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Abstract of thesis presented to the Senate ofUniversiti Putra Malaysia in fulfilment of
the requirement for the Degree of Doctor of Philosophy

A REINFORCEMENT LEARNING-BASED ENERGY-EFFICIENT
SPECTRUM-AWARE CLUSTERING ALGORITHM FOR
COGNITIVE RADIO WIRELESS SENSOR NETWORK

By

IBRAHIM MUST APHA

February 2016

Chair
Faculty

Prof. Borhanuddin Mohd. Ali, PhD
Engineering

Energy efficiency and spectrum efficiency are two main challenges in the realization of
Cognitive Radio-Wireless Sensor Network (CR-WSN). Clustering is a well-known
technique that could be used to achieve energy efficient communication and to enhance
dynamic channel access in cognitive radio through cooperative sensing. While the energy
efficiency issue has been well investigated in conventional wireless sensor networks, the
latter has not been extensively explored. In this thesis, a Reinforcement Learning (RL)
based clustering algorithm is proposed to address energy and Primary Users (PUs)
detection challenges in CR-WSN. The scheme minimizes network energy consumption,
improves channel utilization and enhances PUs detection performance from three
different perspectives. Firstly, a RL based spectrum-aware clustering scheme in which a
cluster member node learns energy and cooperative sensing costs for neighbouring
clusters through exploration and imposes pairwise constraint to select optimal cluster.
The optimal cluster minimizes network energy consumption and enhances channel
sensing performance. Secondly, a weighted hard combining scheme that combines
features of both quantized and hard combining schemes to minimize energy cost for
reporting sensing result and improve PU detection performance. Thirdly, a RL based
cooperative channel sensing scheme where a clusterhead learns channels dynamic
behaviours in terms of channel availability, channel sensing energy cost and channel
impairment to achieve optimal sensing sequence and optimal set of channels. Simulation
results show convergence, learning and adaptability of the RL based algorithms to
dynamic environment toward achieving the optimal solutions. Performance comparisons
of the RL based clustering scheme with Groupwise spectrum-aware clustering scheme
show that an energy savings of9% and PU detection performance improvement of 11.6%
can be achieved. Similarly, the results indicate that the proposed fusion scheme
minimizes reporting energy cost by 70% and improves detection performance by 5.6\%
compared to the quantized 3-bits scheme. Furthermore, the results show that with the RL
based channel sensing scheme, a sensing energy cost savings of 15.14% per channel
sensing cycle can be achieved while improving PU detection accuracy and channel
utilization compared to the Greedy search approach. The overall result indicates viability
and improved performance from the RL based scheme over the other bench mark
schemes in terms of energy efficiency and PU detection performance which are vital to
resource constraint devices.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk Ijazah Doktor Falsafah

ALGORITMA PENGELOMPOKAN CEKAP TENAGA SPEKTRUM-SEDAR
BENDASARKAN-PEMBELAJARAN PENGUKUHAN UNTUK RADIO-

KOGNITIF RANGKAIAN SENSOR TANPA WAYAR

Oleh

IBRAHIM MUST APHA

Februari 2016

Pengerusi
Fakulti

Prof. Borhanuddin Mohd. Ali, PhD
Kejuruteraan

Kecekapan tenaga dan kecekapan spektrum adalah merupakan dua cabaran utama
dalam merealisasikan Radio-Kognitif Rangkaian Sensor Tanpa Wayar(RR-STW).
Pengelompokan adalah teknik terkenal yang memberangsangkan yang boleh digunakan
untuk mencapai komunikasi yang cekap tenaga dan untuk meningkatkan akses saluran
dinamik dalam radio kognitif melalui penderiaan kerjasama.Walaupun persoalan
kecekapan tenaga telah dikaji dalam rangkaian sensor tanpa wayar
konvensional,kecekapan spektrum belum diterokai secara meluas. Dalam tesis ini,
algoritma pengelompokan berdasarkan Pembelajaran Pengukuhan(PP) dicadangkan
bagi menangani cabaran pengesanan tenaga dan Pengguna Utama(PU) dalam RR-
STW.Skim ini dapat mengurangkan penggunaan tenaga dalam rangkaian seterusnya
dapat meningkatkan penggunaan saluran dan meningkatkan prestasi pengesanan PU-
PU dari tiga perspektif yang berbeza. Pertama, pp yang berasaskan skim kelompok
spektrum-sedar di mana nod ahli kelompok belajar tentang tenaga dan kos pengesanan
kerjasama untuk kelompok jiran melalui penerokaan dan mengenakan kekangan dari
segi pasangan untuk memilih kelompok yang optimum. Kelompok optimum dapat
mengurangkan penggunaan tenaga rangkaian dan meningkatkan prestasi pengesanan
saluran.Yang kedua, skim yang berwajaran keras yang menggabungkan kedua-dua ciri
terkuantum dan skim penggabungan keras bagi mengurangkan kos tenaga bagi
melapala untuk melaporkan hasil penderiaan dan meningkatkan prestasi pengesanan
PU. Ketiga,PP berasaskan skim pengesanan saluran kerjasama di mana ketna kelompok
belajar tingkah laku saluran yang dinamik dari segi ketersediaan saluran, kos tenaga
penderiaan saluran dan kemerosotan saluran untuk mencapai urutan pengesanan yang
optimum dan set saluran-saluran yang optimum. Keputusan-keputusan simulasi
menunjukkan penu-rnpuan, pembelajaran dan keupayaan menyesuaikan diri daripada
algoritma pp berdasarkan kepada persekitaran yang dinamik ke arah mencapai
penyelesaian yang optimum. Perbandingan prestasi skema pengelompokan berdasarkan
RL dengan Groupwise spektrum-sedar Skema pengelompokan dapat mencapai
penjimatan tenaga sebanyak 9% dan peningkatan prestasi pengesanan PU sebanyak
11.6%. Demikian juga, hasil kajian menunjukkan bahawa skema gabungan yang
dicadangkan dapat meminimumkan kos tenaga pelaporan sebanyak 70% dan
meningkatkan prestasi pengesanan sebanyak 5.6% jika dibandingkan dengan skema 3-
bit terkuantum. Tambahan pula, keputusan menunjukkan bahawa dengan skema RL
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berasaskan saluran pengesanan, penjimatan kos tenaga pengesanan 15.14% bagi setiap
pengesanan sa luran kitaran boleh dicapai seterusnya dapat memperbaiki ketepatan
pengesanan PU dan penggunaan saluran berbanding dengan pendekatan carian Greedy.
Secara keseluruhan hasil kajian menunjukkan bahawa kelayakan dan peningkatan
prestasi dari skema berdasarkan RL berbanding skema penanda aras lain dalam hal
kecekapan tenaga dan prestasi pengesanan PU yang amat penting kepada sumber
peranti kekangan.
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CHAPTER 1

INTRODUCTION

1.1 Background

Tremendous growth in microelectronics technology and wireless communication appli-
cations have led to the widespread use of Wireless Sensor Networks (WSNs) in a wide
variety of applications areas ranging from agriculture to military, environmental, COI11-

mercial, scientific, healthcarc and industry. In addition, WSN W<lS envisioned to be
the main enabling component in driving revolutionary technologies such as Internet of
Things (loT), Machine-to-Machine (M2M) and Web of Things (WoT) into reality [I).
Many objects and electronics devices Me seamlessly and efficiently sense, collect and
share data across the network for various applications.

Wireless sensor node is a self-organizing ad hoc entity equipped with communication,
sensing and computing module that enables it to monitor certain events such as temper-
ature, humidity, images, motion and seismic related signals in a geographical area and
report the information to a sink node for further processing. Generally, WSN consists of
huge number of nodes that are either systematically or randomly dispersed in <Ispecific
area to accomplish a particular application requirement. The main task of a sensor node
is to sense, process and transmit data to neighbouring nodes or sink nodes. The sink node
collects sensing data from sensor nodes and sends it to a gateway that interconnects dif-
ferent networks. Wireless sensor nodes are characterized by constrained memory, power,
and computational resources.

Proliferation of wireless sensor nodes and other wireless devices based on Bluetooth, Wi-
Fi and ZigBee technologies have led to severe congestion in the usable unlicensed Indus-
trial Scientific and Medical (ISM) spectrum band and hence pose operational challenges
to the wireless devices [2]. Federal Communications Commission (FCC) report [3) re-
vealed that many spectrum bands that are assigned to licensed users (primary users) for
various wireless communication services are underutilized. Similarly, studies on spec-
trum bands usage carried out in many countries including Malaysia [4). Spain [5). Sin-
gapore [6], Germany[7], New Zeeland [8] , UK [9] and USA [!O) at different locations
show that large portion of licensed radio spectrum bands have not been efficiently uti-
lized most of the time. The utilization of licensed radio spectrum bands varies from 15%
to 85% of the spectrum which indicates significant disparities in the usage of the radio
spectrum bands [II]. Transition from analogue TV to digital TV transmission creates
more spectrum opportunity for TV white space access and regulatory agencies of many
countries had begun to explore this opportunity to address spectrum scarcity. Further-
more, there are more than 70 available channels in the VHFIUHF spectrum band that
can be opportunistically accessed by secondary user and some hardware manufacturer
such as Raytheon Corporation have recently developed cognitive radio hardware that can
sense more than 10 TV channels simultaneously in a few seconds [12). Generally, radio
spectrum bands <Iredivided into fixed number of different frequency channels in which
segments of the radio spectrum bands are allocated for different wireless communication
services as shown in Figure 1.1.

1.1
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Figure 1.1: Schematic representation of radio spectrum bands and radio ranges
[13].

Conventional policy of allocating spectrum bands to licensed users regardless of tem-
poral and geographical variations has inadvertently contributed to the spectrum scarcity
and hence necessitates the need for a paradigm shift from the static inefficient spectrum
allocation policy to intelligent and dynamic spectrum access management. Static spec-
trum allocation policy can be explained analogically as allocating dedicated road lanes
to some users (licensed users) and denying access to other users (unlicensed users) even
though the allocated lanes are free of traffic for a long period while the unallocated lanes
are congested as shown in Figure 1.2 [14].

LICENSED ISM LICENSED
SPE(,TR{T~I BANDS

Figure 1.2: Analogy for static spectrum allocation policy [14].
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To address this inefficient spectrum access, the FCC has recently released rulings [3] that
allow unlicensed user to opportunistically access the unused portions of spectrum bands,
also called white spaces. The guidelines permit Secondary Users (SUs) to transmit on
TV white spaces frequencies (512 MHz-698 MHz)[15] without interfering with the in-
cumbents TV transmitters and wireless microphones transmissions. To ensure maximum
protection of the incumbent license users, the FCC proposed combination of local spec-
trum sensing and the use of geo-location database of primary users for the detection of
TV White Spaces (TVWS) availability.

The spectrum sensing involves sampling the received signals and comparing it with a
threshold to determine the availability of spectrum holes. On the other hand, the database
is a repository of primary user signal strength at a given location and time based on prop-
agation prediction model. While spectrum sensing to detect the presence of wireless
microphone receivers or TV receivers at very low threshold of -II4dB is challenging,
geo-location database of primary user signal strength is unreliable for primary user pro-
tection because of the inability of the propagation model to predict coverage area of TV
broadcasting and to estimate transmission power of licensed mobile user [IS]. This mo-
tivates the need for spectrum sensing techniques that can accurately detect incumbent
primary users. This research focuses on the spectrum sensing aspect.

Cognitive Radio (CR) has emerged as the viable technology for efficient utilization of
spectrum holes or TV whitespaces by dynamically allocating the unoccupied licensed
spectrum bands to unlicensed users in an agile manner without causing harmful interfer-
ence to the Primary Users' (PUs) transmission as illustrated in Figure 1.3 [16] . Such
a dynamic spectrum access provides not only the potential benefits of efficient spec-
trum utilization, but also reduces power used for transmission and reception by accessing
lower frequency bands spectrum that have better operating parameters in terms of net-
work performance and resource utilization [17]. Therefore, opportunist access of tempo-
ral and spatial spectrum holes is the main motivation for CR [18]. Note that, the terms
CR node and SUs refer to the same thing and may be used interchangeable.

Time

[j)Occupied Spectrum • Spectrum holes ~Dynamic Spectrum
Access

Figure 1.3: Spectrum holes and dynamic spectrum access [16].
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Spectrum sensing is the main fundamental function of CR to detect the presence or ab-
sence of PUs in a licensed spectrum band. Its main goal is to identify and access spectrum
holes without compromising PUs' transmission. In autonomous spectrum sensing, indi-
vidual SU locally senses the spectrum bands and decides on the presence or absence of
PU in the spectrum bands. However, this method is usually prone to channel impairments
such as fading, shadowing, receiver uncertainty and multi-path interference which result
from obstacles in close proximity or signal blockage [19}.

Cooperative spectrum sensing has been identified in [20],[21] as a feasible method to
tackle the aforementioned issues through exploration of multi-user sensing diversity to
improve spectrum sensing performance. In this method, multiple SUs share their local
sensing results and decide on the presence or absence of PUs in the spectrum band of
interest. A Fusion Centre (FC) which could either be selected SUs or a dedicated entity
performs decision fusion on the local sensing results obtained from individual SU and
makes global decision about the availability of spectrum holes. Despite of the fact that
the method achieved remarkable success in improving spectrum sensing performance,
it also incurs heavy communications overhead, increases computational complexity, and
decision making delay especially in large scale networks such as CR-WSN. Therefore,
logical grouping of multiple SUs to form clusters and assigning a dedicated entity within
the clusters to coordinate the sensing and data communication could mitigate these prob-
lems and also minimize network energy consumption. Generally, reliability of spectrum
sensing is measured based on two performance metrics namely, probability of detection
P" and probability of false alarm PI.

The need to properly harness the potentials benefits of cognitive radio technology in
WSN to improve spectrum utilization and support many applications that involve moni-
toring of sensitive and critical activities in an environment led to emergence of Cognitive
Radio Wireless Sensor Network (CR-WSN) [22],[23]. A CR-WSN is defined as the
dispersed network of cognitive radio sensor nodes equipped with cognitive radio capa-
bility that dynamically utilize unused available spectrum bands to communicate sensed
readings in either a single-hop or a multi-hop fashion to satisfy application requirement
[22}. Integrating opportunist spectrum access capability to the sensor nodes enables them
to adjust their transmission parameters to efficiently access the unused spectrum bands
and enhance communication quality. This emerging technology is expected to be the
most promising technology that has the potentials to address spectrum access challenges
in conventional WSNs. However, practical realization of this breakthrough poses many
challenges due to the resource constraints of the sensor nodes. Therefore, to address some
of these challenges, legacy algorithms and techniques for WSNs need to be enhanced to
improve network performance in terms of spectrum utilization and energy efficiency.

1.2 Problem Statements and Motivation

In general the main motivation for cognitive radio sensor networks is to effectively har-
ness the potentials benefits of cognitive radio technology in WSN to improve spectrum
access and utilization. Therefore, CR- WSN can be broadly used to support many applica-
tions that involve monitoring sensitive and critical activities in an environment. It offers
several potential benefits and can be used in a wide range of application areas such as
agriculture monitoring, home automation, industrial PflX'CSS control, military battlefield

© C
OPYRIG

HT U
PM



12 MAY 2017
surveillance, health care monitoring, automotive control and civil infrastructure monitor-
mg.

Generally, CR sensor nodes inherent resource constraint of conventional wireless sensor
nodes consequently are characterized by limited energy, constraint storage and process-
ing resources. They are normally powered by battery and usually deploy in inaccessible
terrain which make it difficult or impossible to replace and/or replenish the batteries [24].
Although, cognitive radio sensor nodes can dynamically access multiple unused licensed
channels for data transmission in order to address spectrum access and utilization chal-
lenges in conventional WSN [25], the additional task of opportunistic access to unused
licensed channels through spectrum sensing incurs significant energy cost which drains
more energy from the battery of the sensor nodes and hence shorten the life time of the
network.This means CR-WSN inevitably consumes much large energy than conventional
WSN due to the cognitive capability.

Therefore, energy-efficient spectrum access and communication to extend the lifetime
of the network became major issues in CR-WSN. Existing schemes for energy-efficient
data communication and spectrum access are mainly focused on conventional wireless
sensor networks [26] and ad hoc cognitive radio networks [27] respectively, but the union
of the two i.e CR-WSN has not been extensively explored. This necessitates the need for
a framework that improves network performance in terms of energy efficiency, dynamic
spectrum access and utilization. Thus, the main challenges in CR-WSNs are energy
efficient communication to extend the lifetime of the network and PU protection from
unlawful interference as illustrated in Figure 1.4.

Problem need to be addressed

CR·WSN Main Challenge~ -.-;.,...~•._ •.

.•PUProtection : .:~ Energy Constraint.l

Propose Solution

Dynamic Spectrum Access Data Communication

Energy Efficient

Channel
Sensing

Decision Fusion
Network
Clustering

Figure 1.4: Illustration of the main challenges in CR- WSN and the propose solution.
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Therefore, the main challenges can be formulated as energy minimization problem to
optimize network energy cost for cooperative channel sensing and data communication
while improving spectrum sensing performance.

A reinforcement learning based clustering and channel sensing schemes as well as de-
cision fusion scheme are proposed to address these challenges. The main motivation
for the reinforcement learning technique in cooperative sensing and network clustering
is due to its ability to learn optimal behaviour in challenging or uncertain environments
such as dynamic spectrum access. The technique is based on an agent that interacts with
(In environment by selecting an action that is likely to be beneficial and then receives a
feedback from the environment in form of reward to optimise it behaviour. It allows agent
to learn optimal channels and optimal cluster from interaction with the dynamic environ-
ment and adapt to unknown dynamic system to achieve optimal policy without model
of the environment. Unlike heuristic search and dynamic programming techniques, the
reinforcement learning technique eliminates the need of specifying an optimal action for
each possible state a priori and also can cope with uncertainty about outcome of the ac-
tion taken since goals can be specified in terms of reward measures, and with changing
situations.

1.3 Aim and Objectives

The aim of this thesis is to propose RL based spectrum-aware clustering algorithm that
can enhance spectrum sensing performance and optimise network energy consumption
thereby extending the lifetime of cognitive radio sensor networks. Thus, the objectives
of this thesis are to:

I. Minimize intra-cluster and inter-cluster communications energy cost and determine
optimal number of clusters for the network.

II. Optimize spectrum sensing energy cost and enhance performance of energy detec-
tion technique in terms of primary user detection.

Ill. Optimized channels to be sensed so that network energy cost is minimized while
improving spectrum sensing performance and utilization.

1.4 Scope of the Research

Cognitive radio is a vast area that encompasses multidisciplinary technologies that in-
volves several research fields such as signal processing, information theory, dynamic
spectrum access, communication protocols, and cognitive radio network architecture.
However the main focus of this research is on developing energy efficient reinforcement
learning based framework for cooperative channel sensing in a clustered cognitive radio
sensor network. Therefore, the research is confine to addressing energy and primary user
detection issues in cognitive radio sensor network using reinforcement learning tech-
nique. While there are many signal detection techniques. the framework basis on energy
detection technique due to computation. memory and energy constraints of the cognitive
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radio sensor node. Therefore, the research complements the efforts made toward realiza-
tion of cognitive radio technology application in WSNs.

1.5 Research Methodology

The research focuses on minimizing network energy consumption for cooperative spec-
hum sensing while improving spectrum sensing performance using Reinforce Learning
(RL) approach as illustrated using a block diagram in Figure 1.5. The network is par-
titioned into logical groups of sensor nodes that form clusters, such that each cluster
comprises of several sensor nodes called cluster member nodes and a clusterhead that
coordinates the cooperative channel sensing and data communications.

Reinforcement learning

--> Clustering Scheme ~. Channel Sensing ....

L-------~r:;:::::::j~----~
Figure 1.5: Illustration of the research methodology.

A RL based framework is proposed to minimize network energy consumption and en-
hance channels sensing performance as well as utilization. The framework is mainly
comprises of three schemes aim at addressing the main fundamental challenges of cog-
nitive radio sensor networks viz network energy consumption and PUs detection as illus-
trated in Figure 1.6.

Firstly, an Energy Efficient Spectrum-Aware RL based Clustering (EESA-RLC) algo-
rithm that allows a member node to learn the energy and the cooperative sensing costs
for neighboring clusters through exploration technique and selects an optimal cluster that
satisfies pairwise constraints. The pairwise constraints guarantee that only nodes that
have at least one common vacant channel with the clusterhead can form a cluster. The
scheme allows each member node to learn and adapt to dynamic environment to select
an optimal cluster that minimizes energy cost for intra and inter clusters data communi-
cations and to enhance spectrum sensing performance.

Secondly, a weighted hard combine decision fusion scheme that combines features of
quantized and hard combining decision fusions schemes to balance trade-off between
detection performance and communication overhead and also minimizes energy cost for
reporting decision.

Thirdly, an Energy Efficient RL based Narrowband Cooperative Channel Sensing (EERL-
NCCS) scheme in which a c1usterhead learns channels' dynamic behaviors in terms of
channel availability, channel sensing energy cost and channel impairment to achieve op-
timal sensing sequence and optimal set of channels. The optimal set of channels and
optimal channels sensing sequence obtained through reinforcement learning minimize
channel sensing energy consumption and enhance PU protection as well as channel uti-
lization.
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Figure 1.6: Illustration of the RL based network clustering framework.

1.6 Research Contributions

The main contributions of this thesis is towards realization of energy efficient data com-
munications and dynamic spectrum access for cognitive radio sensor networks. This can
be summarised as follows:

I. An energy efficient spectrum aware clustering algorithm that allows member nodes
to learn optimal policy for choosing optimal cluster is developed. Specifically, each
member node learns the local decision accuracy, cooperative sensing and data com-
munication energy costs using RL and adapts to dynamic environment.

II. A pairwise constraint that ensures only SUs with at least one common vacant channel
with a tentative CH and within the CHs one hop radio range can form a cluster is
implemented in spectrum-aware clustering to enhance channel sensing performance.

III. The pairwise constraint based clustering algorithm is compared with groupwise con-
straint based algorithms in which remarkable performance improvement in terms
energy efficiency, channels sensing performance and computational complexity is
achieved.

IV. A model of network energy consumption comprising of cooperative channel sens-
ing, inter-cluster and intra-cluster data communication energy consumptions is de-
rived and optimal number of clusters that minimizes network energy consumption is
determined.

v. A weighted hard combination scheme that improves cooperative detection perfor-
mance while reducing communication overhead and energy cost for reporting sens-
ing results. The scheme utilizes features of both quantized and hard combining
schemes to balance trade-off between detection performance and communication
overhead.
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vi. An energy efficient RL based scheme that determines optimal sensing order and
optimal set of channels has been developed. The scheme allows SUs to learn channel
conditions and determines optimal solution that minimizes channel sensing energy
cost and enhances PU detection as well as channel utilization. It considers not only
channel availability and local decision accuracy but also the expected energy cost
for accessing the channel.

1.7 Thesis Outline

The thesis outline and the reading sequence are illustrated in Figure 1.7, the preceding
chapters are organized as follows. Chapter 2 essentially provides background informa-
tion on the techniques and algorithms introduced in the thesis and reviews previous works
related to this thesis. The chapter first introduced the concept of CR and its main ele-
ments. Dynamic spectrum access and spectrum sensing techniques are then introduced,
their features and drawbacks are summarised. Network clustering and energy optimiza-
tion as key approaches for efficient communications in cognitive radio sensor networks
are introduced and finally machine learning and RL approaches as means of address-
ing dynamic channel access and energy challenges in cognitive radio are introduced. In
Chapter 3, RL based clustering algorithm is devised for network energy optimization
and primary user detection enhancement. Weighted decision fusion and RL based co-
operative channel sensing scheme for addressing energy and channel sensing challenges
in cognitive radio are introduced in the chapter. In Chapter 4, simulation results for the
proposed schemes are presented and analysed. Performance evaluation of the schemes
in terms of energy consumption and PU detection performance are presented and com-
pared with established bench mark in the literature. Chapter 5 presents conclusion and
recommendations for future research direction.

.. ...
Chaptefl ::_,.. Chapter 2

-+fr------'- -~
~.)~yoductibn literature Review I

r
.. I.. ... • ~••n .. __ . t

Chapter 3 i
Methodology ; I

Rl·Basedftamework '1 Chapter 4~
. EESA'RlOu~~ l I Results & Discussl'on
--w~Fusion __J I

'----_--,-- __ __J

! .EERl-CCSCh.. ",1 Sen.", i
G---j

Chapter 5
Conclusions

Figure 1.7: Organization of the Thesis.
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