UNIVERSITI PUTRA MALAYSIA

IMMUNE RESPONSES TO Streptococcus agalactiae IN RED TILAPIA, Oreochromis spp. FOLLOWING VACCINATION WITH NON-ADJUVANTED AND ADJUVANTED VACCINE INCORPORATED FEED PELLETS

MOHD FIRDAUS NAWI

FPV 2011 13
IMMUNE RESPONSES TO *Streptococcus agalactiae* IN RED TILAPIA, *Oreochromis* spp. FOLLOWING VACCINATION WITH NON-ADJUVANTED AND ADJUVANTED VACCINE INCORPORATED FEED PELLETS

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of Requirement for the Degree of Master of Science

August 2011
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirements for the degree of Master of Science

IMMUNE RESPONSES TO *Streptococcus agalactiae* IN RED TILAPIA, *Oreochromis* spp. FOLLOWING VACCINATION WITH NON-ADJUVANTED AND ADJUVANTED VACCINE INCORPORATED FEED PELLETS

By

MOHD FIRDAUS NAWI

August 2011

Chairman : Md. Sabri Mohd Yusoff, DVM, MSc, PhD
Faculty : Veterinary Medicine

Streptococcosis is an important bacterial disease in tilapia in many countries, including Malaysia. The two common *Streptococcus* species causing the disease are *S. agalactiae* and *S. iniae*. In Malaysia, outbreaks of streptococcosis in red tilapia (*Oreochromis* spp.) were due to *Streptococcus agalactiae* while infection by *Streptococcus iniae* has never been reported. Mass mortalities among red tilapia in cage-culture system were reported to occur usually during the dry months of the year, between April and August when water temperature was high.
This study was conducted to investigate the effect of high water temperature on the susceptibility of red tilapia to infection by *Streptococcus agalactiae*, the immune response by red tilapia following exposure to live *S. agalactiae* and the protection following vaccination against streptococcosis. To achieve the first objective, eight groups of red tilapias of approximately 100 g were infected intraperitoneally with 0.5 mL of live *S. agalactiae* at 6.3×10^6 CFU/mL, 6.3×10^7 CFU/mL, 6.3×10^8 CFU/mL and 6.3×10^9 CFU/mL. Four groups were kept at normal water temperature of $27 \pm 2^\circ C$ while the rest were kept in high water temperature of $33^\circ C \pm 2^\circ C$ for a period of one week. The high water temperature caused an increased in the susceptibility of red tilapia to *S. agalactiae* infection as indicated by the rapid rate of mortality at lethal dose 50 (LD$_{50}$). The period to achieve 100% mortality in the high temperature group was faster than the normal water temperature group, in four days compared to seven days. The lethal dose 50 (LD$_{50}$) for groups that were kept in high water temperature was 5.68×10^6 CFU/mL, significantly (p<0.05) lower than those that were kept in normal water temperature (2.29×10^7 CFU/mL). The clinical signs included loss of appetite, lethargy, unilateral or bilateral exophthalmia, cloudy eyes, erratic swimming and inflammation of the skin.

Once the susceptibility was determined, formalin killed whole-cell *S. agalactiae* at the concentration of 6.7×10^6 CFU/mL was incorporated homogenously into fish pellet as feed vaccine (FNV vaccine). The vaccine was then administered orally to the red tilapia in three different vaccination regimes; once (F1D), thrice (F3D) and five times a week (F5D). Body mucus and blood serum were sampled every week for eight weeks to analyze the
mucosal and systemic antibody responses by using ELISA. Immunization by FNV vaccine resulted in significant (p<0.05) increase in the serum and mucus antibody levels (IgM) as early as week 2 in all vaccinated groups, while the control unvaccinated group (FC) showed insignificant (p>0.05) increase of the serum and mucus antibody levels. Group F5D showed the highest antibody levels, followed by groups F3D and F1D. At the end of the experiment, twenty fishes from each group were challenged by immersion while another twenty were challenged intra-peritoneal. Survival rate was low indicating poor protective immune response in all groups of tilapia tested. Gut samples were obtained at the end of the experiment and subjected to histological analyses to examine the presence of gut-associated lymphoid tissue (GALT). According to the analyses, exposure at the rate of once a week to FNV vaccine was sufficient to stimulate GALT and skin mucus antibody responses. However, more frequent exposures stimulated better responses by GALT as observed in red tilapias of groups F3D and F5D. As expected, unvaccinated red tilapias failed to stimulate any GALT development. In conclusion, vaccination using FNV vaccine stimulated mucosal and systemic immunities but the protection provided was unsatisfactory.

Following the episode of poor protection provided by oral administration of FNV vaccine, the vaccine was further modified by adding Freund’s Incomplete Adjuvant (FIA) into the vaccine, a known potent immune response enhancer at both humoral and cellular levels. The feed adjuvanted vaccine (FAV) was found to improve the mucosal immune response and elicited excellent systemic immune response. Apart from higher body mucus,
both gut lavage fluid and blood serum antibody titers were also higher than the FNV vaccine. The FAV vaccine also provided 100% protection following challenged with 3.4×10^9 CFU/mL of live $S. agalactiae$, significantly ($p \geq 0.05$) higher than protection provided by FNV vaccine. Similarly, the size of GALT and the number of lymphocytes in the FAV-vaccinated group were significantly ($p<0.05$) greater compared to the FNV-vaccinated group.

In conclusion, this study demonstrated that adjuvanted vaccine (FAV) was more effective compared to the non-adjuvanted vaccine (FNV). The FAV vaccine effectively stimulated both mucosal and systemic immunity and enhanced protection against $S. agalactiae$ infection in red tilapia. Therefore, FAV vaccine is the best candidate for control of streptococcosis in red tilapia.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan ijazah Master Sains

TINDAKBALAS IMUN TERHADAP Streptococcus agalactiae DIDALAM IKAN TILAPIA MERAH, Oreochromis spp. SETELAH DIVAKSINASI DENGAN PELLET BERCAMPUR VAKSIN TANPA ADJUVANT (FNV) DAN PELLET BERCAMPUR VAKSIN DENGAN ADJUVANT

Oleh

MOHD FIRDAUS NAWI

Ogos 2011

Pengerusi : Md. Sabri Mohd Yusoff, DVM, MSc, PhD
Fakulti : Perubatan Veterinar

Streptococcosis merupakan penyakit bakteria yang utama pada ikan tilapia di seluruh dunia, termasuklah Malaysia. Dua jenis spesis Streptococcus yang biasa menyebabkan penyakit streptococcosis adalah Streptococcus agalactiae dan Streptococcus iniae. Di Malaysia, wabak streptococcosis di kalangan ikan tilapia merah (Oreochromis spp) telah di kenal pasti berpunca dari jangkitan S. agalactiae manakala jangkitan oleh S. iniae tidak pernah dilaporkan. Kematian secara besar-besaran ikan tilapia merah yang diterнак dalam sistem sangkar biasanya dilaporkan berlaku semasa musim kemarau di antara bulan April hingga Ogos dimana suhu air adalah sangat tinggi pada waktu itu.
Kajian telah dilakukan untuk mengenalpasti kesan suhu air yang tinggi terhadap kerentanan ikan tilapia merah kepada jangkitan S. agalactiae, tindakblas imun tilapia merah setelah didedahkan kepada S. agalactiae hidup dan perlindungan yang diberi apabila dicabar setelah diberi vaksinasi untuk melawan streptococcosis. Untuk mencapai objektif pertama, lapan kumpulan ikan tilapia seberat kira-kira 100 g telah dijangkitkan melalui suntikan intraperitonium dengan 0.5 mL S. agalactiae hidup yang mengandungi 6.3 x 10^6 CFU/mL, 6.3 x 10^7 CFU/mL, 6.3 x 10^8 CFU/mL dan 6.3 x 10^9 CFU/mL. Empat kumpulan ikan tilapia merah dibela pada suhu air biasa (27 °C ± 2°C) dan yang selebihnya pada suhu air yang tinggi (33°C± 2°C) selama seminggu. Suhu air yang tinggi telah menyebabkan peningkatan kerentanan ikan tilapia merah terhadap jangkitan S. agalactiae seperti mana ditunjukkan melalui keputusan kadar cepatnya kematian dan dos yang mematikan 50 (LD50). Jangkamasa kadar kematian 100% untuk kumpulan ikan yang dibela pada suhu air yang tinggi adalah lebih cepat berbanding kumpulan ikan yang dibela pada suhu air biasa. Kadar dos yang mematikan 50 (LD50) bagi kumpulan ikan yang dibela pada suhu air yang tinggi adalah 5.68 x 10^6 CFU/mL, secara signifikannya lebih rendah (p<0.05) berbanding kumpulan ikan yang dibela pada suhu air biasa, 2.29 x 10^7 CFU/mL. Tanda-tanda klinikal yang diamati sepanjang kajian perkembangan penyakit ini termasuk hilangnya selera makan, kelihatan lesu, unilateral dan bilateral exophthalmia, mata beselaput, berenang tak menentu dan inflamasi pada kulit. Tanda-tanda yang diamati sangat berguna untuk mengenalpasti wabak apabila ia berlaku.
Setelah kerentanan ditentukan, sel-sel bakteria S. agalactiae yang dimatikan dengan formalin pada kepekat 6.7 x 10⁶ CFU/mL dicampurkan sehingga rata bersama pelet makanan ikan tilapia merah (Vaksin FNV) untuk menentang streptococcosis. Vaksin FNV kemudiannya diberi makan kepada ikan tilapia merah dalam tiga rejim vaksinasi berlainan, sekali (F1D), tiga kali (F3D) dan lima kali dalam seminggu (F5D). Sampel lendir badan dan serum darah diambil setiap minggu sehingga minggu kelapan untuk menganalisis aras antibodi ikan tilapia merah selepas divaksinasi menggunakan teknik ELISA. Pemvaksinan dengan vaksin FNV pada ikan tilapia merah telah menghasilkan peningkatan yang signifikan (p<0.05) pada aras antibodi serum dan mukus seawal minggu 2 dalam kumpulan-kumpulan yang divaksinasi, sementara tiada peningkatan signifikan (p>0.05) dalam kumpulan kawalan (FC). Aras antibodi dalam kumpulan F5D merupakan yang tertinggi, diikuti oleh kumpulan F3D dan F1D. Pada penghujung eksperimen, 20 ekor ikan tilapia merah dari setiap kumpulan dicabar secara rendaman untuk menilai perlindungan yang diperolehi daripada keimunun mukosa, sementara 20 ekor ikan tilapia yang selebihnya dari setiap kumpulan dicabar secara suntikan intraperitonium untuk menilai perlindungan yang diperolehi daripada keimunun sistemik. Kadar survival adalah rendah dan ini menandakan perlindungan hasil daripada tindak balas keimunun yang lemah dalam kumpulan-kumpulan yang diuji. Sampel usus ikan tilapia merah diambil pada minggu terakhir eksperimen dan dianalisis secara histologi untuk mengesan kehadiran “Sel Limfoid Berkaitan Usus” atau “Gut-Associated Lymphoid Tissue” (GALT). Berdasarkan analisis tersebut, pendedahan pada vaksin untuk sekali sahaja sudah mencukupi.
untuk merangsang penghasilan GALT dan tindakbalas antibodi mukus. Walau bagaimanapun, lebih kerap pendedahan yang diberi merangsang tindakbalas GALT yang lebih bagus seperti apa yang dapat dilihat dalam kumpulan F3D dan F5D. Seperti dijangka, ikan tilapia merah yang tidak divaksinasi gagal untuk menghasilkan tindak balas GALT. Kesimpulannya, pemvaksinan menggunakan vaksin FNV dapat merangsang tindak balas keimunan mukosa dan sistemik tetapi perlindungan yang dihasilkan adalah tidak memuaskan. Oleh yang demikian, pemvaksinan perlu dipertingkatkan lagi untuk mendapatkan perlindungan keimunan sistemik yang berkesan pada ikan tilapia merah untuk menentang jangkitan dari S. agalactiae.

Susulan episod perlindungan keimunan sistemik yang tidak memuaskan diperolehi dari vaksinasi oral FNV, vaksin tersebut telah diberi penambahbaikan dengan memasukkan Freund Incomplete Adjuvant (FIA), penggalak tindak balas imun yang kuat pada peringkat humoral dan selular ke dalam formulasi vaksin. Keputusan kajian menunjukkan vaksin yang ditambah dengan adjuvant (FAV vaksin) tersebut telah meningkatkan respon keimunan mukosa dan juga berjaya menghasilkan respon keimunan sistemik yang baik. Disamping memberi aras antibodi yang lebih tinggi didalam lendir badan, cairan usus dan serum darah, vaksin FAV juga memberikan 100% perlindungan setelah dicabar dengan 3.4 x 10⁹ S. agalactiae hidup, dimana secara signifikan (p<0.05) lebih tinggi berbanding dengan perlindungan yang diberikan oleh vaksin FNV. Saiz GALT dan jumlah limfosit yang dikira dalam kumpulan ikan yang diberi vaksin FAV juga secara signifikannya (p<0.05) adalah lebih tinggi berbanding dengan kumpulan ikan yang diberikan vaksin FNV. Kesimpulannya, kajian ini menunjukkan vaksin FAV adalah lebih efektif
berbanding vaksin FNV. Vaksin FAV secara efektifnya merangsang kedua-dua sistem keimunan, mukosa dan sistemik, dan meningkatkan perlindungan dari jangkitan S. agalactiae pada ikan tilapia merah. Oleh yang demikian, vaksin FAV merupakan calon vaksin terbaik dalam mengawal streptococcosis pada ikan tilapia merah.
ACKNOWLEDGEMENTS

First and foremost praises to ALLAH S.W.T, THE MOST COMPASSIONATE AND MERCIFUL for giving me the strength and courage to complete this thesis.

I would like to express my sincere gratefulness and appreciation to my supervisor Dr. Md. Sabri Mohd Yusoff for his invaluable guidance, advice, constructive suggestion, tolerant supervision and support towards completion of this study.

I wish to express my gratitude to my co-supervisors, Prof. Dr. Mohd Zamri Saad and Dr. Siti Zahrah Abdullah for their ideas, advice, encouragement, unfailing help and offered insightful suggestion throughout the course of this study. Sincere thanks also for Zulkafli Rashid, Ramley Abu Bakar and Misri Samingin for their kindness in helping me in statistical analysis. Grateful wish also goes to Hanan Mohd Yusoff for his brilliant ideas, technical assistance and invaluable time spent.

I wish to thank all my former and current colleagues in Histopathology Lab, Faculty of Veterinary Medicine, University Putra Malaysia, Dr. Shafarin Shamsudin, Dr. Ina Salwany Mohd Yasin, Dr. Didik Handijatno, Dr. Sriyanto, Dr. Yulianna Puspitasari, Dr. Khin Myat Nwe, Dr. Trang, Dr. Hani Plumeriastuti, Dr. Sharom Salisi, Dr. Rafidah Othman, Dr. Abu Bakar Salisu, Dr. Nurrul Shaqinah Nasrudin, Dr. Noor Amal Azmai, Nur Nazifah Mansur, Saidatul Atyah Apendai, Noraini Isa, Illazuwa Mohd Yusoff, and Nur Hazwani

x
Oslan for their friendship and help. Sincere thank also goes to lab staffs, Jamilah Jahari, Latifah Hanan and Mohd Jamil Samad for their technical help throughout this study.

I would like to thank all National Fish Health Research Centre (NaFisH) members especially Shahidan Hashim, Wan Norazlan Ghazali, Aziel Sukiman, Fahmi Sudirwan, Faizul Helmi Hasmi and Norazian Rashid for their helpful hands during completing this study.

A special dedication to my wife, Mrs. Wan Nadilah Adibah Wan Ahmad, my son, Wan Amsyar Nufail Mohd Firdaus, my father, Nawi Abdullah, my mother Norjan Abdullah, my late brother, Mohd Faizul Nawi, my sisters, Nurul Hidayah Nawi, Nuradlin Syafini Nawi, Nuraimi Shahira Nawi and my father and mother in law, Wan Ahmad Wan Hussin and Wan Rahani Yunus and other family members, Wan Haspinah Wan Hussin, Wan Mohd Azam Datuk Wan Najib, Wan Nurkhaizan Wan Ahmad, Wan Amirul Amin Wan Ahmad, Wan Najwa Arifah Wan Ahmad, Wan Afifah Mardhiah Wan Ahmad and Wan Najiah Bahirah Wan Ahmad for their love, patience, understanding and encouragement throughout the course of my study.

Finally I would like to express my gratitude and appreciation to my best friends, Azrul Lokman, Che Ku Dahlan Che Ku Daud and Muhammed Irwan Mansoor for their support and purest friendship.
I certify that a Thesis Examination Committee has met on 22 August 2011 to conduct the final examination of Mohd Firdaus bin Nawi on his thesis entitled “Immune Responses to Streptococcus agalactiae in Red Tilapia, Oreochromis spp. Following Vaccination with Non-Adjuvanted and Adjuvanted Vaccine Incorporated Feed Pellets” in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Abdul Rani bin Bahaman, PhD
Professor Dato’
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Saleha binti Abdul Aziz, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Jasni bin Sabri, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Najiah Musa, PhD
Associate Professor
Faculty of Fisheries and Aqua-Industry
Universiti Malaysia Terengganu
(External Examiner)

[Signature]

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 20 December 2011

xii
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Md. Sabri bin Mohd Yusoff, DVM, MVsc, PhD
Senior Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Mohd Zamri bin Saad, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Siti Zahrah binti Abdullah, M.Sc
Director
Fish Disease Division
Fisheries Research Institute
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

xiii
DECLARATION

I declare that the thesis is my original works accept for quotation and citation, which have been duly acknowledged. I also declare that it has not been previously and is not concurrent, submitted for any other degree at Universiti Putra Malaysia or other institutions.

MOHD FIRDAUS NAWI
Date: 22 August 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>x</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 World Aquaculture</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Aquaculture Industry in Malaysia</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Status of Aquaculture Industry in Malaysia</td>
<td>6</td>
</tr>
<tr>
<td>2.4 Types of Aquaculture Management in Malaysia</td>
<td>8</td>
</tr>
<tr>
<td>2.5 Tilapia</td>
<td>9</td>
</tr>
<tr>
<td>2.6 Streptococcus</td>
<td>11</td>
</tr>
<tr>
<td>2.7 Streptococcus agalactiae</td>
<td>12</td>
</tr>
<tr>
<td>2.8 Streptococcosis</td>
<td>13</td>
</tr>
<tr>
<td>2.9 Predisposing Factors</td>
<td>16</td>
</tr>
<tr>
<td>2.10 Immune Response Against Streptococcosis</td>
<td>17</td>
</tr>
<tr>
<td>2.11 The Cell-Mediated Immunity</td>
<td>17</td>
</tr>
<tr>
<td>2.12 The Humoral Immunity</td>
<td>18</td>
</tr>
<tr>
<td>2.13 Vaccination</td>
<td>19</td>
</tr>
</tbody>
</table>
3 PATHOGENICITY OF *Streptococcus agalactiae* IN RED TILAPIA (*Oreochromis* spp.) KEPT AT NORMAL AND HIGH WATER TEMPERATURE

3.1 Introduction

3.2 Materials and Methods

3.2.1 Pathogenicity of *Streptococcus agalactiae* in red tilapia kept in normal and high water temperature

3.2.1.1 Bacteria

3.2.1.2 Preparation of *Streptococcus agalactiae* Inoculum

3.2.1.3 Fish

3.2.1.4 Experimental Design

3.2.1.5 Sampling and Samples Processing

3.2.1.6 Statistical Analysis

3.3 Results

3.3.1 Pathogenecity of *Streptococcus agalactiae* in red tilapia.

3.3.1.1 Mortality

3.3.1.2 Clinical Signs

3.3.1.3 Bacterial Isolation

3.4 Discussion

4 DEVELOPMENT OF AN ORAL DELIVERY FEED VACCINE AGAINST STREPTOCOCCOSIS IN RED TILAPIA

4.1 Introduction
4.2 Materials and Methods

4.2.1 Fish
4.2.2 Bacterial and Growth Condition
4.2.3 Formalin-Killed Bacteria (FKB) Preparation
4.2.4 Vaccine Incorporated Pellet (FNV) Preparation
4.2.5 Experimental Design
4.2.6 Preparation of Streptococcus agalactiae inoculum
 For Challenge.
4.2.7 Challenge Trial
4.2.8 Enzyme-Linked Immunosorbent Assay (ELISA)
4.2.9 Preparation of Gut Samples for Histological Analysis
4.2.10 Statistical Analysis

4.3 Results

4.3.1 Antibody Response
 4.3.1.1 Serum Antibody Response
 4.3.1.2 Mucus Antibody Response
4.3.2 Challenge Trial
 4.3.2.1 Antibody Level
 4.3.2.2 Clinical Signs
 4.3.2.3 Gross Findings
 4.3.2.4 Bacterial Isolation
4.3.3 Histological Analysis

4.4 Discussion

5 PROTECTIVE CAPACITY OF THE ENHANCED FEED-BASED VACCINE WITH INCOMPLETE FREUND’S ADJUVANT AGAINST STREPTOCOCCOSIS IN RED TILAPIA

5.1 Introduction
5.2 Materials and Methods
5.2.1 Fish 72
5.2.2 Bacterial and Growth Condition 73
5.2.3 Formalin-Killed Bacteria (FKB) Preparation 73
5.2.4 Vaccine Incorporated Pellet (FNV) Preparation 73
5.2.5 Adjuvant Vaccine Incorporated Pellet (FAV) Preparation 73
5.2.6 Experimental Design 74
5.2.7 Challenge Trial 74
5.2.8 Enzyme-Linked Immunosorbent Assay (ELISA) 75
5.2.9 Preparation of Gut Samples for Histological Analysis 77
5.2.10 Statistical Analysis 77

5.3 Results 77
5.3.1 Antibody Response 77
 5.3.1.1 Serum Antibody Response 77
 5.3.1.2 Mucus Antibody Response 78
 5.3.1.3 Gut Lavage Fluid Antibody Response 80
5.3.2 Challenge Trial 82
 5.3.2.1 Antibody Level 82
 5.3.2.2 Clinical Signs 82
 5.3.2.3 Gross Findings 84
 5.3.2.4 Bacterial Isolation 84
5.3.3 Histological Analysis 85

5.4 Discussion 90

GENERAL DISCUSSION 94
BIBLIOGRAPHY 101
APPENDICES 111
 Appendix A 111
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The inoculums dosages and treatments used in pathogenecity study.</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>The number and percentage of mortalities in red tilapia infected with various concentrations of live S. agalactiae kept in normal water temperature.</td>
<td>33</td>
</tr>
<tr>
<td>3.3</td>
<td>The number and percentage of mortalities in red tilapia infected with various concentrations of live S. agalactiae kept in high water temperature.</td>
<td>35</td>
</tr>
<tr>
<td>4.1</td>
<td>The treatments and the routes of challenged applied in oral vaccination study.</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>Average size of the GALT and the number of lymphoid cells in red tilapia following different frequency of oral exposures of FNV vaccine. Group F1D was orally vaccinated once in a week, Group F3D was vaccinated for three continuously days and Group F5D for five continuously days. Group FC remained control unexposed.</td>
<td>63</td>
</tr>
<tr>
<td>5.1</td>
<td>The number and percentage of survival in red tilapia after challenge with 3.4×10^9 live S. agalactiae by intraperitonial injection.</td>
<td>83</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Lethal dose 50 (Ld$_{50}$) for red tilapia infected with various concentrations of live S. agalactiae via i.p injection kept in normal water temperature is 2.2919 x 107 within 12h.</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Lethal dose 50 (Ld$_{50}$) for red tilapia infected with various concentrations of live S. agalactiae via i.p injection kept in high water temperature is 5.6806 x 106 within 12h.</td>
<td>36</td>
</tr>
<tr>
<td>3.3</td>
<td>Unilateral exophthalmia and cloudiness of eye was observed in all inoculated fish after day-1 post-inoculation.</td>
<td>37</td>
</tr>
<tr>
<td>3.4</td>
<td>Reddish skin was observed at the operculum (yellow circle) of the inoculated fish after day-1 post-inoculation.</td>
<td>37</td>
</tr>
<tr>
<td>3.5</td>
<td>Percentage of S. agalactiae isolated from brain, eye and kidney of red tilapia infected with various bacterial concentrations kept in normal water temperature.</td>
<td>39</td>
</tr>
<tr>
<td>3.6</td>
<td>Percentage of S. agalactiae isolated from brain, eye and kidney of red tilapia infected with various bacterial concentrations kept in high water temperature.</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>Immunoglobulin M (IgM) level (ELISA OD) in serum of vaccinated (group F1D, F3D &F5D) and unvaccinated (group FC) adult tilapia monitored weekly before and after immunization. First immunization was conducted at week 1 and booster two weeks after first immunization followed by challenge with 3.4 x 105 cfu/mL1 live S. agalactiae via immersion route for 24h at week 5.</td>
<td>54</td>
</tr>
</tbody>
</table>
4.2 Immunoglobulin M (IgM) level (ELISA OD) in serum of vaccinated (group F1D,F3D &F5D) and unvaccinated (group FC) adult tilapia monitored weekly before and after immunization. First immunization was conducted at week 1 and booster two weeks after first immunization followed by challenge with 3.4×10^9 cfu mL$^{-1}$ live *S. agalactiae* via i.p injection route at week 5.

4.3 Immunoglobulin M (IgM) level (ELISA OD) in body mucus of vaccinated (group F1D,F3D &F5D) and unvaccinated (group FC) adult tilapia monitored weekly before and after immunization. First immunization was conducted at week 1 and booster two weeks after first immunization followed by challenge with 3.4×10^9 cfu mL$^{-1}$ live *S. agalactiae* via immersion route for 24h at week 5.

4.4 Immunoglobulin M (IgM) level (ELISA OD) in body mucus of vaccinated (group F1D,F3D &F5D) and unvaccinated (group FC) adult tilapia monitored weekly before and after immunization. First immunization was conducted at week 1 and booster two weeks after first immunization followed by challenge with 3.4×10^9 cfu mL$^{-1}$ live *S. agalactiae* via i.p injection at week 5.

4.5 The percentage of survival among groups of adult tilapia orally vaccinated and unvaccinated. All groups were challenged with 3.4×10^9 cfu mL$^{-1}$ live *S. agalactiae* via immersion route for 24h.

4.6 The percentage of survival among groups of adult tilapia orally vaccinated and unvaccinated. All groups were challenged with 3.4×10^9 cfu mL$^{-1}$ live *S. agalactiae* via i.p injection route.

4.7 Cross-section of the gut of red tilapia fed with FNV vaccine from Group F1D. Aggregation of lymphoid cells or GALT formed in the lamina propria as marked with yellow circle. HE x200.
4.8 Cross-section of the gut of red tilapia fed with FNV vaccine from Group F3D. Aggregation of lymphoid cells or GALT formed in the lamina propria as marked with yellow circle. HE x200.

4.9 Cross-section of the gut of red tilapia fed with FNV vaccine from Group F5D. Aggregation of lymphoid cells or GALT formed in the lamina propria as marked with yellow circle. HE x200.

4.10 Cross-section of the gut of fish fed with commercial feed from Group FC. No aggregation of lymphoid cells or GALT formed in the lamina propria. HE x200.

5.1 The serum IgM response following vaccination with vaccine incorporated pellet (FNV) and adjuvant vaccine incorporated pellet (FAV). The control group (FC) fishes were fed with commercial pellet.

5.2 The mucus IgM response following vaccination with vaccine incorporated pellet (FNV) and adjuvant vaccine incorporated pellet (FAV). The control group (FC) fishes were fed with commercial pellet.

5.3 The gut lavage fluid IgM response following vaccination with vaccine incorporated pellet (FNV) and adjuvant vaccine incorporated pellet (FAV). The control group (FC) fishes were fed with commercial pellet.

5.4 The percentage of survival in red tilapia after challenge with 3.4×10^9 live $S. agalactiae$ by intraperitonial injection.

5.5 The diameter of gut-associated lymphoid tissue (GALT) observed in red tilapia following oral vaccination of FNV and FAV vaccine.

5.6 The number of lymphocytes counted in gut-associated lymphoid tissue (GALT) observed in red tilapia following oral vaccination of FNV and FAV vaccine.

5.7 Cross-section of the gut of red tilapia fed with FAV vaccine. Three aggregations of lymphoid cells or GALTs formed in the lamina propria as marked with yellow circles. HE x200.
5.8 Cross-section of the gut of red tilapia fed with FNV vaccine. Aggregations of lymphoid cells or GALT formed in the lamina propria as marked with yellow circle. HE x200.

5.9 Cross-section of the gut of fish fed with commercial feed from Group FC. No aggregation of lymphoid cells or GALT formed in the lamina propria. HE x200.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHI</td>
<td>Brain Heart infusion</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum albumin</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony Forming Units (bacteria)</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>FNV</td>
<td>Vaccine Incorporated Pellet</td>
</tr>
<tr>
<td>FAV</td>
<td>Adjuvant Vaccine Incorporated Pellet</td>
</tr>
<tr>
<td>GALT</td>
<td>Gut-associated Lymphoid Tissue</td>
</tr>
<tr>
<td>H&E</td>
<td>Hematoxylin and Eosin</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-Buffered Saline</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>RM</td>
<td>Malaysian Ringgit</td>
</tr>
<tr>
<td>OD</td>
<td>Optical Density</td>
</tr>
<tr>
<td>S. agalactiae</td>
<td>Streptococcus agalactiae</td>
</tr>
<tr>
<td>S. iniae</td>
<td>Streptococcus iniae</td>
</tr>
<tr>
<td>USD</td>
<td>United States Dollar</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Streptococcus agalactiae is an important pathogenic bacterium that infects various species of animals. *Streptococcus agalactiae* has a broad host range and is pathogenic to mammals, reptiles, amphibians and fish (Elliott *et al.*, 1990). *Streptococcus agalactiae* causes bovine mastitis in cow, characterized by inflammation of the parenchyma of the mammary gland in the presence of significantly increased leukocyte content in milk (Meiri-Bendek *et al.*, 2002). In human, *S. agalactiae* causes sepsis in neonates and their mothers, may lead to overwhelming infection without much localization (septicemia) or predominantly localized in the lung causing pneumonia or the brain causing meningitis (Fanrong *et al.*, 2005). *S. agalactiae* infection or streptococcosis was reported to cause significant mortalities among numerous wild and cultured fish species, including menhaden (*Brevoortia patronus*) (Plumb *et al.*, 1974), bullminnows (*Fundulus grandis*) (Rasheed and Plumb, 1984), striped bass (*Morone saxatilis*) (Baya *et al.*, 1990), mullet (*Liza klunzingeri*), and tilapia (*Oreochromis niloticus*) (Evans *et al.*, 2002).

Streptococcosis is a septicaemic disease affecting both captive and wild fish in all water bodies (Evans *et al.*, 2002). It affects large-sized tilapias, particularly those weighing at least 100 grams (Amal *et al.*, 2009). Currently, the disease has become a major problem in many tilapia farms and there is still no effective control measure. The two common *Streptococcus* sp. found
to infect tilapia were *S. agalactiae* (Pasnik *et al.*, 2005) and *S. iniae* (Intervet, 2006).

Streptococcosis has proven to be very difficult to control with antibiotics. According to Agriculture Research Service (ARS), United States Department of Agriculture (USDA), no antibiotic is available to treat the pathogen at this time (Agriculture Research Service, 2010). Moreover, the infection is usually transmitted from fish to fish where the bacteria were released from dead and dying fish that was considered as the most important source of infection (Kitao, 1993). Hence, vaccination is considered as the effective way to control the disease. In Malaysia, high incidences of *S. agalactiae* infection in red tilapia were reported during dry months between April and July, where water temperature was high (Siti-Zahrah *et al.*, 2005; Amal *et al.*, 2008).

Vaccination of fish by intraperitonial injection and bath immersion against bacterial infections has been proven to be a commercial success (Lamers, 1985). However, oral vaccination, with antigen being incorporated into a feed, is potentially the most appropriate method for mass vaccination of fishes of all sizes. This route of vaccination avoids the stress and reduces time and labour cost whilst allowing a more flexible approach to the formulation of immunization regime, particularly important during handling large numbers of fish (Hart *et al.*, 1987). Oral vaccination is also easy to apply on all production facilities and is effective on all sizes of fish, making it the most preferred method by fish farmers (Le Breton, 2009). Immunization through oral or anal routes resulted in antigen-specific antibodies in skin mucus, bile and intestine of several fish species (Fletcher and White, 1973; Roumbout *et al.*, 1986).
The significant response by the mucosal immune system makes oral vaccination more promising since the first contact with pathogens occurs usually through mucosal surfaces (Manganaro et al., 1994).

Thus, the objectives of this study was:

1. to determine the pathogenecity of *S. agalactiae* in normal and temperature-stressed red tilapia (*Oreochromis* spp).

2. to evaluate the protective capacity provided by an orally delivered incorporated feed vaccine (FNV) against streptococcosis in red tilapia (*Oreochromis* spp).

3. to enhance the protection provided by the newly developed oral vaccine (FAV) against streptococcosis in red tilapia (*Oreochromis* spp).

Hypotheses of this study was:

1. *S. agalactiae* is more virulence in temperature-stressed red tilapia rather than in non-stressed red tilapia.

2. orally delivered incorporated feed vaccine (FNV) are able to give protection against streptococcosis in red tilapia (*Oreochromis* spp.).

3. Newly developed oral vaccine (FAV) are able to enhance the protection against streptococcosis in red tilapia (*Oreochromis* spp.).

McMillan, D. N. and Secombes, C. J. (1997). Isolation of rainbow trout (Onchorhynchus mykiss) intestinal intraepithelial lymphocytes (IEL) and measurement of their cytotoxic activity. Fish and Shellfish Immunology. 7:527-541.

