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Bone age assessment (BAA) considered an essential task is performed on a daily basis 

in hospitals all over the world with the main indication being skeletal development in 

growth-related abnormalities. The manual methods for BAA are time consuming and 

subjective, which leads to imprecise and less accurate results. Thus, rendering the 

automated BAA more favorable. The purpose for BAA is to compare the measurement 

to chronological age so as to: Monitoring treatments and predict final adult height, 

observe the development for the skeleton and diagnose growth disorders, and to 

confirm age claims for children made by asylum seekers. Automated bone age 

assessment (ABAA) systems have been developed, none of these systems have been 

accepted for clinical use because there is a lack of agreement concerning the accuracy 

of bone age methods which is acceptable for a clinical environment. Most of the 

previously proposed methods for bone age assessment were tested on private x-ray 

datasets or do not provide source code, thus their results are not reproducible or usable 

as baselines. The previously proposed methods suffer from two main limitations: first, 

most of the methods operate only with x-ray scans of Caucasian subjects younger than 

10 years, when bones are not yet fused, thus easier than in older ages where bones 

(especially, the carpal ones) overlap. Second, all of them assess bone age by extracting 

features from the bones either epiphyseal-metaphyseal region of interest (EMROIs) or 

carpal region of interest (CROIs) or both of them commonly adopted by the Tanner 

and Whitehouse (TW) or Greulich and Pyle (GP) clinical methods, thus constraining 

low-level (i.e., machine learning and computer vision) methods to use high-level (i.e., 

coming directly from human knowledge) visual descriptors. The analysis of bone age 

assessment becomes more complex when the bones are nearing maturity, when most 

of the bone would have merged, while some might overlap. The existing model-based 

approaches in the literature often reduce the region of interest (ROI) drastically to 

simplify the image analysis process, but this often leads to inaccurate and unstable 

results. Any system that attempts to automate skeletal assessment in an accurate 
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manner will need to consider the entire span of the hand radiograph. Reduced ROI 

leads to inaccurate and unstable results. This semantic gap usually limits the 

generalization capabilities of the devised solutions, in particular when the visual 

descriptors are complex to extract as in the case of mature bones. A novel machine-

learning framework presented, aimed at overcoming these problems by learning visual 

features. The proposed framework is based on speeded-up robust features (SURF) 

combined with bag of features (BoF) models to quantize features computed by SURF. 

Support vector machines (SVM) are used to classify the simplified feature vectors, 

extracted from hand bone x-ray images. Overall 745 images were obtained, 472 

images for males, 273 images for females, most of them belong to chronological ages 

centered around 15 to 18 years. The proposed framework allows achieving 

classification results with an average accuracy of 99%, mean absolute error 0.012 for 

the 17 years and 18 years for the male gender with the SURF and BoF approach. In 

the female model, the age range from 0 to 7 years are excluded, and in the male model 

from 0 to 8, because of the limited amount of data that obtained, the female model 

range starts from 8 years to 18 years with classification average accuracy of 82.6%. 

The male model range starts from 9 years to 18 years with classification average 

accuracy of 85%.  
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Penilaian Usia Tulang (Bone Age Assessment: BAA) dianggap sebagai tugas penting 

yang dibuat setiap hari di hospital seluruh dunia dengan indikasi utama di dalam 

pertumbuhan rangka berkaitan keabnormalan. Kaedah-kaedah asas untuk BAA 

mengambil masa dan subjektif, di mana ianya memberi keputusan yang kurang dan 

tidak tepat. Oleh itu, ianya menjadikan automasi BAA lebih baik. Tujuan BAA adalah 

untuk membandingkan pengukuran kepada usia kronologi supaya: Pemantauan 

rawatan dan meramalkan pengakhiran ketinggian dewasa, memantau pembangunan 

rangka dan mendiagnosis gangguan pertumbuhan, dan untuk mengesahkan tuntutan 

usia untuk kanak-kanak. Sistem Automasi Penilaian Usia Tulang (Automated Bone 

Age Assessment: ABAA) telah dibangunkan, namun tidak ada mana-mana sistem ini 

telah diterima untuk penggunaan klinikal kerana terdapat kekurangan persetujuan 

mengenai ketepatan kaedah usia tulang yang boleh diterima untuk klinikal. 

Kebanyakan kaedah-kaedah yang telah dicadangkan untuk penilaian usia tulang 

sebelum ini telah diuji pada set-set data x-ray peribadi atau tidak menyediakan kod 

sumber, oleh itu keputusannya tidak boleh dihasilkan atau boleh digunakan sebagai 

garis-garis asas. Kaedah-kaedah yang dicadangkan sebelum ini mengakibatkan dua 

batasan utama: Pertama, kebanyakan kaedah-kaedah ini hanya beroperasi dengan scan 

x-ray mata subjek Kaukasia lebih muda dari 10 tahun, ketika tulang belum bersatu, di 

mana ianya lebih mudah dari usia-usia yang lebih tua di mana tulang-tulang 

(terutamanya, tulang carpal) bertindih. Kedua, kesemua nilai tulang dengan 

mengekstrak ciri-ciri dari tulang-tulang sama ada kawasan berkenaan epiphyseal-

metaphyse (EMROIs) atau kawasan berkenaan carpal (CROIs), atau kedua-duanya 

lazimnya digunakan oleh kaedah-kaedah klinikal oleh Tanner and Whitehouse (TW) 

atau Greulich and Pyle   (GP), dan menghalangi kaedah-kaedah peringkat rendah 

(sebagai contoh, pembelajaran mesin dan penglihatan komputer) untuk menggunakan 

deskriptor visual tahap tinggi (sebagai contoh, datang secara langsung dari 
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pengetahuan manusia). Analisis penilaian usia tulang menjadi lebih kompleks apabila 

tulang-tulang hampir matang, ketika sebahagian besar tulang akan digabungkan, di 

mana sebahagiannya mungkin bertindih. Pendekatan berasaskan model sedia ada 

sering mengurangkan kawasan yang berkenaan (Region Of Interest: ROI) secara 

drastik untuk mempermudahkan proses analisis imej, tetapi ini sering menyebabkan 

keputusan-keputusan yang tidak tepat dan stabil. Mana-mana sistem yang cuba 

mengautomasikan penilaian rangka dengan cara yang tepat perlu mempertimbangkan 

keseluruhan tahap radiografi tangan. Pengurangan ROI menghasilkan keputusan yang 

tidak tepat dan stabil. Jurang semantik ini kebiasaannya menghadkan keupayaan 

generalisasi penyelesaian-penyelesaian yang dirancang, khususnya apabila 

deskriptor-deskriptor visual ini adalah kompleks untuk mengekstrak seperti di dalam 

kes tulang-tulang yang matang. Rangka kerja mesin pembelajaran novel yang telah 

dibentangkan, bertujuan untuk mengatasi masalah ini dengan mempelajari ciri-ciri 

visual. Rangka kerja yang dicadangkan adalah berdasarkan kepada ciri-ciri robust 

mantap (Speeded-Up Robust Features: SURF) yang digabungkan dengan model-

model bag (Bag of Features: BoF) untuk mendapatkan kuantiti ciri-ciri yang dikira 

oleh SURF. Mesin-mesin vektor sokongan (Support Vektor Machine: SVM) 

digunakan untuk mengelaskan ciri-ciri vektor-vektor, telah diekstrak daripada imej-

imej x-ray tulang tangan. Secara keseluruhan 745 imej telah diperoleh, 472 imej untuk 

lelaki, 273 imej untuk wanita, kebanyakannya tergolong di dalam kronologi sekitar 15 

hingga 18 tahun. Rangka kerja yang dicadangkan membolehkan mencapai keputusan 

berklasifikasi dengan ketepatan purata sebanyak 99%, bermakna kesilapan mutlak 

0.012 untuk 17 tahun dan 18 tahun untuk jantina lelaki dengan pendekatan SURF dan 

BoF. Dalam model wanita, julat umur 0 hingga 7 tahun telah dikecualikan, dan dalam 

model lelaki dari 0 hingga 8, ianya kerana jumlah data yang diperoleh terhad, julat 

model wanita bermula dari 8 tahun hingga 18 tahun dengan purata klasifikasi 

ketepatan 82.6%. Julat model lelaki bermula dari 9 tahun hingga 18 tahun dengan 

ketepatan purata klasifikasi 85%. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

The sum of time that a person has lived is Chronological Age, Bone Age, on the other 

hand, is the skeletal development of a person in the present time. Bone age assessment 

(BAA) is a skeletal maturity measurement of a person taking into account the normal 

population, it is performed in hospitals on a daily basis. The purpose for BAA is to 

compare the measurement to chronological age so as to: 

 Monitoring treatments [1] and predict final adult height.

 Observe the development for the skeleton and diagnose growth disorders [2].

 Confirming age claims for children made by asylum seekers [3, 4, 5].

The procedure is performed by taking radiograph of the patient's non-dominant hand 

[1, 6, 7]. The reasons for using the hand in BAA are: first, it possesses a large amount 

of development in a small area; second, its exposes the subject to minimal amount of 

radiation comparing to other joints e.g. shoulder; and third, it is an easy area to 

radiograph. BAA is most commonly performed by using one of two methods: Greulich 

and Pyle (GP) [8] or Tanner and Whitehouse (TW) [1, 9, 10]. Greulich and Pyle 

method is the most frequently used for evaluation of skeletal age [11, 12] performed 

by clinician to compare the radiograph of a patient with a standard atlas of radiographs. 

They then decide which of the example radiographs is closest and assign the relevant 

age. The standard GP atlas is made up of radiographs from the mid-western United 

States from the 1930's and has been found not to be a good representation of modern 

populations [13, 14, 15].The TW method has been found to be more accurate than the 

GP method [16] however, it is used less frequently because it is more time consuming 

[12]. The bone age estimate obtained by one of these methods is compared with the 

chronological age to determine if the skeletal development is abnormal [17, 18, 19]. 

If a significant difference between bone age and chronological age exists, the patient 

may be diagnosed with a disorder of growth or maturation [7, 20]. The task of bone 

age assessment need to be automated as both GP and TW methods are time consuming 

[17, 21], the manual methods (GP and TW) are highly depends on the experience of 

the clinician/observer, resulting in significant inter- and intra- observer/clinician 

discrepancy [22, 23] making the task subjective leading to less accurate results. Tanner 

et. al. declared that “a computer could do better than a human operator” [1]. Bone age 

assessment test is done to differentiate chronological age and skeletal bone age [24], 

in order to assess hormonal and skeletal growth defects as well as their related 

problems [25]. Bone age assessment is difficult and time-consuming [23].The process 

of bone aging involves three steps:  
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A- The appearance and development of ossification for primary and secondary 

centers. 

B- Growth of primary and secondary centers. 

C- The time of fusion for both centers. 

The development and growth processes involved in the steps have been identified [26], 

with the decision for BAA  depends mainly on the time of fusion and ossification 

centers [27]. The assessment of chronological age is done by comparing and matching 

the radiographic images of a patients of known age and sex [16]. While the 

measurement of maturity is simply comparing the chronological age with the reference 

images [28], where the reference images were collected from variable sources, and 

presented as series called (atlas) [29]. Most of collected data that presented in atlases 

were gathered in longitudinal studies in the 1900s [30]. The gathered data was 

collected for anthropometric purposes in a standardized radiograph [31] hence the 

patient’s data become references to estimate chronological age for educational and 

medical goal [14]. The development of children is strongly effected by nutrition habits 

and the environment [32], the data that formed the atlases were taken from healthy 

patients considered appropriate for standard uses [33], the images that shown in the 

atlases present maturity steps is a powerful source for age estimation [34]. In atlases, 

the matching process is done by comparing the most appropriate age instead of the 

maturation steps for recognized age [35]. The issue here is about relevant of atlases 

information with modern society and the usability with different era and races [36] 

which has been found not to be a good representation of modern populations [13, 14, 

15]. Utilizing atlases presents images of known race with the maturation steps [37]. 

Although bone age assessment can be performed to different body bones like ankle, 

foot, shoulder, or clavicle [38] the left-hand wrist is used in the bone age assessment 

atlases [39,40], this because of risk of exposure to radiograph and the highly cost [41]. 

1.2 Motivation for Automatic bone age assessment 

Automated bone age assessment (ABAA) has many advantages comparing with 

manual methods that used nowadays, in:  

 assessments are more objective and therefore more likely to give the pediatrician

more confidence in the diagnosis and course of treatment prescribed [22];

 it gives pediatricians more effective use of their time [42];

 it can be built upon radiographs from the local population and thus incorporate

sociological and environmental factors [32]; and

 Manual methods are tedious and time-consuming and subjective [43],

 Most of the previous proposed automatic bone assessment methods are based on

image processing algorithms leading to rejection of images that not met the

proposed algorithm procedure [44].
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 Hand bones are complex and overlapping therefore the previous proposed 

automatic methods were based on small number of bones causing in lack of 

efficiency [45].    

 Automatic bone age assessment will help the pediatricians to achieve accurate 

and efficient diagnosis [46]. 

 

 

1.3 Problem Statement 

Bone age assessment is a medical procedure to monitor skeletal development and to 

diagnose bone diseases, specifically, growth pathologies. As of today, it is carried out 

by visual inspection which is a tedious and time-consuming action [22]. Automated 

methods to carry out such a task are therefore desirable. The process of age estimation 

is the measure of the biological maturity transformed to chronological age by 

comparison with a reference data [28]. Reference data for the age estimation have been 

collected from healthy patients using the non-dominant hand from various resources 

and have been presented as a series called an “Atlas” [29]. Most of the previously 

proposed methods for bone age assessment were tested on private X-ray datasets or 

do not provide source code, thus their results are not reproducible or usable as 

baselines [47]. The previously proposed methods suffer from two main limitations: 

first, most of the methods operate only with X-ray scans of Caucasian subjects younger 

than 10 years, when bones are not yet fused, thus easier than in older ages where bones 

especially, the carpal bones overlap. Second, all of them assess bone age by extracting 

features from the bones either Epiphyseal-Metaphyseal Region of Interest (EMROIs) 

or Carpal Region of Interest (CROIs) or both of them commonly adopted by the TW 

or GP clinical methods, thus constraining low-level (i.e., machine learning and 

computer vision) methods to use high-level (i.e., coming directly from human 

knowledge) visual descriptors [48]. The analysis of bone age assessment becomes 

more complex when the bones are nearing maturity, when most of the bone would 

have merged, while some might overlap. The existing model-based approaches in the 

literature often reduce the ROI drastically to simplify the image analysis process, but 

this often leads to inaccurate and unstable results. Any system that attempts to 

automate skeletal assessment in an accurate manner will need to consider the entire 

span of the hand radiograph. Reduced ROI leads to inaccurate and unstable results. 

This semantic gap usually limits the generalization capabilities of the devised 

solutions, in particular when the visual descriptors are complex to extract as in the 

case of mature bones. A novel machine-learning framework presented, aimed at 

overcoming these problems by learning visual features, regardless of age ranges and 

races, that may facilitate the assessment process.  
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1.4 Aim and Objectives 

The aim of this project is to propose a fully automated machine learning system for 

bone age assessment. 

The objectives of this project are described below: 

a) To create a novel system for bone age assessment using combination of bag 

of features with speeded-up robust features algorithms.  

b) To reduce the system main absolute error and ensure accuracy through 

automation. 

c) To create a specific database for Malaysian population considering nutrition 

habits and the environment.  

 

 

1.5 Scope and Limitation 

The study focusses on automation of bone age assessment using machine learning 

approach using the bag of feature method a novel framework is proposed. Fully 

automated BAA has been a goal of computer vision and radiology research for many 

years. Most prior approaches have included classification or regression using hand-

crafted features extracted from regions of interest ROIs for specific bones segmented 

by computer algorithms. all prior attempts at automated BAA are based on hand-

crafted features, reducing the capability of the algorithms from generalizing to the 

target application. Our approach exploits machine learning with bag of features to 

automatically extract important features from all bones in the image entirely as ROI 

that was automatically segmented by the bag of feature process. Unfortunately, all 

prior approaches used varying datasets and provide limited details of their 

implementations and parameter selection that it is impossible to make a fair 

comparison with prior conventional approaches. 

While our system has much potential to improve workflow, speed and database, there 

are still limitations. Exclusion of 0–8 years in male, and 0-7 years in female, limits the 

broad applicability of the system to all ages. this limitation was felt to be acceptable 

given the relative rarity of patients in this age range. Another limitation is our usage 

of integer-based BAA, rather than providing time-points every 6 months. This is 

unfortunately inherent to the GP method. The original atlas did not provide consistent 

time points for assignment of age, rather than during periods of rapid growth, there are 

additional time points. This also makes training and clinical assessment difficult, given 

the constant variability in age ranges.   
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1.6 Contribution 

The contribution of this thesis is: To present a novel framework for fully automatic 

skeletal bone age estimation system from X-ray image. This is a stage-based system 

and has the advantages that: an individual stage can be updated without affecting the 

other stages and that validation checks are performed after each stage. Furthermore, 

the assessments are based on robust features selection that is considering the hand 

entirely. The combine use of bag of features and speeded-up robust features were very 

successful in classifying objects in the radiograph and unaffected by position and 

orientation of the object in the image samples. The proposed framework achieved 

classification accuracy of 99% and main absolute error of 0.012.  

1.7 Thesis Organization 

Chapter 1 describe the introduction of the project. It describes the background, 

problem statement, aim, objectives, and contribution of this project. 

Chapter 2 contains literature review regarding the project. It describes relevant image 

processing and machine learning techniques and previously proposed ABAA systems. 

Chapter 3 contains methodology proposed in this project. We talk about supervised 

learning, data preparation and image database, normalization, speeded-up robust 

feature technique, bag of feature technique, support vector machines model, 

evaluating the performance of classification, and the importance of validation. 

Chapter 4 contains results and discussion of the obtained results from the experiments. 

The database and normalization were shown. The training and testing were evaluated. 

The performance evaluation was shown. 

Chapter 5 concludes what this project had achieved and some suggestion of future 

work. 
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