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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 
the requirement for the Doctor of Philosophy 

CORE LIFTING TASK ASSESSMENT USING TIME-FREQUENCY 
DISTRIBUTION OF SURFACE ELECTROMYOGRAM SIGNAL

By

EZREEN FARINA SHAIR

April 2019

Chair: Siti Anom Ahmad, PhD
Faculty: Engineering

Manual material handling (MMH) is commonly practised in the majority of industrial 
working environments. However, prolonged and incorrect MMH can cause fatigue, 
resulting in musculoskeletal disorders (MSDs). Workers who have suffered and fully 
recovered from MSDs following treatment and rehabilitation, are constantly evaluated 
to determine their residual functional abilities. However, the functional capacity 
evaluation (FCE) presently in use to measure a person’s physical ability to perform 
specific work activities depends on the visual observations of a therapist. A crucial 
constraint inherent in the FCE test is the likelihood that information other than visual 
observations could influence the therapist's decision. Recent studies indicate that strong 
characteristics of surface electromyography (SEMG) on muscle performance exist. 
Therefore, this study has aimed to extend these findings by improving the reliability and 
validity of the FCE by considering SEMG signals to automatically determine the work 
level categories of individuals. Eleven healthy control subjects without a previous history 
of MSD and eleven validation subjects with a previous history of MSD participated in 
an experiment in performing the FCE’s core-lifting task. Surface EMG signals were 
collected from four muscles; right and left biceps brachii (BB), and the right and left 
erector spinae (ES).

Although given the SEMG signal is a highly complex and non-stationary signal, the time-
frequency distribution (TFD) technique was used to automatically segment and process 
the signal. A new auto-segmentation through a spectrogram was utilised to reduce the 
computation complexity of processing the long EMG signal recording demonstrating 
excellent performance regarding accuracy, compared to conventional segmentation 
techniques. For the processing stage, three TFDs; spectrogram, Gabor transform, and 
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Stockwell transform were tested to determine the best TFD for the pattern recognition 
system. While Stockwell transform has higher computation complexity, this technique 
was the best in terms of accuracy. 

Three parameters were extracted from the surface EMG signals and three new features 
(muscle strength, muscle power, and muscle endurance) were estimated from the average 
RMS voltage (Vrms(avg)) which became input to the classifier. A hybrid combination of 
Linear Discriminant Analysis and Support Vector Machine demonstrated a 96%
accuracy of, 100% sensitivity, 92% specificity, 100% precision and 0.0035 cross-
validation error. In conclusion, this study demonstrated that the new EMG-based FCE 
was able to analyse the subject’s performance, work level categories and automatically 
classifying these, thereby, lessening the possibility of error caused by the therapist. 



© C
OPYRIG

HT U
PM

iii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsasah

PENILAIAN TUGAS ANGKATAN TERAS MENGGUNAKAN TABURAN 
FREKUENSI-MASA ISYARAT ELEKTROMIOGRAM PERMUKAAN

Oleh

EZREEN FARINA SHAIR

April 2019

Pengerusi: Siti Anom Ahmad, PhD
Fakulti: Kejuruteraan

Pengendalian bahan secara manual lazimnya dipraktiskan dalam persekitaran kerja. 
Walau bagaimanapun, pengendalian bahan secara manual yang berterusan dan tidak 
betul boleh menyebabkan keletihan, dan gangguan otot skeletal (MSD). Pekerja yang 
telah pulih dari MSD selepas menjalani terapi perlu dipantau secara konsisten untuk 
menentukan kapasiti fungsinya. Pada masa ini, penilaian kapasiti fungsi (FCE) yang 
digunakan untuk mengukur keupayaan fizikal seseorang bagi menjalankan tugas kerja 
tertentu hanya bergantung kepada pemerhatian visual ahli terapi. Satu kekangan penting 
yang wujud dalam ujian FCE ini adalah kemungkinan keputusan ahli terapi itu boleh 
dipengaruhi oleh maklumat selain daripada pemerhatian visual. Penemuan baru-baru ini 
menunjukkan terdapat ciri-ciri kuat isyarat elektromiografi (EMG) pada prestasi otot. 
Kajian ini bertujuan untuk meningkatkan kebolehpercayaan dan kesahihan FCE dengan 
mempertimbangkan isyarat EMG sebagai penentu kategori tahap beban kerja setiap 
pekerja. Kajian telah dijalankan pada sebelas subjek kawalan sihat yang tiada sejarah 
MSD, dan sebelas subjek yang disahkan mempunyai sejarah MSD, semasa 
melaksanakan tugas mengangkat teras. Isyarat EMG permukaan dikumpulkan dari empat 
otot; kanan dan kiri biceps brachii (BB), kanan dan kiri erector spinae (ES).

Oleh kerana isyarat EMG adalah isyarat yang sangat kompleks dan tidak pegun, teknik 
taburan frekuensi-masa (TFD) digunakan untuk segmentasi dan memproses isyarat
secara automatik. Teknik baru auto-segmentasi melalui spektrogram digunakan untuk 
mengurangkan kerumitan pemprosen isyarat EMG yang panjang menunjukkan prestasi 
cemerlang dari segi ketepatan, berbanding teknik sengmentasi konvensional. Untuk 
peringkat pemprosesan, tiga TFD; spektrogram, transformasi Gabor, dan transformasi 
Stockwell telah diuji untuk menentukan TFD terbaik bagi sistem pengecaman corak. 
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Walaupun transformasi Stockwell mempunyai kerumintan pemprosesan yang lebih 
tinggi, namun teknik ini didapati paling baik dari segi ketepatan.

Tiga parameter disari daripada isyarat EMG dan tiga ciri baru (kekuatan otot, kuasa otot, 
dan ketahanan otot) kemudian dianggarkan dari purata voltan RMS (Vrms(avg)) dan 
menjadi masukan kepada pengelas. Gabungan hibrid Analisis Diskriminasi Linear dan 
Mesin Vektor Sokongan menunjukkan 96% ketepatan, 100% kepekaan, 92%
kekhususan, 100% kepersisan, dan 0.0035 kesilapan rintangan. Kajian ini berjaya 
menunjukkan bahawa FCE berasaskan EMG yang dapat menganalisis prestasi subjek 
individu dan kategori tahap kerja boleh dikelaskan secara automatik, dengan itu, 
mengurangkan kecenderungan kesilapan yang disebabkan oleh ahli terapi. 
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Manual material handling (MMH) can be described as any moving or supporting of a 
load by at least one worker and incorporates the holding, lifting, putting down, pushing, 
pulling, moving or carrying a load (Rajesh, 2016). MMH occurs in every workplace from 
manufacturing and production lines to distribution centres, building sites, hospitals, 
farms, offices, etc. According to the 4th European Working Conditions Survey in 2005,
35% of all workers are exposed to the danger of moving or carrying heavy loads for no 
less than a fourth of their working time (Parent-Thirion, Macias, Hurley, & Vermeylen, 
2007). Young workers supposedly are the most exposed of all age groups according to 
the survey. A sectoral breakdown of the rates of exposure to MMH demonstrates that 
workers in agriculture (68%), construction (64%), inns and eateries (48%) are well on 
the way to being exposed to heavy loads, followed by workers in the mining, 
manufacturing, wholesale and retail trade (42%), communications and transport (35%) 
sectors.

MMH can cause fatigue, and immediate injuries to the arms, back, shoulders, neck or 
other body parts. Two groups of injuries may result from MMH; (1) fractures, bruises 
and cuts because of sudden, unforeseen events, and (2) damage to the musculoskeletal 
arrangement of the body (muscles, ligaments, tendons, joints, bones, nerves and veins) 
as a result of progressive and cumulative wear and tear through repetitive MMH. The 
latter group, called musculoskeletal disorders (MSDs), can be divided into three 
categories; upper limb disorders (ULDs), lower limb disorders (LLDs), and back 
disorders (BDs). Work-related MSDs (WMSDs) are a noteworthy and increasing 
problem in modern societies globally (Yasobant & Rajkumar, 2014). For instance, in 
2008, there were 40 cases reported in Malaysia, increasing rapidly to 153 cases in 2014 
(Zainal Muktar, Shamsudin, Lukman, & Jeffree, 2017). The Social Security Organisation 
(SOCSO) of Malaysia revealed that in 2013, the manufacturing industries recorded the 
most astounding number of WMSD cases with low back disorders (LBDs) and ULDs as 
the most elevated cases accounted for (SOCSO, 2013). WMSDs due to MMH may have 
serious effects on workers and may limit their capacity to embrace an extensive variety 
of work and leisure activities for the remainder of their lives. Therefore, prevention is 
vital. 

The fact that there is a risk of long-haul disability in these MSDs, the majority of injured 
workers return to work within one to three months after undergoing treatment and 
rehabilitation. In Malaysia, the total cost of worker’s compensation reported in 2009 was 
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RM 1.04 million, which quickly rose to RM 1.94 million in 2014 (Zainal Muktar et al., 
2017). WMSDs are known as the singularly most expensive category of work-related 
health problems and remain a major issue for individuals, companies and societies 
(Wahab, Jamal, & Mohd Shah, 2016). After workers with injury have recouped or 
achieved therapeutic stability, they are regularly assessed to decide their residual 
functional capacity. Functional capacity evaluation (FCE) is a test used to quantify a 
person’s physical ability to perform particular work activities and to decide on his or her 
physical preparation in order to return-to-work (RTW) (Trippolini et al., 2014). The 
motivation behind the FCE is to test the patient’s physical capacities to the maximum 
and to deliver precise documentation concerning work capacity (Oesch, Meyer, Jansen, 
& Kool, 2015). The obtained data guides RTW decisions and is helpful not only to the 
medical team and the employer but also to the workers themselves.

Over the past few decades, numerous researchers have attempted to develop FCE 
instruments. In 1984, Matheson gave a recent example which was followed in 1988 by 
Isernhagen suggesting that a multidisciplinary group should help with deciding a 
person’s functional capacity. While, in 1994, Hart in collaboration with a physician and 
physical therapist assessed a patient’s impairment. To date, there are more than ten 
different types of commonly utilised FCEs which include the Joule Valpar FCE, 
Isernhagen Work System, Ergos Work Simulator and Ergo-Kit variety, Physical Work 
Performance Evaluation (ErgoScience), Hanoun Medical, Blankenship, WEST-EPIC, 
etc.  (Chen, 2007). An outstanding and economically accessible FCE is the Joule Valpar 
FCE which is used at the SOCSO Tun Abdul Razak Rehabilitation Centre, Malaysia 
comprising of 27 function-based test protocols; one of which is the core-lifting task 
(Cancio, Oliver, & Yancosek, 2017). All of the Joule Valpar FCE tests are based on the 
work factors of the Dictionary of Occupational Titles (DOT), which depict the work 
factors that an occupation requires to be undertaken efficiently (Opsteegh, Soer, 
Reinders-Messelink, Reneman, & van der Sluis, 2010). To test a person’s practical limit, 
he or she needs to perform to a maximal limit, and only visual observations are utilised 
to decide whether maximum capacity has been reached.

In addition, it is also believed that the improvement of the FCE’s validity and reliability 
can be achieved by taking the electromyography (EMG) signal into account. EMG is a 
test that is utilised to record the electrical activity of skeletal muscles (Karthick, 
Makaram, & Ramakrishnan, 2014). There are two categories of EMG: surface EMG 
(SEMG) and intramuscular EMG (Kamavuako, Scheme, & Englehart, 2013). SEMG 
assesses muscle function by recording muscle activity from the skin surface above the 
muscle. Whereas, intramuscular EMG, uses a needle electrode inserted into a muscle. 
From these two categories, SEMG is the most generally accepted and utilised form in 
various fields including biomechanics, muscle fatigue monitoring, motor control, 
functional electrical stimulation and numerous different applications since it involves a 
non-invasive procedure, is financially savvy and convenient to use (Merlo & Campanini, 
2010).
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Various signal processing techniques have been utilised to analyse EMG signals, 
contingent upon which application is used. For the most part, the techniques can be 
partitioned into three categories: time distribution (TD), frequency distribution (FD) and 
time-frequency distribution (TFD). For TD, EMG features are assessed based on the 
signal amplitude which varies with time. The amplitude of the signal relies upon muscle 
conditions amid the observation process. To keep computational complexity low, most 
past investigations have concentrated on TD (Boashash, Barki, & Ouelha, 2017).
Likewise, this technique does not require extra signal transformation. Though dissimilar 
to TD, FD contains the power spectrum density of the signals and is computed by a 
periodogram. Notably, mixed information of time and frequency is characterised as TFD. 
TFD can portray varying frequency information at various time locations and provides 
abundant non-stationary information of the analysed signal (Abed & Belouchrani, 2018).
Hence, this thesis focuses on developing a new EMG pattern recognition algorithm based 
on TFD in monitoring muscle performance of the biceps brachii (upper limb) and erector 
spinae (low back) muscles as an improvement of the conventional FCE’s core-lifting 
task.

1.2 Motivation and Problem Statement

MSDs of the upper limb and low back extremities are an essential and expensive national 
medical issue. In 2009, SOCSO spent nearly USD$219 million to treat and provide 
disablement benefits including pensions for this group of injured workers (Murad, 
Farnworth, O’Brien, & Wen, 2012). Since Malaysia is a developing nation and is 
concentrating on developing all industry sectors, there is an expanding pattern of patients 
treated at the SOCSO Tun Abdul Razak Rehabilitation Centre due to this problem. Even 
though there is the FCE involving core lifting performed in the rehabilitation centre, the 
results do not accurately reflect the patient’s muscle condition (Sinden, McGillivary, 
Chapman, & Fischer, 2017). The validity of these tests depends critically on the patient’s 
effort during the evaluation. The assurance of whether a person has given maximal effort 
amid the testing procedure also appears to be troublesome. The reliability of the effort 
levels in deciding and the decision-making process as to whether the patients are 
sufficiently fit to return to the industry where they work have been questioned, as the 
decision is made solely based upon the instructor's observation (Becker, Ogle, 
Chadbourne, & Andrews, 1993). A major limitation inherent to this design is the 
likelihood that the instructor’s decision could be impacted by information other than 
visual perceptions (i.e. verbal and non-verbal correspondences with the patient). This 
issue has been studied by Sinden et al., (2017) where they conclude that a trained 
instructor is essential to recognise maximal efforts and remains an important factor in 
validating the core lifting FCE test. Therefore, to address the above issue, a method to 
extract information from the patient’s muscles is highly needed to increase the evaluation 
efficiency. 

EMG signals from human muscles are clinically the best and most common signal to 
represent the muscle condition either in the field of medicine or engineering (Xi, Tang, 
& Luo, 2018). Even though the majority of research involving human muscles use the 
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EMG signal, due to the non-stationary characteristics of the EMG signals itself, a good 
processing technique is important in order to extract the important features to achieve 
better performance of the classification for pattern recognition. A standout amongst the 
most widely utilised tools in signal processing is Fourier analysis. Although, a significant 
drawback of this tool is that it does not represent temporal information and is not suitable 
for non-stationary signals such as EMG (Thirumala, Shantanu, Jain, & Umarikar, 2017).
To overcome this, Dennis Gabor adjusted the Fourier analysis to small segments of 
signals and divided the time analysis into small intervals (Smale, Shourijeh, & Benoit, 
2016). This strategy is known as short-time Fourier transform (STFT) which is a type of 
linear TFD. In this case, the interval should be sufficiently small enough to be viewed as 
stationary and taking the Fourier transform (FT) of each interval. The main disadvantage 
of this technique is that there is a trade-off between time and frequency resolution (Yu 
et al., 2016). The more prominent the temporal resolution required, the more terrible the 
frequency resolution will be and vice versa. Wavelet transform (WT) is another linear 
TFD that has been explored extensively in various researches as an alternative to STFT. 
The WT offers a high-time resolution for high-frequency components and high-
frequency resolution for low-frequency components (Lv et al., 2017). However, this 
technique gives poor frequency resolution for high-frequency components and poor time 
resolution for low-frequency components. In this way, the technique is appropriate for 
detecting the span of high-frequency signals yet if there should be an occurrence of low-
frequency signals, it cannot produce reliable outcomes. Furthermore, the WT likewise 
displays a few hindrances, for example, its computation burden, sensitivity to noise, and 
the reliance of its accuracy on the chosen basis wavelet (Liang, Iwnicki, Ball, & Young, 
2015; Yi, Wang, & Sun, 2018). In this case, an alternative method that can result in high 
time-frequency resolution and less sensitive to noise is practical in order to realise the 
full potential of EMG processing with high accuracy, low computation complexity, and 
low memory size.

Consequently, the information extracted from the EMG signals is represented as a feature 
vector and will accordingly be fed into the classifier to map the different patterns and 
matching them appropriately. Numerous researchers have highlighted the artificial 
neural network (ANN) classifier in EMG pattern recognition. However, Kaytez et al., 
(2015) asserted that the training time of ANN is very long and the training data needs to 
be chosen over an entire range, in which the variables are relied upon to change. Also, it 
is difficult to decide the correct size and structure of an ANN to address this issue. 
Another strategy that is superior to the ANN is fuzzy logic (FL) as it is simple and 
insensitive to over-training. Despite the way in which it is proven, good classification 
accuracy can be achieved for certain applications via this technique. Moreover, while the 
right set of fuzzy rules and membership functions are difficult to decide upon in order to 
depict system behaviour in FL algorithms, likewise, an insufficient number of patterns 
can interfere with the current EMG, which repeatedly deepens by the inaccuracy of the 
instrumentation (Paul, Shill, Rabin, & Murase, 2017). Since this research involves a
limited data size, it is necessary to implement a machine learning technique that can 
provide good generalisation performance with a small data size in order to achieve better 
accuracy, but still having good computational efficiency.
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1.3 Aims and Objectives

This thesis aims to develop a new electromyography pattern recognition algorithm in 
monitoring muscle performance while performing the FCE core-lifting task. The 
developed system will help to improve the evaluation process of return-to-work patients 
in the rehabilitation centre and provide guidelines in determining the work level 
categories, capable of preventing and sustaining future injury. 

The specific objectives of the study are as follow:

i. To analyse and compare the linear TFDs’ performance on SEMG signal 
for the FCE’s core-lifting task application.

ii. To assess new SEMG signal features’ characteristics derived from the 
time-frequency representation (TFR) of the best linear TFD.

iii. To classify work level categories based on single and multiple features set
by using a hybrid combination of linear discriminant analysis (LDA) and 
support vector machine (SVM).

iv. To validate the system performance based on the RTW patients at the 
SOCSO Tun Abdul Razak Rehabilitation Centre, Melaka.

1.4 Scope of Work

A total of 11 randomly selected healthy control subjects with no history of MSDs and 11 
RTW patients recruited from the SOCSO Tun Abdul Razak Rehabilitation Centre were 
observed while performing the Joule Valpar FCE core-lifting task. It took about one hour 
to complete the lifting activities per subject that included the anthropometric 
measurement, SEMG recording, questionnaires and interview session. The whole 
experiment was conducted at the SOCSO Tun Abdul Razak Rehabilitation Centre, 
Melaka, following all the protocols set by the rehabilitation centre. The study was 
conducted in accordance with the ethical standards of the Declaration of Helsinki and 
was approved by the Ethics Committee for Research Involving Human Subjects of 
Universiti Putra Malaysia (Project reference no.: FK(EXP16)P050).

The SEMG recording and analysis were only carried out to the right and left biceps 
brachii, and right and left erector spinae muscles. A comparison study using three 
different linear TFDs; spectrogram, Gabor transform, and Stockwell transform in order 
to find the best technique regarding accuracy, computation complexity, and memory size 
was used to classify the work level categories. From the TFR, the parameters estimated 
included the instantaneous energy used for the auto-segmentation, instantaneous root 
mean square (RMS) voltage used for the window selection and average RMS voltage 
used for the work level classifications. Three new EMG features; muscle strength, 
muscle power and muscle endurance were derived from the average RMS voltage and 
were used as input to the classifier.
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The work level categories were classified in accordance with the Dictionary of 
Occupational Titles, a publication of the United States Department of Labour using 
SVM. However, only medium work (MW) and heavy work (HW) level categories for 
frequent lifting were taken into consideration since all subjects recruited fell within these 
categories. The performance of the classification was assessed given its accuracy, 
sensitivity, specificity, precision and cross-validation error (CVErr).

1.5 Research Contributions

The general contributions of this study reside in the capacity to distinguish the work level 
categories of the RTW patients given the EMG signal analysis. Also, the study 
demonstrates that there are other non-invasive tools, which are simple to use and provide 
better accuracy in diagnosing muscle performance. Besides that, the study contributes to 
the general public, as it can be used as an on-site monitoring tool to improve the current 
FCE’s core-lifting task available in rehabilitation centres. Notwithstanding, it can also 
help to decide the requirements for intervention, to plan and design treatment, to 
document results, the accomplishment of objectives, and adequacy of the program. Other 
than serving the purpose towards rehabilitation medicine, the research is also important 
in occupational medicine to decide upon a person’s capacity to perform the demands 
required in connection with the work setting. In the assessments where RTW is an issue, 
job analysis should be performed to decide upon the tasks required for the job. The 
outcomes from the improved FCE would then be able to be coordinated in conjunction 
with the demands of the job based on the person’s muscle strength, muscle power, and 
muscle endurance. Other than that, the study also serves a purpose in the area of 
insurance medicine in order to decide the level of disability of the person. Additionally, 
an FCE might be utilised for the settlement of a worker’s compensation claim. 

The specific contributions of this study based on the work and findings include:

i. The development of a new EMG auto-segmentation algorithm that can 
automatically detect and segment each muscle contraction that existed in 
the EMG signal to reduce the computational complexity. 
In this study, this algorithm utilised the instantaneous energy of the signal 
and thresholding technique to differentiate between the muscle 
contractions and the baseline. It was found that the mean absolute 
percentage error (MAPE) of the auto-segmentation process was 1.32%, 
therefore, exhibiting excellent performance based on the standard MAPE 
performance measures. This finding helps in reducing the computational 
burden in the analysis of time-frequency distribution for a long duration of 
EMG signal recordings.
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ii. Introduce detailed guidelines for linear TFDs’ best window length 
determination and evaluate the performance of the three different TFDs. 
The best window lengths for spectrogram and Gabor transform were 512
and 450, respectively. The time resolution, frequency resolution and 
MAPE for the spectrogram were 0.3413 ms, 2.93 Hz and 0.257 ms, while 
for Gabor transform it was 0.3003 ms, 3.33 Hz and 0.233 ms. The results 
indicated that both techniques offered good performance in the time and 
frequency domain, but Gabor transform had a slightly better performance 
regarding MAPE as compared to the spectrogram. As for Stockwell 
transform, the window automatically varied depending on the frequency. 
Thus, window size determination was not needed. The performances of all 
three techniques were compared based on accuracy, computation 
complexity and memory size. The results proved that Stockwell transform 
was better than spectrogram and Gabor transform.

iii. Derivation of three new EMG signal features from the average RMS 
voltage.
These features included muscle strength, muscle power and muscle 
endurance. For the purpose of benchmarking, the conventional average 
RMS voltage was considered in this study. The experimental results 
indicated that the new features estimated from the average RMS voltage 
provided a better representation of muscle performance compared to the 
conventional average RMS voltage. The three proposed features were then 
used for classification of the work level categories. 

iv. Development of a pattern recognition system to classify the work level 
categories of the FCE’s core-lifting task. 
The proposed features from all four muscles obtained from the best TFD 
were used as inputs to the classifier. Linear discriminant analysis (LDA) 
and SVM were used as the dimension reduction and classifier, 
respectively. The system was validated by testing it with the EMG signal 
of the RTW patients at the SOCSO Tun Abdul Razak Rehabilitation 
Centre. The results indicated that the developed system could accurately 
and efficiently classify the work level categories with 96% accuracy, 100% 
sensitivity, 92% specificity, 100% precision and 0.0035 CVErr for the 
control subjects and validation subjects separately.

1.6 Thesis Structure

The structure of this thesis is organised into five chapters that address the development 
of the TFD of the pattern recognition system for the core lifting task.
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Chapter 1 which is presented in this present chapter, provides a general introduction, 
motivation and problem statement of the research, and clarifies the objectives, research 
scope, contributions and overview of each chapter in the thesis.

Chapter 2 reviews the related research works that have been published so far. The chapter 
further elaborates the side effects of manual lifting in daily life and the existing FCEs 
currently available. In addition, this chapter reviews the ability of SEMG signal in work 
level categories identification. The review includes the SEMG signal’s characteristics, 
acquisition, and analysis.

Chapter 3 details the step-by-step approach employed in this study, starting with the 
recruitment of subjects, and the data collection procedure followed by proposing a new 
auto-segmentation technique to segment muscle contraction, to reduce overall 
computational complexity. Three linear TFDs are described which are used to process 
the EMG signal based on the TFR to determine the best distributions regarding accuracy, 
memory size, and computation complexity. New EMG signal features in this chapter are 
also obtained from the associated EMG signal parameter of the best TFD to become the 
input to the designed classifier. 

Chapter 4 discusses the main findings of the overall research. In this chapter, the 
performance of auto-segmentation is first presented, followed by the results of the TFDs 
and classification. The findings are then presented in the form of graphical plots for the 
extracted EMG signal parameter and EMG signal features. At the end of the chapter, the 
overall pattern recognition system evaluation metrics for determining the work level 
categories are discussed regarding accuracy, sensitivity, specificity, precision and 
CVErr.

Finally, in Chapter 5, the conclusions and suggestions for future research are presented.
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