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Model Predictive Control (MPC) is an advanced control setup that uses op-
timization to determine the controlled input. The MPC was initially a linear
approach that has grown to include non-linear systems, robust stability, and
offset-free control, which have increased the complexity through; more intricate
modeling requirements, increased tuning demands, and a higher computational
load.

In this work, the aim is to reduce the aforementioned complexities when applying
MPC to nonlinear processes. The first step is to use multiple linear models as a
way of describing the non-linear process. The piecewise linear (PWL) description
captures the nonlinear process without requiring a non-linear model.

The first objective is to use the PWL for a multi-model description of the process
giving rise to multiple model predictive control (MMPC). The PWL models
are combined, using a Bayesian approach, into a single model for use in the
optimization in MPC. The technique is not a new approach, but one that had
not been applied to a pH-control system before.

For the next objective, an MMPC-I approach is developed to introduce inte-
gral action into the MMPC, to handle uncertainties such as disturbances and
modeling errors. The new method is suggested to circumvent the complications
associated with the tuning of an observer.
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The combination of MPC and the integral controller was further developed by
using the multi-model in a min-max approach to get min-max MPC-I. The
min-max configuration using the worst-case scenario for the models rather than
weighing them together. This objective would improve the handling of paramet-
ric uncertainties, reducing overshoots and oscillations.

The final objective was to develop a Robust MPC-I controller. The disturbance,
parametric uncertainty, and integral controller are all accounted for in the input
to state practical stability (ISpS) approach. A proof is given that the Robust
MPC-I is indeed ISpS for nonlinear systems with bounded uncertainties.

The different combinations of MPC and integral controllers were tested on the
pH-control system and compared to PID and observer-based MPC. The MMPC
showed excellent behavior when set-point tracking giving at least 25% improve-
ment compared to PID, concerning rise time, settling time and overshoot. How-
ever, the MMPC would not achieve offset-free control when disturbances or
model errors were present. The inclusion of integral action removed the offset
for both MMPC-I and the min-max MPC-I. The MMPC-I managed to reduce
the settling time and overshoot for set-point tracking, disturbance rejection and
model errors, leading to a 15% reduction in root mean square error (RMSE)
compared to the PID. The min-max MPC-I showed similar improvements com-
pared to the PID, though RMSE improvement were just 10%. The reduction
compared to the observer-based MPC was even more significant (22%) as it could
not achieve offset-free control for all cases. The Robust MPC-I was proven to be
stable through mathematical proof, as well as showing improvement compared
to the min-max MPC-I. The RMSE was reduced by a further 10%. Lastly, it
was shown that the Robust MPC-I reduced the computational time compared
to the observer-based MPC by an average of 25%.

A model predictive controller with adaptive I-controller is presented in this thesis
to reduce the complexity of the controller. The steps needed in controller tuning
and the computational times have been improved compared to the observer-
based controller. The robust min-max-MMPC-I is shown to produce better
control compared to PID and the observer based model predictive controller.
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Model predictive control (MPC) adalah persediaan kawalan maju yang menggu-
nakan pengoptimaan untuk menentukan input kawalan. Asalnya MPC adalah
pendekatan linear mudah yang telah berkembang dengan meliputi sistem tidak
linear, kestabilan teguh dan persediaan kawalan offset bebas dimana telah men-
ingkatkan kompleksiti melalui kerumitan keperluan model, peningkatan per-
mintaan sasaran dan bebanan pengiraan.

Dalam kajian ini, matlamatnya adalah untuk mengurangkan masalah kerumi-
tan keperluan model, permintaan sasaran dan bebaban apabila menggunakan
aplikasi MPC untuk proses tidak linear. Linear Piecewise (PWL) menjelaskan
proses ketidaklinearan tanpa memerlukan model ketidaklinearan. PWL adalah
model linear pelbagai yang menerangkan proses peningkatan kepada Kawalan
ramalan model pelbagai (MMPC). PWL adalah menggunakan gabungan pen-
dekatan Bayesian, didalam model tunggal untuk didgunakan dalam pengopti-
maan MPC. DImana ianya bukanlah teknik yang baharu, tetapi ianya belum
pernah diaplikasi untuk sistem pengawalan-pH. Seterusnya, pendekatan penye-
suaian I-pengawal (MMPC-I) dibangunkan untuk memperkenalkan tindakan in-
tegral kedalam MMPC, bagi mengatasi ketidakpastian seperti ganggunan dan
kesilapan pemodelan. Kaedah baharu ini dicadangkan untuk mengelakkan kom-
plikasi berkaitan dengan penalaan pemerhati.

Kombinasi MPC dan pengawalan tindakan (integral action) telah dibangunkan
dengan menggunakan model kepelbagaian dalam pendekatan min-max untuk
mendapatkan min-max MPC-I. Konfigurasi min-max menggunakan senario kes
terburuk untuk model sebaliknya menimbangkan mereka bersama, Ini akan
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memberi penambahbaikan dalam pengendalian ketidaktentuan parametrik, men-
gurangkan overshoot dan ayunan.

Akhirnya, pengawalan MPC-I yang teguh telah dibangunkan. Kesemua gang-
guan seerti, ketidaktentuan parametrik dan pengawalan integral telah diam-
bilkira dalam pendekatan input menyatakan kestabilan praktikal (input to state
practical stability) (ISpS). Bukti telah diberikan bahawan keteguhan MPC-I
adalah ISpS untuk sistem tidak linear dengan ketidaktentuan batasan.

Kombinasi MPC yang berlainan dan pengawalan integral telah diuji ke atas
sistem pengawalan-pH dan dibandingan dengan PID dan MPC berasaskan pe-
merhati. MMPC menunjukkan kelakuan yang cemerlang apabila jejakan set-
point memberi nilai paling kurang 25% penambahbaikan berbanding dengan
PID, berkaitan peningkatan masa (settling time), penetapan masa dan over-
shoot. Walaubagaimanapun, MMPC tidak dapat mencapai pengawalan offset-
free apabila kehadiran gangguan atau kesilapan model (model errors). Kema-
sukkan tindakan integral telah mengeluarkan offset unuk MMPC-I dan min-max
MPC-I. MMPC-I dapat mengurangkan peningkatan masa dan overshoot untuk
jejakan set-point, penolakan gangguan dan kesilapan models, yang menghasilkan
pengurangan 15% dalam root mean square errors (RMSE) berbanding dengan
PID. Min-max MPC-I menunjukkkan penambahbaikan yang sama dengan PID,
walaupun penambahbaikan RMSE han-yalah 10%. Akhirnya, keputusan me-
nunjukkan MPC-I teguh telah mengurangkan jangkamasa pengiraan terhadap
MPC berasaskan pemerhatian dengan kadar purata sebanyak 25%.

Model reamalan pengawalan dengan adaptasi pengwalan-I di bentangkan dalan
tesis ini untuk mengurangkan kerumitan pengawalan, langkah-langkah yang
perlu dalan penalaan pengawalan dan bilangan pengiraan telah memberi pe-
nambahbaikan berbanding pengawalan berasaskan pemerhatian (observer based
controller). Keteguhan min-max MMPC-I ini telah menunjukkan pengawalan
yang lebih baik berbanding PID dan model ramalan pengawalan berasaskan
pemerhati.
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CHAPTER 1

INTRODUCTION

1.1 Background

The main focus of the thesis lies in model predictive control (MPC) of nonlin-
ear systems. MPC is the favored control technique when an advanced control
scheme is implemented (Maciejowski (2002); Camacho and Bordons (2004); Be-
quette (2007)). This is highlighted by the application in as various fields as
the metal ore industry (Jovanovic and Miljanovic (2015)), the food industry
(Kondakei and Zhou (2017)) and the nuclear industry (Eliasi et al. (2012)).
The traditional process industry is where it has had its major impact (Qin and
Badgwell (2003)) with a growing number of applications since its first imple-
mentation in the 1970s. The first software introduced were the IDCOM, but
earlier applications were done at Shell Oil utilizing their MPC tool referred to
as dynamic matrix control (DMC). Though these techniques were not direct
developments from the linear quadratic controllers developed in the 1960s, they
have plenty in common. Recurring features include the utilization of a linear
model to predict the behavior of the process and that the control performance
is obtained based on the optimization of a quadratic objective. However, one of
the strengths of MPC, the constraint handling, was not addressed stringently in
the early approaches. The constraint handling was rather a part of the second
generation setups and software; IDCOM-M, QDMC as well as newcomers with
software such as HICON and setups like predictive functional control (PCF) to
name a few. One of the major developments in the 1980s was the Shell multi-
variable optimizing controller (SMOC), which heralded the use of state-space
models into MPC. The state-space model has more or less become the norm
in research, while still not totally embraced by the industry (Qin and Badgwell
(2003)). This is because most software-based model identification usually relies
on response modeling, which will be the model applied the MPC as well. As
could be expected the MPC performs best when the time is set aside to do
fundamental modeling rather than relying solely on empirical modeling.

In the 1990s the application in industry, particularly in the process industry,
continued growing, which can be seen in the quadrupling seen between the two
surveys carried out in 1995 (Qin and Badgwell (1997)) and 2000 (Qin and Badg-
well (2003)). This coincided with a wider interest from the academic world in the
1990s (Qin and Badgwell (2003)). The application and theory for applying MPC
to linear or systems that could be considered linear enough to use a linear model
was fairly well defined by the end of the 1990s. This included the setup required
to achieve a guaranteed robust stability. However, already at this early stage
of research, it was noted that those inclusions have increased the complexity of
the MPC. This has led to an increasing demand for the process engineers as the
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service and maintenance has become more complex (Qin and Badgwell (2003)).
Though, the development of nonlinear considerations as well as an extension
into robust stability seemed a rapid development in 2003 (Qin and Badgwell
(2003)). The actual implementation of nonlinear MPC has lagged behind with
a widening gap between the research and the applications (Ogawa and Kano
(2008); Mayne (2015); Forbes et al. (2015)). The major explanation for this is
the additional effort needed to describe the nonlinear process while combining
linear MPC or PID in conjunction with manual intervention can achieve the
required control (Ogawa and Kano (2008)). There is hence a certain need to
reduce the complexity of the different techniques for robust nonlinear MPC to
enable a wider application in industry and the control improvement that could
be achieved with it. The different problems faced in robust MPC, as well as
in stochastic MPC, was reviewed by Mayne (2015) and is calling for simplified
approaches for robust MPC amongst others.

1.2 Problem Statement

The current focus of the research in the field of nonlinear MPC is dealing with
robustness as well as offset-free control (Mayne (2014); Goodwin et al. (2014)).
Robustness is a matter of guaranteeing stability while the control system is
affected by uncertainties, whereas offset-free control is a matter of removing the
control error while the control system is affected by uncertainties. Though many
approaches have been proposed there has been a very low level of application
of it to the process industries (Mayne (2014)). The problems relating to the
offset-control is the inclusion of an observer to estimate states and disturbances.
The drawbacks of using an observer are;

e the additional tuning of the observer gain, particularly for robust behavior,
(Tatjewski (2014), Pannocchia (2015), Goodwin et al. (2014)).

e the increase in computational load (Mohammadkhani et al. (2015)).

e the set-up may not give offset-free control, particularly when dealing with
a nonlinear system (Gonzélez et al. (2008), Tatjewski (2014)).

The increased complexity associated with the two first items is mirrored for
robust approaches, as it also requires more extensive tuning and increased com-
putational load. Another issue is that most approaches focus on a single uncer-
tainty, though, there are some examples where parametric uncertainty, bounded
disturbances, and unmeasured states are considered (Ding and Pan (2016)).
Thus, there is a need to produce a controller that can:

e reduce the complexity, by making the tuning needs less demanding,

e speed up the computations, and increase the applicability of the setup, by
producing a controller that can handle, set-point tracking, disturbances,
modeling error, and unmeasured states.

e prove that the setup is guaranteed to be robust.

1.3 Research Objectives

The primary aim of this work is to develop techniques that will achieve an accept-
able level of control of nonlinear systems while producing an offset-free controller
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that has lower complexity than the observer based approach. Following on from
the problems statement the objectives of this study is:

1. to implement a multi-model predictive controller (MMPC) based on a
Bayesian weighting approach for controlling the highly nonlinear pH pro-
cess.

2. to develop an adaptive integral controller to combine with the MMPC
(MMPC-I) to achieve offset-free control.

3. to develop the MMPC-I controller to improve handling of parametric un-
certainty by combining a min-max approach with the adaptive integral
action controller.

4. to develop a robust offset-free MPC and prove that the setup is robustly
stable.

1.4 Scope of the Study

The focus of the study is to improve the model predictive controller to reduce
the complexity of setup and application when robustness and offset-free control
is desired.

Offset-free control relies on removing offset under uncertainty. The uncertain-
ties considered in the study are; bounded disturbances, parametric uncertainty
(modeling error), set-point tracking (where the control sequence is not known in
advance) and an unmeasurable state (hence the exact condition for the model
is not known). The primary criteria for these uncertainties are that it should
be no remaining offset. However, for good control, there is also a desire to have
a fast response, without having too much oscillations or large overshoot. The
level of control is measured through the indicators; rise time, settling time and
maximum relative overshoot. To get a qualitative comparison as well the pro-
posed approaches are compared to the standard PID-controller as well as the
observer based model predictive controller.

The robustness is studied based on mathematical analysis based on Lyapunov
stability theory to prove that the system is robust under the bounded uncertainty
conditions.

The proposed controllers were tested on a simulated pH-neutralization system.
pH-control is one of the hardest control problems in process control and often
use as a test bench for various controllers.

1.5 Outline and Contributions

The two focus points this thesis is to improve the applicability of the MPC
setup by making the implementation of the MPC more straightforward and to
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produce a controller that can handle a multitude of uncertainties. The scene
is set to explore the MPC implementation in Chapter 2, with the review of
the literature as well as introduction of the system to implement and test the
controllers on. The pH system was chosen due to severely nonlinear behavior
creating an excellent problem to test a controller on.

Chapter 3 introduces the Bayesian weighting as a way of getting an adaptive
MPC based on multiple models. The obtained Bayesian MMPC is then imple-
mented on the pH system to demonstrate that the approach can handle severe
non-linearities. Thus demonstrating that the Bayesian MMPC approach can be
implemented on a pH control system.

In Chapter 4 the adaptive integral controller is introduced to be able to achieve
offset-free control for the MMPC. Integral action is usually incorporated using
an observer and an augmented model. The augmented model both works by
including and approximating the disturbance. Observer tuning is generally con-
sidered a difficult task, while the adaptive integral control is creating an easily
implemented way of achieving offset-free control of a nonlinear system. The level
of ease is based on the consideration that linear MPC as well as I-controller are
both widely used control approaches and can be implemented by most control
engineers. The novel MMPC I-controller combination (MMPC-I) is also tested
using the pH-system to show that it can create good disturbance rejection.

Further development is discussed in Chapter 5. The MMPC-I controller was
able to handle the disturbances that it was targeted for but started having
issues when modeling errors were present. The standard way of dealing with
the so-called parametric uncertainty is to introduce a min-max approach based
on linear matrix inequalities (LMI). The adaptive integral action is combined
with a min-max approach to get a novel offset-free controller with strengthened
capability of handling modeling errors. The min-max MMPC-I is further tested
on the pH-control system.

A robust offset-free controller is presented in Chapter 6. The adaptive integral
action controller is fully incorporated into the MPC and the resulting setup is
proven to be input to state practically stable (ISpS). The novel approach is thus
proven to be robustly stable for the cases of bounded disturbances, parametric
uncertainties as long as the adaptive integral controller output is bounded. The
controller is then tested on the pH-system to demonstrate that it can achieve
offset-free control for tracking of set-points, bounded disturbances, parametric
uncertainties and unmeasurable states.

Lastly, Chapter 7 summarizes the findings, limitations and presents suggestions
for future work.



The relation between the different chapters are further highlighted in Figure
1.1. The models for control and simulation discussed in Chapter 2 is used in all
following chapter. The MMPC developed in Chapter 3 is used in Chapter 4 as
well but in combination with an I-controller. The I-controller is used again in
Chapter 5, but the optimization is changed to min-max to increase handling of
modeling errors. Chapter 6 proves a robust behavior while using the I-controller
in MPC.
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