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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
of the requirement for the degree of Doctor of Philosophy 

EMBEDDED MINI-ANALYZER DEVICE FOR IN SITU WIDE RANGE 
HEAVY METAL IDENTIFICATION AND CONCENTRATION 

DETECTION 

By

AMIN MAZAHERI

April 2018

Chairman :   Maryam binti Mohd Isa, PhD  
Faculty : Engineering

Metal toxicity is a critical concern in both human health and ecosystem. Many 
heavy metals are lethal at high concentration. It can also be harmful at trace 
concentration since accumulating such materials in human organs lead to long- 
term negative health effects such as cancer, heart disease and high blood pressure. 
Therefore, heavy metal detection of trace concentration is very important. Heavy 
metals can be detected using electrochemical detection system. It consists of elec- 
trodes, potentiostat that controls the electrode and signal processing block. With 
the advancement of integrated technology, in-situ electrochemical systems provide 
feasible solution for sensitive detection and miniaturized platform. The 
potentiostat as main part of the system; read, amplify and control the current flow 
through the electrodes.

In this study, the fully differential variable gain potentiostat, would be able to 
measure wide range current of different types of electro chemicals, typically from 
100 nA to 100 mA and can generate an excitation potential between -3V and +3V. 
This potentiostat is designed with a fully differential operational amplifier and 
rail-to-rail common-mode range buffer for linearity of output signal. 

Voltammetry as electrochemical technique is used in this project for the heavy 
metals detection. This designed device was able to perform differential pulse 
anodic stripping voltammetry (DPASV) as a sub techniques of voltammetry. 
Among many types of voltammetry techniques, differential pulse anodic stripping 
voltammetry (DPASV) technique was chosen where a pulse shaped voltage is 
applied on the sen- sor and the current through the sensor is measured to determine 
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the concentration and types of heavy metal.

To achieve the ability of in-situ processing of detection, embedded algorithms like 
digital FIR filter, multiple peaks finding, peaks classification and linear 
regressions have been implemented on an ARM processor. The resulted signals 
known as voltammogram and the concentration value will be displayed on a 
graphical LCD. Voltammogram is a plot of current reaction with applied voltage. 
Tests were carried out for solution with different heavy metals like cadmium (Cd), 
lead (Pb) and copper (Cu). A concentration range from 0.5 ppm to 10 ppm of lead 
have been used to test the system accuracy and detection limits. The system was 
able to detect the heavy metal with correlation factor of 0.99, between the 
concentration value and voltammogram current peaks.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

PERANTI MINI-ANALISIS TERBENAM UNTUK MENGENALPASTI DAN 
MENGESAN KEPEKATAN LOGAM BERAT DALAM LINGKUNGAN 

LUAS DI TEMPAT ASAL 

Oleh 

AMIN MAZAHERI 

April 2018

Pengerusi : Maryam binti Mohd Isa, PhD 
Fakulti : Kejuruteraan 

Ketoksikan logam adalah keprihatinan kritikal dalam kesihatan manusia dan eko-
sistem. Banyak logam berat yang mematikan pada kepekatan yang tinggi. Ia juga 
boleh memudaratkan kepekatan mengesan sejak mengumpul bahan-bahan 
sedemikian dalam organ manusia menyebabkan kesan kesihatan jangka panjang 
yang negatif seperti kanser, penyakit jantung dan tekanan darah tinggi. Oleh itu, 
pengesanan logam berat kepekatan jejak adalah sangat penting. Logam berat dapat 
dikesan menggunakan sistem pengesanan elektrokimia. Ia terdiri daripada 
elektrod, potentiostat yang mengawal elektrod dan blok pemprosesan isyarat. 
Dengan kemajuan teknologi bersepadu, sistem elektrokimia di-situ menyediakan 
penyelesaian yang layak untuk pengesanan sensitif dan platform mini. Potentiostat 
sebagai ba- hagian utama sistem; membaca, menguatkan dan mengawal aliran 
semasa melalui elektrod. Dalam kajian ini, pembolehubah pembolehubah 
pembolehubah sepenuh- nya, dapat mengukur arus pelbagai jenis bahan kimia 
elektro, biasanya dari 100 nA hingga 100 mA dan boleh menghasilkan potensi 
pengujaan antara -3V dan + 3V. Potentiostat ini direka bentuk dengan penguat 
operasi kebezaan sepenuhnya dan penampan pelbagai mod rel kereta api-railiiito 
untuk linieriti isyarat keluaran. Voltammetry sebagai teknik electrochemical 
digunakan dalam projek ini untuk pengesanan logam berat. Peranti yang direka 
ini dapat melakukan voltmeter pelucutan anodik pulsa (DPASV) sebagai sub 
teknik voltammetri. Antara jenis teknik voltammetri, teknik tegasan denyutan 
anodik tegangan denyutan (DPASV) dipilih di mana voltan berbentuk nadi 
digunakan pada sensor dan semasa melalui sensor diukur untuk menentukan 
kepekatan dan jenis logam berat. Untuk men- capai keupayaan pemprosesan 
pengesanan in-situ, algoritma terbenam seperti pe- napis FIR digital, penemuan 
puncak pelbagai, klasifikasi puncak dan regresi linier telah dilaksanakan pada 
pemproses ARM. Isyarat yang dihasilkan dikenali sebagai voltammogram dan 
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nilai tumpuan akan dipaparkan pada LCD grafik. Voltammo- gram adalah plot 
tindak balas semasa dengan voltan yang digunakan. Ujian telah dijalankan untuk 
penyelesaian dengan logam berat yang berbeza seperti kadmium (Cd), plumbum 
(Pb) dan tembaga (Cu). Pelbagai kepekatan dari 0.5 ppm hingga 10 ppm plumbum 
telah digunakan untuk menguji ketepatan dan had pengesanan sistem. Sistem ini 
dapat mengesan logam berat dengan faktor korelasi 0.99, antara nilai tumpuan dan 
puncak voltammogram semasa. .
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CHAPTER 1  

1 INTRODUCTION 

1.1 Introduction 

In modern century, electrochemical devices are widely used in several areas, includ- 
ing the biotechnology, physics and chemistry laboratories as well as industrial, food 
and environmental monitoring. These instruments are used to detect, identify, mon- 
itor and analyze critical parameters of chemical reactions [3, 13]. In recent years, there 
is an increasing interest in employing electrochemical electrode sensors in portable 
devices. The electrochemical detection techniques are recommended, not only because 
they are cost effective, rather they can be used for real-time portable devices with high 
reliability [14–20]. 

Electrochemical devices utilize electrode sensors for detecting chemical elements; 
for example they can be used as an implantable microchip to check the content 
level of blood, such as oxygen, glucose and cholesterol [21] or to identify toxic 
metals in drinking waters [5, 14]. Generally, an electrochemical sensor reacts with 
the chemi- cal elements of interest by exchanging an electrical current which is 
proportional to the concentration of that species. There are different electro-
analytical techniques that can be used to control the chemical reaction between 
the sensor and solution. Voltammetry is one of the common method that use for 
the quantitative determina- tion of substances in solutions. These technique can 
be used for identifying transfer of electron in a variety of solvent.

Figure 1.1 illustrates the block diagram of the electrochemical instrumentation 
sys- tem [5]. This electrochemical instrument includes electrochemical sensor, 
data conversion, microcontroller and potentiostat. Potentiostat is an electronic 
circuit that utilized to perform the electro-analytical techniques by applying an 
excitation po- tential on an electrode sensor and then read the produced current 
from the sensor. Basically, a potentiostat has two main functions, controlling the 
potential difference between working electrode (WE) and reference electrode 
(RE) and measuring the current flowing between working electrode and counter 
electrode. The excitation signal is generated by the microcontroller in digital form 
and is then converted to analog form using a digital to analog converter (D/A) [6]. 
It is applied to the counter electrode (CE) and reference electrode (RE) via a 
potentiostat which acts to control the applied potential. The signal output, in the 
form of current, is obtained from working electrode (WE). The generated current 
is the result of electrochemical reactions occur at the surface of the electrode. The 
amount of current is related to the concentration of electro-active elements, 
applied voltage on the sensor and area of the electrode sensor. at the data 
acquisition process, the current is digitized by an analog to digital converter (A/D) 
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under the control of the microprocessor. These digital numbers are then stored in 
the memory for storage and further processing. 

Figure 1.1: A Simplified Block Diagram of the Electrochemical 
Instrumentation System

1.1.1 Heavy Metals Toxicity and Environment Monitoring 

Metal toxicity is a critical concern in both human and ecosystem health. Many heavy 
metals are lethal at high concentrations. It can also be harmful at low concentration 
and lead to long-term negative health effects such as heart disease, high blood pressure 
and cancers [7-9].  In fact, after the penetration of these metals  into the body, 
accumulate in tissues such as fat, muscle, bones and joints and cause many diseases 
and bring various other aggravating problems to human [10, 11]. Environmental 
pollution from industry is the main source of heavy metals in the environment.  As 
shown in Figure 1.2, the effect of heavy metals for example lead and cadmium in the 
human body is often associated with some complications as in the following: Getting 
cold feet, immunodeficiency, skin rashes, digestive problems, fatigue, heart disease, 
high blood pressure, irritability, allergy, forgetfulness and dizziness. 

Environmental monitoring is important for evaluating and mitigating threats to the 
environment and public health, tracking natural resources for reducing the costs 
associated with waste treatment. The need for inexpensive analytical tools is not 
thus not limited to the area of health care. Such tools will also be useful in food 
safety testing and a variety of applications from environmental monitoring.

Current monitoring methods required by regulatory bodies are often expensive, 
time-consuming and require skilled personnel and a laboratory equipped with ex- 
pensive analytical tools. In some large scale projects laboratory analysis are more 
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costly of the remediation effort [22]. In addition to the costs, the integrity of the 
analyses can also be compromised at any point within the usually multiple day 
pro- cess of sample collection, storage, transport and analysis. Portable 
instrumentation that allows on-site sampling and analysis has the potential to make 
environmental monitoring simpler, faster and inexpensive. The instruments can 
be designed to work unattended and to store data for periodic retrieval. Devices 
with wide range voltage control capability will enable more routine monitoring of 
environments to support more electro chemicals. These field portable devices 
installed for environ- mental monitoring could also incorporate intrusion sensors 
to detect intentional damage such as might occur in a biological or chemical 
leakages. Furthermore, the resources and diagnostic tools required for rapid 
identification of electro-chemicals. 

Figure 1.2: Effect of Accumulation of Heavy Metals in Human Body [1] 



© C
OPYRIG

HT U
PM

4 

1.1.2 Electrochemistry 

In this work, a fully differential potentiostat is utilized to accomplish differential 
pulse anodic striping voltammetry (DPASV) method. Differential pulse anodic 
stripping voltammetry is a technique in which a pulse that placed on a ramp 
voltage is applied on sensor electrodes. The electrodes are dropped in a solution 
with an electro-active chemical element. The combination of electrodes and 
solution are named as electrochemical cell. When electrochemical reaction occur, 
the sensor generates a current peak at a specific voltage level. Electrochemical 
reaction current is known as faradaic current. The potentiostat is responsible for 
measuring this current which normally is in mili to nano-amper range.

The plot of measured current versus cell voltage graph is called voltammogram 
and for a DPASV experiments looks like a bell shape curve. At the voltammogram 
the voltage position of measured peak is unique for each elements which is called 
E1/2 and at that specific voltage have the maximum electrochemical reaction.  This 
property can be used for identification of an unknown chemical. Additionally, the 
height of the voltammogram peak which representing the current of sensor, 
provides a measure of the concentration of chemical.

The proposed system are able to apply a wide range of DPASV excitation signal 
from -3V to +3V that based on references can cover the E1/2 voltage of 30 different
kinds of traced chemicals [1]. On the other hand the device is targeted to support 
a wide range of sensor current readout from nA to mA, which is essential for 
different range of chemical concentrations. 

1.2 Problem Statement 

The effect of contamination by highly toxic metals on human health, economic, 
agriculture products and natural water, forcing industry and regulatory bodies to 
monitor pollutant levels at different points of natural water, industrial, and cities. 
Therefore, significant number of properly trained staff members are used by 
several organizations to monitor pollutant in areas. Typically, pollutant monitoring 
needs sample collection and specific laboratories. The instruments currently used 
for the analysis of samples are expensive devices and involve trained personnel to 
carry out the analysis and to understand the results. Additionally, these systems 
are usually too large to be used in the field. It has to be connected to a computer 
and in some application, it is a longtime process. It is also not user friendly where, 
only graphs with peak value was given with unknown type of heavy metal and the 
unknown level of concentration. In a number of applications, the longtime delays 
related with this procedure are unsatisfactory, and make online monitoring 
necessary.
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Almost all the validated devices currently on the market are still too costly for the 
limited resource communities that have great need for such equipment. 
Professional companies offer a range of equipment for general purpose 
electrochemistry appli- cations that can be used in many forms of electrochemical 
analysis. The price of those stats differs in the range of $15k to $20k for big 
research style analyzers with 20-30 kg weigh. For less complex devices weighing 
l-3 kg, the cost is approximately 

$5k to $10k, less compact systems use desktop/laptop computers to interface to 
the system to run the analysis. Furthermore, developing a field-ready, online 
systems needs real time electrochemical data analysis. Basically, research on 
potentiostats is categorized into three parts which are the potentiostats designed to 
improve accu- racy and detection limit, potentiostats integrated for biological 
array applications, and potentiostats integrated with mixed-signal functionality. 
The voltage gain, input offset voltage, output voltage swing and input referred 
noise of the poten- tiostat are defined the potentiostat accuracy. Recently 
researchers have developed potentiostat based on CMOS technology but for the 
detection of limited type of heavy metals [18, 46]. In order to detect trace 
concentration of heavy metals, the potentiostat should be able to detect wide range 
current typically in the range of mA to nA. Scaled down CMOS technology which 
tends to operate at lower current may be useful for detecting low concentration of 
heavy metals. Although down- scaling trend of CMOS technology has 
significantly improved the performance of digital system, but, the decreasing 
supply voltage imposes challenges to analog de- sign and limited the range of 
required voltage for wide range detection. Therefore, an inexpensive miniaturized 
instrument capable of performing in-situ measuring of different electro-active 
samples by generating a wide range of excitation signal, is demanded. Also, stand-
alone analyzing of data with real time plotting is necessary for a portable system.

1.3 Research Objective 

The aim of this dissertation is to design a prototype hand-held automated elec- 
trochemical analyzer system that could perform electrochemical measurements 
for the purpose of heavy metal detection by using electronic circuit for control,
sig- nal processing and data storage. Numerous commercial instruments that 
perform such analysis are available; however, their size and cost inhibit their 
application for on-site testing. The resulting prototype addresses the problem of 
detecting heavy metals with a low-cost hand-held device. It has considerable 
advantages of stand-alone data analyzing over the laboratory-based system and 
could be used for inexpensive electrochemical experiments. The costs, energy 
efficiency, and ease of use were considered as part of the system design. In order 
to achieve this aim, the following objectives have been set:
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1. To design a fully differential potentiostat that is able to generate a wide range of 
potential over the electrochemical three-electrode sensor from -3V to +3V and 
read the current of chemical reactions. The variable gain circuit, allows 
measurement of a wider range of currents from 100nA to 100mA. 

2. To implement the sub-units of the portable device as like power unit, filters, level 
shifters and the signal processing block to verify the functionality and the 
performance of the system. Implements embedded signal processing algorithms 
to automatically analyzing sampled data in order to detect a heavy metal and 
identify its concentration. The algorithms contain FIR filtering, peaks detection, 
statistical prediction and linear regression. 

3. To evaluate the system performance by testing several types of heavy metals 
with different concentration. Additionally, the portable device have touch screen 
graphical LCD to shown the online experiment signals and processed data. 

1.4 Scope of the Work 

The mini-analyzer device is able to detection heavy metals such as cadmium (Cd), 
lead (Pb) and copper (Cu) with the concentration range from 0.5 ppm to 10 ppm. 
Those three heavy metals are used to verify device processing functionality and 
comparing with commercial micro-auto lab device. The performed statistic and 
calibration data of Lead, in a concentration range of 0.5ppm to 10ppm is stored on 
the system memory. Because of portable processing ability and online display of 
results, the sample tests can be done on site. 

1.5 Thesis Organization 

The outline of the thesis is as follows:

Chapter 1 gives an introduction to electrochemical systems, highlighting the im- 
portance of the research for heavy metal detection and monitoring are presented.

Chapter 2 provides an overview of the electrode sensors, methods configuration 
and detection principles. Detail description of the analytical electrochemistry 
theory and equations associated with the electrochemical analyzer. The 
configuration of different potentiostat and its fundamental operations in the 
perspective of heavy metal detection, are outlined.

Chapter 3 includes details of experimental procedures. The procedures outline the 
electrochemical experiments including the sensor, materials to be deposited, the 
deposition method, voltammetry techniques employed and method of detection. 
The chapter also explains the design and development of the portable hand-held 
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electrochemical analyzer system with details of the analog interface circuit, the 
dig- ital circuit design, PCB layouts, embedded software and user interface. 
Details are presented on the analog and digital hardware of the system and the 
embedded algo- rithms executed on the digital hardware. The analysis methods 
used for analyzing the data obtained from electrochemical analyzer system is
presented.

Chapter 4 provides the results and discussion acquired from the controlled testing 
of the electrochemical device and illustrate the electrochemical experiments 
using the portable device.

Chapter 5 concludes and gives potential direction for the future research on elec- 
trochemical analyzer systems. 
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[38] Gláucio Gualtieri Honório, Gustavo Chevitarese Azevedo, Maria Auxili- 
adora Costa Matos, Marcone Augusto Leal de Oliveira, and Renato 
Camargo Matos. Use of boron-doped diamond electrode pre-treated 
cathodically for the determination of trace metals in honey by differential 
pulse voltammetry. Food Control, 36(1):42–48, 2014.

[39] Yasser Shahbazi, Farhad Ahmadi, and Farnoosh Fakhari. Voltammetric de- 
termination of pb, cd, zn, cu and se in milk and dairy products collected 
from iran: An emphasis on permissible limits and risk assessment of 
exposure to heavy metals. Food chemistry, 192:1060–1067, 2016.

[40] Shahryar Abbasi, Hossein Khani, and Reza Sahraei. A highly sensitive 
adsorp- tive stripping voltammetric method for simultaneous 
determination of lead and vanadium in foodstuffs. Food Analytical 
Methods, 5(2):272–278, 2012.

[41] T Galeano D ı́az, A Guiberteau, MD Lopez Soto, and JM Ortiz. Determi- nation 
of copper with 5, 5-dimethylcyclohexane-1, 2, 3-trione 1, 2-dioxime 3-
thiosemicarbazone in olive oils by adsorptive stripping square wave voltam- 
metry. Food Chemistry, 96(1):156–162, 2006. 

[42] Andrzej Bobrowski et al. Anodic stripping voltammetric determination of cop- 
per traces in carbonate minerals and fly ash extracts using a screen-printed 
electrode modified in situ with antimony film. Insights in Analytical Electro- 
chemistry, 2015. 

[43] N Abo El-Maali, D Abd El-Hady, M Abd El-Hamid, and MM Seliem. Use of 
adsorptive stripping voltammetry at the glassy carbon electrode for the simul- 
taneous determination of magnesium (ii) and aluminium (iii): Application to 
some industrial samples. Analytica chimica acta, 417(1):67–75, 2000. 

[44] Tasneem Gul Kazi, Hassan Imran Afridi, Faheem Shah, Sadaf Sadia Arain, 
Kapil Dev Brahman, Jamshed Ali, Mariam S Arain, et al. Simultaneous 
deter- mination of silver and other heavy metals in aquatic environment 
receiving wastewater from industrial area, applying an enrichment method. 
Arabian Journal of Chemistry, 2014.
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