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Faculty : Engineering

Global positioning system (GPS) has been extensively used for land vehicle navigation

systems. However, GPS is incapable of providing permanent and reliable navigation

solutions in the presence of signal attenuation or blockage. On the other hand, navigation

systems, in particular, inertial navigation systems (INS), have become important

components in different military and civil applications due to the recent advent of micro-

electro-mechanical systems (MEMS). Both INS and GPS are not so far apart and they

are often paired together to provide a reliable navigation solution by integrating the

long-term GPS accuracy with the short-term INS accuracy. Therefore, this work is

concerned to presents an alternative method to integrate GPS and INS systems and

provide a robust navigation solution with trusted position and velocity information.

Cascaded de-noising method based on discrete wavelet transform (DWT) is exploited in

this work to filter out the MEMS inertial sensors. In addition, in this work a GPS
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predictor is developed to incorporate information from the accelerometers and

gyroscopes at high rates and information from GPS measurements at low rates to

improve the vehicle strapdown inertial navigation system (SDINS) with the aid of GPS.

This work also presents a new method for de-noising the GPS and INS data and estimate

the INS error using wavelet multi-resolution analysis algorithm (WMRA) based particle

swarm optimization (PSO) with a well designed structure appropriate for practical and

real time implementations due to its very short optimizing time and elevated accuracy.

The proposed hybrid method is simple, easy to implement and can be used to automate

the INS-error estimation step used in the proposed integrated GPS/INS navigator.

Moreover, three alternative GPS/INS integration structures have been proposed. The

developed navigators utilize artificial intelligence (AI) based on adaptive neuro-fuzzy

inference system (ANFIS), to fuse data from both systems and estimate position and

velocity errors. Most integration systems based on Kalman filter (KF) which is usually

criticized for working only under predefined models and for its observability problem of

hidden state variables, sensor error models, immunity to noise, sensor dependency, and

linearization dependency. The proposed GPS/INS integration has been evaluated during

various GPS signal conditions including continuous and non-continuous satellites

signals.

Finally, performance evaluation for the proposed integrated GPS/INS navigator provides

a reliable navigation solution including position and velocity information. A

comparative study using different structures for GPSIINS integrations are conducted to
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test the performance in terms of accuracy and time required for training mode. The

experimental results using real field test data show also the improvements in predicting

the INS error for both position and velocity. The integrated GPSIINS system is able to

maintain satisfactory accuracy with the maximum error less than 0.82, 0.78, and 0.83 m

for position and 0.0414, 0.0273, and 0.0415 m1s for velocity in all directions during

maximum GPS outages of 200 second while it requires less than 9 and 5 seconds for

learning mode in position and velocity respectively.
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PENAMBAHBAlKAN DARIPADA SATU SISTEM KEDUDUKAN GLOBAL
BERSEPADU DAN SISTEM NAVIGASI INERSIA BAGI APLIKASI NAVIGASI

TANAH

Oleh

AHMED MUDHEHER HASAN

April2012

Chairman: Khairulmizam Samsudin, PhD

Faculty : Kejuruteraan

Sistem kedudukan global (OPS) telah digunakan secara meluas untuk sistem navigasi

kenderaan darat. Walau bagaimanapun, OPS tidak mampu menyediakan penyelesaian

navigasi secara berterusan dan tidak boleh dipercayai dalam kehadiran kehilangan

isyarat at au halangan. Sebaliknya, sistem navigasi tertentu seperti sistem navigasi inersia

(INS), telah menjadi komponen penting dalam aplikasi ketenteraan dan awam yang

tertentu kerana perkembangan terkini seperti mikro-elektro-mekanikal sis tern (MEMS).

Kedua-dua INS dan OPS tidak begitu ketara dan mereka sering dipasangkan bersama

untuk menyediakan satu penyelesaian navigasi yang dipercayai dengan

mengintegrasikan ketepatan jangka panjang OPS dan ketepatan jangka pendek INS.

Oleh itu, tesis ini memperkenalkan kaedah alternatif untuk menyatukan OPS dan sistem

INS serta menyediakan satu penyelesaian navigasi yang man tap dengan kedudukan yang

dapat dipercayai dan maklumat halaju.
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Kaedah lata "de-noising" berdasarkan diskret ubahan wavelet (DWT) dieksploitasi

dalam kerja ini untuk menapis sensor inersia MEMS. Di samping itu, peramal untuk

GPS direka untuk menggabungkan maklumat daripada "accelerometer" dan "gyroscope"

pada kadar yang tinggi dan maklumat ukuran dari GPS pada kadar yang rendah untuk

meningkatkan sistem navigasi inersia strapdown (SDINS) dengan bantu an GPS.

Kerja ini juga membentangkan kaedah baru "de-noising" GPS dan data INS serta

menganggar ralat INS menggunakan wavelet pelbagai resolusi analisis algoritma

(WMRA) berdasarkan zarah meluru turun optimization (PSO) dengan struktur yang

direka dengan baik, sesuai untuk pengunaan praktikal dan masa sebenar yang

disebabkan sangat pendek dan ketepatan yang lebih jitu. Kaedah hibrid yang

dicadangkan adalah senang, mudah untuk dilaksanakan dan boleh digunakan untuk

mengautomasikan langkah daripada anggaran ralat INS yang digunakan dalam cadangan

sistem bersepadu GPS/INS.

Tambahan pula, tiga alternatif struktur integrasi GPS/INS telah dicadangkan. navigator

yang telah dibangunkan menggunakan tiruan risikan (AI) yang berdasarkan penyesuaian

neuro-kabur inferens sistem (ANFIS), untuk menggabungkan data dari kedua-dua sistem

serta menganggar kedudukan dan kesilapan halaju. Kebanyakan sistem berintegrasi

berdasarkan Kalman menapis (KF) biasanya dikritik kerana hanya dapat berfungsi di

bawah model pratentu serta masalah-rnasalah pemerhatian pemboleh ubah dalam

keadaan tersembunyi, model kesilapan sensor, imuniti kepada bunyi bising,

pergantungan terhadap sensor, dan pergantungan terhadap pelinearan. cadangan
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Integrasi GPSIINS telah dinilai dalam pelbagai keadaan isyarat GPS termasuk isyarat

satelit berterusan dan tidak berterusan.

Akhir sekali, penilaian prestasi untuk sistem navigasi GPS/INS bersepadu dicadangkan

dapat menyediakan penyelesaian navigasi yang boleh dipercayai termasuk kedudukan

dan halaju. Satu kajian perbandingan yang menggunakan struktur yang berlainan bagi

integrasi GPS/INS dijalankan untuk menguji prestasi dari segi ketepatan dan masa yang

diperlukan untuk mod latihan. Keputusan uji kaji menggunakan data ujian lapangan

yang sebenar juga menunjukkan peningkatan dalam meramal kesilapan INS untuk

kedua-dua.

Kedudukan dan halaju. Sistem GPS/INS bersepadu mampu untuk mengekalkan

ketepatan yang memuaskan dengan maksimum ralat kurang daripada 0.82, 0.78 dan 0.83

m untuk kedudukan halaju pada 0.0414, 0.0273 dan 0.0415 mls pada semua arah

semasa kehilangan GPS maksima 200 saat sementara ia memerlukan 9 dan 5 saat

masing-masing untuk mod latihan kedudukan dan halaju.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Land navigation systems have an astonishingly protracted history. From the time when

the life first started on earth, human beings had the penchant to travel from one place to

another in order to investigate and discover new lands and territories. Oldest navigation

tools in history use fixed celestial bodies like the sun and stars to locate positions on

earth. Furthermore, surveillance of fixed objects, such as mountains, hills, and rivers,

can also be used for location purpose during navigation mission as shown in Figure 1.1.

Those fixed objects navigation techniques are known as position fixed systems.

Most essential tasks of a vehicular navigation system are to incessantly preserve precise

track of vehicle position. There are two types of navigation technology: dead reckoning

(DR) and position fixing (e.g. GPS). Both of them are used widely for position

determination. The fundamentals of DR depend on the knowledge of vehicle initial

position, traveling speed and time interval until the current position (e.g. the end

mission). In view of the fact that the average speed and time elapsed are measured, the

speed can be resolved into the east and north directions. However, at current position,

both velocity components can be utilized to calculate the distance traveled by
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multiplying them with the elapsed time III both directions in order to get the new

location of the moving vehicle.

The popular three DR sensors used are inertial measurement unit (IMU), magnetic

compass, and odometer. These sensors are dependent on operational environments;

however, sensor errors result in unreliable position while velocity errors increase with

time.

Stars

Mountains

Traveler

Figure 1.1: Position Fixed Systems are used as Aiding Positioning Tools during
Navigation

At the beginning of the last century, a highly developed technique, called position fixing

technology based on radio signals, can provide navigation solution with accepted

precision. Global positioning system (GPS) is one of the most accepted technologies

2
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used in position fixing technology, which has been mainly used in vehicular navigation

systems due to its low cost and high performance in certain environments. Besides, GPS

provides an acceptable accuracy when receiving signals from at least four satellites with

a good geometry. Not far behind, global navigation satellite system (GLONASS) is

another navigation satellite system to provide position operated by Russian Federation.

In addition, there are other new navigation satellites, such as the COMPASS navigation

satellite system (CNSS) from China, and the Galileo navigation satellite system from the

European Union. Notably one weakness of the global navigation satellite systems

(GNSS) is requiring a direct line of sight (LOS) to at least four or more satellites

simultaneously with the receivers. Furthermore, its accuracy deteriorates due to poor

geometry, multipath, and signal loss especially in urban areas [1, 2].

In general, there are four main factors considered to assess the act of any navigation

system [3,4]:

a. Accuracy: The identity between the calculated and real positions at a certain

time.

b. Integrity: The reliability of the navigation system to provide a complete

navigation solution such as attitude, velocity and position.

c. Continuity: The ability of the navigation system to provide a continuous

navigation solution without any intermission.

d. Availability: The proportion of the provided service to be available during the

time by taking into consideration all the interruption sources; in other words, the

service is considered available if the three previous factors are all satisfied.

3
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Unfortunately, both DR and position fixing technologies (e.g. GPS) have failed to satisfy

these requirements as a stand-alone mode. DR sensors are not reliant on external signals

for their operation, and also it has the ability to provide a continuous navigation solution.

Furthermore, they are highly prone to short and long-term errors that can reduce the

required accuracy. On the other, although GPS has the ability to provide a continuous

navigation solution, it suffers from discontinuity and availability. In addition, even

though high sensitivity technologies have been used to improve the availability of GPS,

it is still unreliable and experiences unbounded errors especially in signal degraded

environments such as canyons, tunnels and between large buildings inside the city.

Therefore, the integration between GPS and DR sensors, such as the inertial navigation

system (INS), is mandatory to realize the required navigation performance factors

mentioned previously. Precisely, the GPS and INS integration has become more widely

used as a common tactic in land vehicle navigation since the integration can provide a

complete navigation solution. Due to the complementary characteristics of both systems,

the integrated system can offer a better solution than if only one of them is used.

Advances in inertial navigation technology, microelectronics and microprocessors have

experienced a rapid development since the last two decades. As a result, the continual

development of micro machinery technology has provided low-cost inertial sensors.

Furthermore, a single point positioning (SPP) has also become one of the most suitable

navigation systems in land vehicles. Integrating MEMS INS with a single-point GPS

necessitate robust navigation algorithms that can handle large sensor errors existing in

both systems. At present, low-cost MEMS sensors are being extensively used in

4
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numerous civil applications, for instance, auto cars crash, antenna stabilization and hard

disk vibration protection [5,6].

1.2 Problem Statement and Motivation

The majority of the current land vehicle navigation apparatus depend mostly on GPS as

an essential source to provide the required navigation solution. No one contradicts the

accuracy of GPS after the huge improved in satellites navigation system and enhanced

techniques of data receiving and processing that give GPS the ability to supply an

accurate navigation solution to infinity numbers of users anywhere on earth when

receiving signals from at least four satellites. However, the downside of GPS is that, it

relies on the satellite signals and the accuracy decay due to several reasons, such as

weak satellite geometry, signal losses and cycle slips. Because of this drawback, GPS

users are having troubles in urban areas due to signal obstruction by high buildings,

canopies, and further obstacles. Following this, several researches are conducted to

address the signal outages problems. On the other hand, inertial navigation system (INS)

is a mechanical and independent instrument that can provide position, velocity and

attitude through continuously measures three angular velocities and three linear

accelerations along the body frame to provide the position, velocity, and attitude to the

moving vehicle. The main limitation is that, INS can not be used as a stand-alone

navigation system.

Drift and residual bias errors with random noise and vehicle vibration in both the

accelerations and angular rates measurements may deteriorate the long-term navigation

5
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solution precision. Most errors in inertial systems are mainly emerged from the inertial

sensors itself or from computation and integration operations inherent in the INS

mechanization equations. Continuous updates are necessary to restrict the quickly

increasing in position and velocity errors. For that reason, augmenting the GPS with the

INS will maximize their advantages and minimize their disadvantages since GPS can be

utilized as a position and velocity calibration for the inertial sensors during long-term

operations while INS can be used for bridging the GPS outages during GPS signal loss.

Currently, the GPS with INS integration is realized using Kalman filter (KF) to

optimally estimate the errors associated with both systems [7, 8]. Unfortunately, KF-

based GPS/INS integration suffers from more than a few shortcomings as have been

reported by other researchers. In fact, KF requires a well-defined model for the GPS and

INS error models in order to perform appropriately [5, 9, 10].

KF estimates relay on the quality of the dynamic model, in addition to the quality of the

measurements from the IMU. Hence if the Kalman filter is exposed to a new input data

that does not fit its prior defined model, it will produce unreliable estimates for the

model. In general, the dynamic model is based on nine error states including position,

velocity, and attitude error states in all components together with sensor errors including

both accelerometer bias and gyroscope drifts. In fact, inertial sensors are affected by

several random errors.

For instance, several noise types contribute in typical gyroscope sensors may comprise

of white noise, correlated random noise, bias instability and angle random walk [11, 12].

6
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Therefore, setting a certain stochastic model for each inertial sensor that work

proficiently in all environments and imitates the long-term behavior of sensors is not a

straight forward process. Weak observability of some error states for the inertial sensor

reduces the capability of KF, which may lead to unstable estimation error. Moreover, the

need to re-design KF algorithm to obtain satisfactory and reliable error estimations

whenever using a new platform or different IMU grades (e.g. MEMS, tactical, and

navigation grade IMUs) can be very expensive and impractical for real time

implementations. Therefore, a model-less approach that can map the vehicle dynamics

under all conditions is thus highly required. The inadequacies of KF provoked

researchers to develop unconventional methods mainly based on artificial intelligence

(AI) [10, 11, 13-15]. Last decade show growing attention to use AI in integrating the

GPSIINS systems as an alternative method, which considered an effective method to

deal with uncertainty, imprecision, and vagueness in the input data in dynamic

environments. Adaptive neuro fuzzy inference system (ANFIS) is employed in this

study to be the core of the proposed alternative GPSIINS navigator to provide an

enhanced navigation system for land navigation applications.

1.3 Objectives of the Study

The primary aim of the present study is to design an alternative GPSIINS navigation

system which integrates the GPS with INS based on hybrid swarm wavelet-ANFIS

techniques. The proposed GPSIINS navigator must estimate the INS errors, and hence,

correct the raw INS output and connect the GPS outages during the GPS signal loss. To

achieve this aim, the following specific objectives are to be accomplished:

7

© C
OPYRIG

HT U
PM



1- To apply a strapdown inertial navigation system (SDINS) to mechanize the IMU

output and provide full navigation solutions including position and velocity

information for the moving vehicle.

2- To predict the missing GPS data. For this purpose, three techniques will be tested

using the data generated from a developed package of six degrees of freedom.

3- To automate the wavelet parameters selection in order to de-noise the GPS and

INS outputs and estimate the INS errors required for the integrated GPSIINS

system.

4- To integrate the GPS with the INS systems in order to estimate the required INS

errors and hence, correct the raw INS outputs including the position and velocity.

1.4 Contributions of the Study

This study is dedicated to develop an alternative integration algorithm between GPS and

low-cost MEMS INS navigation system for land navigation applications, which works in

all environments and provides a complete navigation solution, such as velocity and

position. Therefore, to attain these objectives, this study has considered different

techniques, such as the artificial intelligence (AI), wavelet analysis (WA) and

evolutionary algorithm (EA), in order to build up a reliable GPS/INS navigation system.

AI is widely used in different applications such as classification, estimations, mapping

and decision making [16-19]. Thus, the AI methods can provide a robust navigation

system utilizing the MEMS inertial sensors and single-point positioning GPS systems.

8
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The main contributions of this study to the field of navigation systems can be elaborated

as follows:

1- A new design for INS error estimation is proposed through fusing certain

characteristics from the GPS and INS signals using wavelet multi-resolution

analysis (WMRA) based particle swarm optimization (PSO) in order to optimize

the best possible wavelet parameters. This design is appropriate for practical and

real time implementation due to its very short optimizing time and elevated

accuracy.

2- A new method is proposed for predicting the missing GPS data in order to be

synchronized with INS data based on numerical and ANFIS with PSO

techniques.

3- An optimal design of an integrated GPSIINS navigation system is presented. The

ANFIS technique has been utilized as an alternative method to integrate the GPS

and INS systems and produce the corrected navigation solution. The learning

parameters of the proposed navigation system is optimized using three learning

methods (BP, GA, and PSO) and an effective sliding windowing strategy has

been employed to guarantee efficient learning and mimic the navigation

knowledge to be used in predicting mode during the GPS signal loss.

4- A new structure for the GPSIINS integration is proposed utilizing the current and

previous INS data as the inputs to the ANFIS module to increase the prediction

reliability during long GPS signal loss.

5- Another new structure for integrating GPS with INS is proposed utilizing the

inertial measurements as the raw inputs to the ANFIS module in order to model

9

© C
OPYRIG

HT U
PM



1000764035

the sensor errors to be used during GPS signal loss to predict the INS errors in

prediction mode.

1.5 Scope of the Study

The ultimate aim of this study is to present a reliable and low-cost navigation system.

The proposed integration and algorithms in this study are applied to solve different

inadequacies in the current navigation systems, such as predicting the missing GPS data

by providing continuous navigation solutions through bridging the GPS outages during

signal losses. This is achieved through proposing techniques toward improving the

performance of the integration between the low-cost MEMS-based IMU and GPS to

provide a navigation solution with the previously mentioned attributes. The provided

navigation solution is suitable for a land vehicle only (e.g. automobile and mobile

robot).

The experimental work done in this study utilizes two different data types:

1- A hypothetical 6DOF simulink package is developed specifically to generate the

required data for training the ANAS during the learning mode for the GPS

prediction since large data sets are required to train the proposed GPS predictor

(a total of 20 data sets are used that divided into 13 data sets for training and 7

for testing).

2- A data collected using the MotionPaklI MEMS IMU sensor with a NovAtel

OEM4 GPS is used in the GPS/INS integration to evaluate and compare the

la
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results with the previous works that use the same IMU grade (using 8 field data

sets, 4 used for training and 4 for testing).

Navigation systems are utilized by diverse applications that are different in the required

accuracy. However, for land vehicle applications a meter level accuracy is adequate (e.g.

2-5 m) is quite sufficient while for a mobile robot applications then a centimeter level

accuracy is necessary (e.g. 0.1-0.9 m) and there are numerious applications required

different accuracy resolution such as vehicle control, precision agricultural and

unmanned ground vehicle (UGY).

The accuracy of the proposed navigation system and especially the INS with GPS

integration is vastly reliant on the length of the GPS outages. In this study, a maximum

of 200 second outages have been tested for all the GPS/INS structures that show an

acceptable accuracy, since outages more than this period is not practical. Moreover, the

training mode for the proposed integrations requires continuous data from both GPS and

INS that cannot be accomplished if any of them is missing.

The work presented in this study is limited to land navigation applications. Therefore, it

is not suitable for airplanes or any unmanned aerial vehicles (UAYs) since a terrestrial

strapdown INS algorithm is used.

As already mentioned, the neuro fuzzy applied in this study is the adaptive neuro fuzzy

inference system (ANFIS) network. Therefore, other types of neuro-fuzzy systems are

not covered in this study.

II
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As exposed in Figure 1.2, the research scope can be divided into two main blocks

namely GPS prediction and INS/GPS integration.

1.6 Thesis Organization

This thesis is divided into five chapters, as follows:

Chapter One comprises a concise historical background of land navigation systems and

their development followed by the problem statement, the research objectives and the

thesis contributions.

Chapter Two explains in detail the literature that supports this research; this includes an

overview of both GPS and INS as stand-alone systems and their associated errors.

Different applications that use GPS and INS are also reported and different methods

used in order to solve the synchronization between GPS and INS data are illustrated.

This chapter also presents a basic concept of fuzzy inference system (AS) with a special

emphasis on ANAS. ANAS modeling, including its structure and parameters

optimization, is also covered. In addition, a detailed survey on integration strategies used

to integrate both the GPS and INS systems focusing on the most used integration

algorithms, such as Kalman filter (KF), particle filter (PF) and artificial intelligence (AI)

is also given in this chapter.
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Figure 1.2: Study Scheme Shows the Proposed Work

Chapter Three presents the general and detailed methods that have been adopted to

achieve the objectives of the present work. Strapdown mechanization equations

algorithm computation is first presented in this chapter, then the proposed three methods

for predicting the mislead GPS data are explained. This chapter also introduces a well-

structured hybrid swarm wavelet method (HSWM) designed to estimate the INS errors

13

© C
OPYRIG

HT U
PM



followed by the proposed three structures to integrate the GPS with the INS navigation

systems based on ANFIS. Finally, their learning modes utilize the windowing method

and their ability testing to connect the GPS outages for different lengths is compared.

Chapter Four presents the results of evaluating the wavelet de-noising algorithm on the

inertial measurements unit readings. In this chapter, the prediction performance of GPS

data is evaluated and compared using the Newton, Spline and ANFIS methods in terms

of prediction accuracy and time required for prediction. Moreover, the estimation for

INS errors using the proposed HSWM is also presented. In addition, the performance of

the proposed integrated system is tested during GPS blockage. Performance comparison

of the three GPS/INS structures using three different learning methods, in particular,

back propagation, genetic algorithm and particle swarm optimization, is presented.

Lastly, a comparative study between the three GPS/INS structures in terms of maximum

errors obtained during different outages length and time required for learning mode is

also presented in this chapter with illustrating the improvement percentage for the

proposed GPS/INS structures.

Finally, Chapter Five summarizes the objectives addressed in this thesis. The most

important findings and performance analysis evaluation are presented. Suggestions and

recommendations for future development are also offered in this final chapter.
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