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The wide distribution of xenobiotic alkanesulfonate compounds in nature without 
proper handlings has raised health and environmental concerns. Degradation of 
these compounds happens naturally with the help of microorganisms. 
Alkanesulfonate monooxygenase system from bacteria carries out 
biodegradation of alkanesulfonate molecule. It is a two-component enzyme 
system that involved flavin transfer between flavin mononucleotide (FMN) 
reductase (SsuE) and alkanesulfonate monooxygenase (SsuD). SsuE supplies 
reduced FMN (FMNH2) to SsuD as a cofactor. However, most alkanesulfonate 
monooxygenase systems studied were originated from mesophilic bacteria. 
Moreover, the stability and characteristic of the thermophile-origin 
alkanesulfonate monooxygenase system were unclear. Therefore, the 
expression and characterization of the thermophilic alkanesulfonate 
monooxygenase system can be applied for the bioremediation of xenobiotic 
alkanesulfonate pollutants. In this study, the properties of the recombinant 
alkanesulfonate monooxygenase system and its components from 
thermophilic Anoxybacillus geothermalis D9 were reported for the first time. The 
study aims to discover the biochemical and biophysical nature of SsuE and SsuD 
from thermophiles. In this study, ssuE and ssuD genes from A. geothermalis D9 
were successfully cloned into an expression vector pET-51b (+) and expressed 
in Escherichia coli strain Rosetta (DE3). The recombinant SsuE and SsuD were 
purified via affinity chromatography with a molecular mass of 21.7 and 46.3 kDa, 
respectively. Temperature and thermal denaturation analysis show that SsuD 
with an optimum temperature of 40 °C is slightly more thermostable than SsuE 
that is optimal at wide range temperatures (30 – 50 °C). Their stability in a wide 
temperature ranging from 20 to 50 °C indicates that they are thermostable 
enzymes. Both proteins also prefer pH 8 but SsuD is more stable in slightly 
alkaline pH as compared to SsuE. Furthermore, the alkanesulfonate 
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monooxygenase system in this study is stable in most organic solvents 
especially those with high LogP. This system catalyzed redox reactions, thus, 
their activities were greatly enhanced by the presence of most metal ions. These 
proteins are moderately stable in non-ionic surfactants and greatly inhibited by 
anionic surfactants. Physical and structural analysis of this system found that 
they are mainly made up of α-helices. Besides, in silico studies predict SsuE and 
SsuD exist as dimeric α/β/α flavodoxin and TIM barrel structure, respectively. 
The computational analysis also predicted the active pockets and interaction of 
protein residues with the substrate was located in the C-terminal end of β-sheets 
for both proteins. In general, SsuD characterized in this study exhibits better 
stability as compared to SsuE which might be due to the differences in their 
protein structure. In conclusion, the thermostable alkanesulfonate 
monooxygenase system from A. geothermalis D9 with a unique pH stability 
profile and active in many types of solvents making it an attractive multi-enzyme 
system to be exploited for bioremediation or industrial purposes. 
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Oleh 

DURRATUL FATINI BINTI YUSOFF 

Februari 2021 

Pengerusi : Raja Noor Zaliha Raja Abd Rahman, D. Engr.  
Fakulti  : Bioteknologi dan Sains Biomolekular 
 
 
Penyebaran sebatian alkanasulfonat xenobiotik secara meluas tanpa 
pengendalian yang betul telah menimbulkan kebimbangan kesihatan dan 
persekitaran. Degradasi sebatian ini berlaku secara semula jadi dengan bantuan 
mikroorganisma. Sistem alkanasulfonat monooksigenase daripada bakteria 
melakukan biodegradasi molekul alkanasulfonat. Ini adalah sistem dua 
komponen enzim yang melibatkan pemindahan flavin antara flavin 
mononukleotida (FMN) reduktase (SsuE) dan alkanasulfonat monooksigenase 
(SsuD). SsuE membekalkan FMN terturun (FMNH2) kepada SsuD sebagai 
kofaktor. Walau bagaimanapun, kebanyakan sistem monooksigenase 
alkanasulfonat yang dikaji berasal dari bakteria mesofilik. Lebih-lebih lagi, 
kestabilan dan ciri sistem monooksigenase alkanesulfonate asalan termofil 
adalah tidak jelas. Oleh itu, pengekspresan dan pencirian sistem alkanesulfonat 
monooksigenase termofilik dapat digunakan untuk bioremediasi bahan 
pencemar alkanesulfonat xenobiotik. Dalam kajian ini, sifat sistem 
alkanasulfonat monooksigenase rekombinan dan komponennya daripada 
termofilik Anoxybacillus geothermalis D9 dilaporkan untuk pertama kalinya. 
Kajian ini bertujuan untuk mengetahui sifat biokimia dan biofizik SsuE dan SsuD 
daripada termofil. Dalam kajian ini, gen ssuE dan ssuD daripada A. geothermalis 
D9 berjaya diklon ke dalam vector pengekspresan pET-51b (+) dan diekspres 
dalam strain Escherichia coli Rosetta (DE3). SsuE rekombinan dan SsuD 
ditulenkan melalui kromatografi afiniti dengan jisim molekul masing-masing 21.7 
dan 46.3 kDa. Analisis denaturasi suhu dan terma menunjukkan bahawa SsuD 
dengan 40 °C suhu optimum sedikit lebih termostabil daripada SsuE yang 
optimum pada julat suhu yang luas (30 - 50 °C). Selain itu, kestabilan enzim ini 
dalam julat suhu yang luas antara 20 hingga 50 ° C menunjukkan bahawa SsuE 
dan SsuD adalah enzim termostabil. Kedua-dua protein juga lebih suka pH 8 
tetapi SsuD lebih stabil pada pH sedikit alkali berbanding dengan SsuE. 
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Selanjutnya, sistem alkanasulfonate monooksigenase dalam kajian ini stabil 
dalam kebanyakan pelarut organik terutamanya yang mempunyai LogP tinggi. 
Sistem alkanasulfonat monooksigenase menjadi pemangkin tindak balas 
redoks, oleh itu, aktiviti mereka ditingkatkan dengan adanya kebanyakan ion 
logam. Tambahan lagi, protein ini agak stabil dalam surfaktan bukan ionik dan 
sangat direncat oleh surfaktan anionik. Analisis fizikal dan analisis struktur 
sistem ini mendapati bahawa kebanyakannya terdiri daripada α-heliks. Selain 
itu, dalam kajian in silico meramalkan SsuE dan SsuD, masing-masing wujud 
sebagai struktur dimer α/β/α flavodoxin dan TIM tong. Analisis komputasi juga 
meramalkan poket aktif dan interaksi residu protein dengan substrat terletak di 
hujung C-terminal helaian-β untuk kedua-dua protein. Secara umum, SsuD yang 
dicirikan dalam kajian ini menunjukkan kestabilan yang lebih baik berbanding 
dengan SsuE yang mungkin disebabkan oleh perbezaan struktur protein 
mereka. Kesimpulannya, pemahaman mengenai sifat sistem alkanasulfonat 
monooksigenase daripada bakteria termofilik menyediakan beberapa maklumat 
mengenai enzim unik ini. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background study 
 
 
Detergent pollutions in the marine environment, soil, and water bodies have 
raised health and ecosystem concerns. One of the main components in 
detergent is surfactants from linear alkylbenzene sulfonates (LAS) and 
secondary alkane sulfonates (SAS) molecules. The wide distribution of toxic 
xenobiotic alkanesulfonates in nature was contributed by various industrial and 
household activities (Field et al., 1995; Olkowska et al., 2014). Alkanesulfonate 
monooxygenase has been reported with the ability to degrade alkanesulfonate 
compounds through the sulfur acquisition process (Thomas et al., 2007; Ellis, 
2011). Moreover, this desulfonation process involved two enzymes 
under ssu (sulfonate-sulfur utilization) gene locus which are flavin 
mononucleotide (FMN) reductase (SsuE) and alkanesulfonate monooxygenase 
(SsuD) that cooperates for electron and hydride transfer. SsuE is a flavoprotein 
that carries out the reduction of FMN to FMNH2 with NADPH as its coenzyme 
while SsuD on the other hand dependent on SsuE for FMNH2 to oxidize the 
alkanesulfonate molecule (van der Ploeg et al., 2001). In the presence of a 
dioxygen environment, FMNH2 is having a short half-life thus measuring the 
monooxygenase activity without flavin reductase is difficult (Zhan et al., 2008). 
Therefore, the SsuE was expressed, purified, and characterized together with 
SsuD to investigate the nature of the alkanesulfonate monooxygenase system 
as well as its helper enzyme (SsuE) from a thermophilic source. In this study, 
SsuD activity was measure as a two-component system while SsuE activity was 
measured as an individual enzyme. The most extensive investigations of the two-
component alkanesulfonate monooxygenase system were originated from 
mesophilic Gram-negative bacteria, Escherichia coli (Eichhorn et al., 1999). 
 
 
The advancement of proteins and enzyme studies has shifted the focus on 
extremozymes with high stability and tolerance in a harsh environment. The 
properties of extreme enzymes can be beneficial and engineered to meet the 
high industrial and commercial demands (Pandey et al., 2015). Furthermore, the 
research focus on the mesophilic alkanesulfonate monooxygenase system, 
where properties of its individual enzymes from Anoxybacillus species remain 
scarce. So far, the reported structural analysis of SsuE and SsuD are limited 
to E. coli sources (Eichhorn et al., 2002; Thakur et al., 2020). Thermophilic 
bacterium A. geothermalis strain D9 that was previously isolated from seawater 
with crude oil utilizing ability (Yusoff, 2017) was used as the source for SsuE and 
SsuD in this study. Apart from that, past research found that A. geothermalis D9 
produces lipase and alkane hydroxylase during the crude oil degradation 
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process. Furthermore, this is the first time desulfonation of alkanesulfonate 
molecules was reported from this species. 
 
 
1.2 Problem statement 
 
The two-component alkanesulfonate monooxygenase system involved in the 
desulfurization of sulfonates is mainly reported to be functional in mesophilic 
temperature ranges. Moreover, the stability of these thermophiles-origin 
enzymes under harsh environments such as in the presence of organic solvents 
and surfactants was unknown. So far, the biochemical and biophysical studies 
of extreme two-component alkanesulfonate monooxygenase systems are very 
limited.  
 
 
1.3 The aim of the study 
 
 
The main objective of this study is to discover and characterize the properties of 
recombinant FMN reductase (SsuE) and alkanesulfonate monooxygenase 
(SsuD) from A. geothermalis D9 in biochemical and biophysical aspects. The 
specific objectives to achieve throughout this study are as follow; 

1. To clone and optimize the expression of the two-component 
alkanesulfonate monooxygenase system from A. geothermalis D9 into 
expression host E. coli Rosetta™ (DE3). 

2. To purify the SsuE and SsuD via affinity chromatography. 
3. To study the properties of purified SsuE and alkanesulfonate 

monooxygenase system through temperature, pH, co-enzymes, organic 
solvent, metal ion, and surfactant characterizations as well as their 
structural insights from in silico studies.  
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APPENDICES 

 

Appendix A 

 

Chart 1: Experimental workflow for SsuE and SsuD studies. 
 
 
 

Gene isolation

Primers design and construction. The ssuE and ssuD gene isolated 
from A. geothermalis D9 by PCR.

Cloning

SsuE and SsuD were cloned into cloning vector (pMinit 2.0) 
separately and transformed into cloning host. Cloning of SsuE and 
SsuD in expression vector pET-51b (+).

Expression

SsuE and SsuD were expressed in E. coli RosettaTM (DE3). 
Optimization of expression for maximum protein yield.

Purification

• Affinity chromatography using Streptactin sepharose resin.

Characterization of SsuE and SsuD

• Biochemical properties; Temperature, pH, organic solvents, 
metal ions and surfactants.

• Biophysical properties; Tm and secondary structure 
determination.

In silico studies

• Homology modeling and docking of SsuE and SsuD with 
substrate.
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Table I: List of chemicals used in this study. 

Chemicals Manufactures 
1-Propanol Merck, Germany 
2-Propanol Merck, Germany 
3-(N-morpholino)propanesulfonic acid (MOPS) Merck, Germany 
40 % Acrylamide Solution, Bis-Acryl/Bis 37.5:1 VWR International, USA 
5,5′-Dithiobis(2-nitrobenzoic acid) (DTNB) Sigma-Aldrich, USA 
Acetonitrile Merck, Germany 
Agarose Genedirex, USA 
Ammonium persulfate (APS) R&M Chemicals, UK 
Ampicillin sodium salt Gold Biotechnology, USA   
Benzene Merck, Germany 
Bovine serum albumin (BSA) Sigma-Aldrich, USA 
Bradford reagent Sigma-Aldrich, USA 
Butanol Merck, Germany 
Calcium chloride (CaCl2) Fisher Scientific, USA 
Chloramphenicol powder Gold Biotechnology, USA 
Chloroform Merck, Germany 
Cobalt (II) sulfate (CoSO4) Fluka, Switzerland 
Coomasie brilliant blue G250 Merck, Germany 
Copper (II) sulfate (CuSO4) R&M Chemicals, UK 
D-Desthiobiotin Sigma-Aldrich, USA 
Diethyl ether Merck, Germany 
Dimethyl sulfoxide (DMSO) R&M Chemicals, UK 
Dimethylformamide (DMF) Merck, Germany 
Disodium ethylenediaminetetraacetate dihydrate 
(EDTA) 

Sigma-Aldrich, USA 

Disodium hydrogen phosphate (Na2HPO4) Friendmann Schmidt, 
Australia 

Ethanol Merck, Germany 
Ethylene glycol R&M Chemicals, UK 
Glacial acetic acid R&M Chemicals, UK 
Glycerol R&M Chemicals, UK 
Glycine Fisher Scientific, USA 
Heptanol Merck, Germany 
Hydrochloric acid (HCl) QRec, New Zealand 
Iron (II) chloride (FeCl2) Merck, Germany 
Isopropyl β- d-1-thiogalactopyranoside (IPTG) Gold Biotechnology, USA 
Lithium chloride (LiCl) Fisher Scientific, USA 
Magnesium chloride (MgCl2) Merck, Germany 
Manganese (II) chloride (MnCl2) Fluka, Switzerland 
Methanol Merck, Germany 
N,N,N',N'-Tetramethylethylenediamine 
(OmniPur® TEMED) 

Merck, Germany 

n-Heptane Sigma-Aldrich, USA 
n-Hexadecane Sigma-Aldrich, USA 
n-Hexane Sigma-Aldrich, USA 
Nickel (II) sulfate (NiSO4) Merck, Germany 
Nicotinamide adenine dinucleotide phosphate, 
reduced tetrasodium salt (NADPH) 

Solarbio Life Science, 
China 



© C
OPYRIG

HT U
PM

76 

Nicotinamide adenine dinucleotide, reduced 
disodium salt (NADH)  

Sigma-Aldrich, USA 

n-Tetradecane Sigma-Aldrich, USA 
Octanol Merck, Germany 
Potassium acetate (KAc) QRec, New Zealand 
Potassium chloride (KCl) Merck, Germany 
p-Xylene Merck, Germany 
Riboflavin 5’-monophosphate sodium salt 
hydrate (FMN) 

Sigma-Aldrich, USA 

Rubidium chloride (RbCl) Merck, Germany 
Sodium 1-decanesulfonate (C10H21NaO3S) Sigma-Aldrich, USA 
Sodium acetate  R&M Chemicals, UK 
Sodium chloride (NaCl) Merck, Germany 
Sodium dihydrogen phosphate (NaH2PO4) Friendmann Schmidt, 

Australia 
Sodium dodecyl sulfate (SDS) Merck, Germany 
sodium dodecylbenzenesulfonate (SDBS) Sigma-Aldrich, USA 
Sodium hydroxide (NaOH) QRec, New Zealand 
StrepTactinTM Sepharose High-Performance 
resin 

GE Healthcare, Sweden 

Toluene Merck, Germany 
Tris Merck, Germany 
Triton™ X-100 Merck, Germany 
Tween® 20 Sigma-Aldrich, USA 
Tween® 80 Sigma-Aldrich, USA 
β-mercaptoethanol Fisher Scientific, USA 

 
 
Table II: Strains and plasmids used in this study. 

Strains and plasmids Manufacturers 
E. coli 10-Beta  New Englands Biolabs, USA 
E. coli BL21 (DE3) New Englands Biolabs, USA 
E. coli RosettaTM (DE3) Merck, Germany 
E. coli TOP10 Thermo Fisher Scientific, USA 
pET-51b (+) DNA Merck, Germany 
pMiniT 2.0 New Englands Biolabs, USA 

 
 
Table III: Types of media used for culturing bacteria. 

Media Manufacturers 
Luria Bertani agar Merck, Germany 
Luria Bertani broth Merck, Germany 
Nutrient agar Merck, Germany 
Nutrient broth Merck, Germany 
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Table IV: The list of consumables and kits. 

Consumables and kits Manufacturers 
1 kb DNA Ladder Genedirex, USA 
2 x EasyTaq PCR SuperMix TransGen Biotech, China 
DNA Gel Loading Dye (6 x) Thermo Fisher Scientific, USA 
FavorPrepTM Plasmid Extraction Mini Kit Favoragen, Taiwan 
FlyCut® restriction enzymes TransgGen Biotech, China 
Lambda DNA/HindIII Marker Thermo Fisher Scientific, USA 
NEB PCR Cloning Kit  New Englands Biolabs, USA 
PageRuler™ Unstained Protein Ladder Thermo Fisher Scientific, USA 
Pierce™ Unstained Protein MW Marker Thermo Fisher Scientific, USA 
Pink Plus Prestained Protein Ladder Cleaver Scientific, UK 
Qiagen Dneasy Blood and Tissue Kit  Qiagen, USA 
QIAquick Gel Extraction Kit  Qiagen, Germany 
RedSafeTM Nucleic Acid Staining Solution iNtRON Biotechnology, Korea 
T4 DNA Ligase Thermo Fisher Scientific, USA 
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Appendix B 
 
 
(a)  Buffer recipes for the optimization of expression  
 
 
Table V: Phosphate and Tris-HCl buffers recipe. 

Compositions of phosphate buffer Amount (50 mM, pH 7.4) 

Sodium dihydrogen phosphate 
(NaH2PO4) 

1.697 g/L 

Disodium hydrogen phosphate 
(Na2HPO4) 

10.107 g/L 

dH2O 1 L 
Compositions of Tris-HCl Amount (50 mM, pH 9.0) 

Tris 6.06 g/L 
Hydrochloric acid Adjust until reach pH 9.0 
dH2O 1 L 

 
 
(b)  Polyacrylamide gel and buffer recipes for SDS-PAGE 
 
  
Table VI: SDS-PAGE polyacrylamide gel compositions. 

Ingredients  12 % of resolving gel 4 % stacking gel 

dH2O 4.40 mL 2.95 mL 
Tris-HCl 2.50 mL (pH 8.8) 1.25 mL (pH 6.8) 
40 % Acrylamide solution 3.00 mL 0.75 mL 
10 % SDS 0.10 mL 0.05 mL 
10 % APS 50.0 µL 25.0 µL 
TEMED 10.0 µL 7.50 µL 

 
 
Table VII: 4 X SDS-PAGE sample buffer (Morris formulation). 

Ingredients Amount in 10 mL of the total volume 

1 M Tris-HCl pH 6.8 0.25 mL 
SDS 1.0 g 
0.1% Bromophenol Blue 0.8 mL 
Glycerol 4.0 mL 
β-mercaptoethanol 2.0 mL 
dH2O Up to 10 mL 

 
 
Table VIII: Running buffer for SDS-PAGE analysis. 

Compositions Concentration 

Tris (pH 8.8) 3 g/L 
Glycine 14.4 g/L 
SDS 1 g/L 
dH2O 1 L 

 
 



© C
OPYRIG

HT U
PM

79 

Table IX: Staining buffer for SDS-PAGE analysis. 

Compositions Concentration / Volume 

Coomasie blue G-250 2.5 g/L 
Methanol 450 mL 
Galcial acetic acid 100 mL 
dH2O 450 mL 

 
 
Table X: Destaining buffer for SDS-PAGE analysis 

Compositions Volume (mL) 

Methanol 100 
Glacial acetic acid 100 
dH2O 800 

 
 
(c)  Buffer recipes used in affinity chromatography 
 
 
Table XI: Binding and elution buffers compositions. 

Ingredients Binding buffer (pH 8.0) Elution buffer (pH 8.0) 

Tris-HCl 100 mM 100 mM 
NaCl 150 mM 150 mM 
EDTA 1mM 1mM 
D-Desthiobiotin - 2.5 mM 

 
 
(d)  Recipes for enzyme assays components 
 
 
Table XII: Decanesulfonate stock solution (2mL) 

Ingredients Amount in 2 mL 

50 mM decanesulfonate (C10H21NaO3S) 0.0244 g/mL 
dH2O 2 mL 

 
 
Table XIII: DTNB stock solution (5 mL) 

Ingredients Amount in 5 mL 

26 mM DTNB 0.0515 g/L 
100 mM phosphate buffer pH 7.4 5 mL 
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Table XIV: Coenzymes stock solution preparation using extinction 
coefficient valuesa. 

Coenzymes Extinction coefficient (M−1cm−1) 

FMN 12500  
NADH 6220 
NADPH 6220 

aFMN, NADH and NADPH are very sensitive to heat, susceptible to oxidation, 
and only needed in small amounts. Moreover, the weight needed for each assay 
is too small and cannot be measured accurately by 4 decimals weighing balance. 
Therefore, the stock solutions were prepared by adding a small amount of each 
chemical into an Eppendorf tube separately and resuspended with 50 mM 
phosphate buffer pH 7.4. The concentration of the stock solution was measured 
using the extinction coefficient and where the final volume needed in enzyme 
assay was determined by its final concentration. 
 
 
Table XV: The final concentration of SsuE and SsuD assays components. 

Components Final concentration 

SsuE assay SsuD assay 

50 mM phosphate buffer pH 
7.4 

Add accordingly           Add accordingly           

FMN 1 µM 1 µM 
NADH 0.5 mM 0.5 mM 
SsuE 0.6 µM 0.6 µM 
SsuD - 0.2 µM 
Decanesulfonic acid - 2 mM 
DTNB - 1 mM 
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Appendix C 
 
 
Standard curves 
 
 

 
Figure I: BSA standard curve Bradford assay. 
 
 

 
Figure II: NADH standard curve for SsuE assay. 
 
 

 
Figure III: Sodium sulfite standard curve for SsuD assay. 
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Appendix D 
 
 
Transmembrane and signal peptide predictions for SsuE and SsuD. 
 
 

 
Figure IV: Zero transmembrane helices (TMHs) are predicted for SsuE. 
 
 

 
Figure V: Zero transmembrane helices (TMHs) predicted for SsuD. 
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Figure VI: The likelihood of SsuD having Signal peptide (Sec/SPI), TAT 
signal peptide (Tat/SPI), and Lipoprotein signal peptide (Sec/SPII) are 
0.0076, 0.001, and 0.0013, respectively. 
 
 

 
Figure VII: The likelihood of SsuD having Signal peptide (Sec/SPI), TAT 
signal peptide (Tat/SPI), and Lipoprotein signal peptide (Sec/SPII) are 
0.0149, 0.0018, and 0.0033, respectively.  
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Appendix E 
 
 
Model verification analysis 
 

(a) 

 
(b) 

 
Figure VIII: Verify 3D analysis for SsuE and SsuD predicted models. An 
acceptable value is at least 80% of residues in a 3D-1D score of ≥ 0.2 (a) 100% 
of the SsuE residues have averaged a 3D-1D score of ≥ 0.2. (b) 87.2% of the 
SsuD residues have averaged 3D-1D scores of ≥ 0.2.  
 
 

(a)

 

(b)

 
Figure IX: Ramachandran plot for SsuE and SsuD model. (a) About 81.8.0% 
of SsuE residues in the most favored region [A, B, L]. Another 8.2% residues in 
additional allowed regions [a, b, l, p]. (b) About 95.0% of SsuD residues in the 
most favored region [A, B, L]. Another 5% residues in additional allowed regions 
[a, b, l, p]. 
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(a)

 
(b)

 
Figure X: ERRAT score for SsuE and SsuD residues. *The lines are drawn to 
indicate the confidence with which it is possible to reject regions that exceed that 
error value. Good high-resolution structures have values of 95% and above. (a) 
The overall quality factor for SsuE is 100. (b) The overall quality factor of 96.685 
for SsuD. 
 
 
 
. 
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