 

propagation and reflection in pipes with notches. This chapter explains parametric 

study results and describes the simulation of 130 different steel pipe models, including 

material properties, meshing, applying excitation force loads on excitation nodes 

(considered as transducers) and the required time steps and time increment in each 

model. Also, this chapter provides the simulation and experimental verification. 

Moreover, this chapter summarises the research study by explaining the conclusions 

obtained from experiment, simulation and parametric studies in this research work and 

finally provides recommendations for further studies.  
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