
 
 

UNIVERSITI PUTRA MALAYSIA 
 
 
 
 
 

MECHANICAL AND THERMAL PROPERTIES OF CNT-REINFORCED 
QUARTZITE NANO-COMPOSITE FOR FURNACE LINING 

 

 
 
 
 
 
 
 
 
 

YUSUF TIJJANI 
 
 
 
 
 
 
 
 
 
 
 
 

FK 2018 179 



© C
OPYRIG

HT U
PMMECHANICAL AND THERMAL PROPERTIES OF CNT-REINFORCED 

QUARTZITE NANO-COMPOSITE FOR FURNACE LINING 

By 

YUSUF TIJJANI 

Thesis Submitted To the School of Graduate Studies, Universiti Putra Malaysia, 

in Fulfilment of the Requirements for the Degree of Doctor of Philosophy  

June 2018 



© C
OPYRIG

HT U
PM

 

COPYRIGHT 

 

 

All material contained within the thesis, including without limitation text, logos, 

icons, photographs and all other artwork, is copyright material of Universiti Putra 

Malaysia unless otherwise stated. Use may be made of any material contained within 

the thesis for non-commercial purposes from the copyright holder. Commercial use 

of material may only be made with the express, prior, written permission of 

Universiti Putra Malaysia. 

 

 

Copyright © Universiti Putra Malaysia 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



© C
OPYRIG

HT U
PM

 

DEDICATION 

 

 

This thesis is dedicated to the following important personalities: 

My beloved parents; 

My loved wife and son 

My dear brothers and sisters; 

And my fallen heroes/friends: Engr. Bashir Yahya and Engr. Sani Dahiru who passed 

away in the course of study in Malaysia (May your souls rest in perfect peace 

(Aljannatul Firdaus), Ameen). 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

i 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 

of the requirement for the degree of Doctor of Philosophy 
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By 
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June 2018 

Chairman:  Faizah Bint MD Yasin, PhD 

Faculty:  Engineering 

Nigerian local foundries employ the used-imported bricks from iron and steel 

industries to line the foundry cupola furnace. On the event of the closure of these 

industries, the alternative left was to identify the locally available refractory material 

that would be used for most effective lining of the cupola. Thus, after several trials of 

different locally available clays, natural crystalline quartzite refractory ceramic 

material; crystalline silica (SiO2) was eventually resorted to. The main problem 

associated with ceramic lining material is lack of good thermal shock resistance. This 

is more pronounced with silica/silica-based refractory linings; for instance, lining 

material used in a typical local foundry furnace in Kano State of Nigeria and vicinity 

that is prepared from local quartzite/crystalline silica, which develops unduly cracks 

on its surface during cooling after melting. This has been attributed to poor thermal 

conductivity by the previous researchers. To substantially obviate this setback, the 

present research aimed to incorporate carbon nanotubes (CNTs) within the matrix of 

quartzite brick. This entails manufacturing and characterization of CNT reinforced 

quartzite nano-composite. To obtain a stable suspension of CNTs that would be used 

in the preparation of homogeneously dispersed nanotubes in the quartzite matrix, the 

as-received pristine CNTs were functionalized with 6M H2SO4 acid by 

ultrasonication using a water bath sonicator. The pristine/functionalized CNTs were 

then comprehensively characterized by Fourier-transform infrared spectroscopy (FT-

IR), Raman spectroscopy, Thermogravimetric analysis (TGA), Differential scanning 

calorimetry (DSC), and Scanning electron microscopy coupled with Energy 

dispersive X-ray spectroscopy (SEM/EDX). Also, the as-mined quartzite and clay 

were purified by soaking/washing with water and subsequently dried. The as-dried 

raw material were then subjected to crushing, grinding, pulverizing and grading 

using Jaw and Cone crushers, ball mill, pulverizer, and size distribution particle 

analyzer respectively. This is followed by structural and morphological 

characterization of the powdered quartzite and clay by Energy dispersive X-ray 

https://en.wikipedia.org/wiki/Thermogravimetric_analysis
https://en.wikipedia.org/wiki/Differential_scanning_calorimetry
https://en.wikipedia.org/wiki/Differential_scanning_calorimetry
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fluorescence spectrometer (ED-XRF), X-ray diffraction (XRD), and SEM/EDX. The 

durable refractory material for lining foundry cupola is developed by modified 

conventional powder processing (wet mixing method); involving preparation, cold 

compaction (by manual hydraulic press) and pressureless sintering (using tube 

furnace) at 1450oC, for 2 hours dwelling time, under argon atmosphere. Physical, 

mechanical, morphological and thermal characterizations were determined for the 

sintered 0, 0.01, 1, and 4 wt. % CNT-quartzite nano-composite blends. The 

comparable bulk density range obtained for the blends; 1.722 – 1.760 g/cm3 is an 

evidence of a complete densification and good homogeneous dispersion of CNTs in 

the green matrices, thus, good thermo-mechanical properties of the nano-composites. 

High proportion of tridymite, low percentage of residual quartz (1.1 %), low 

reversible thermal expansion, modest tensile (2.49 MPa) and compressive strengths 

(17.39 MPa), moderate Young’s modulus; tensile (190 MPa), high fracture strain in 

tension (0.013027), high (on-duty) thermal shock cycles (7 cycles), high thermal 

diffusivity (> 8 × 10−7 𝑚2/𝑠  𝑎𝑡 117℃) and remarkable thermal conductivity 
(> 0.2 𝑘/𝑊𝑚−1𝐾−1𝑎𝑡 117℃) of 1 wt. % CNT-quartzite nano-composite signifies 

the possibility of potential application of CNTs as sintering aid (stabilizer, 

mineralizer, etc.) and toughening filler in a conventional quartzite/silica refractory 

mixture for high durability. Finally, the Levenberg Marquardt Back Propagation 

Artificial Neural Network (LMBP ANN) models were developed to predict the 

physical, mechanical and thermal properties of the CNT-quartzite nano-composites 

having formulations within the range of those employed in the experimental process 

through dataset training, validation and testing. Additionally, the Graphical User 

Interface (GUI) was created in the study in order to have a user friendly interface for 

easy characterization of the CNT-quartzite nano-composites. 
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Kilang-kilang tempatan Nigeria menggunakan batu bata terpakai yang diimport dari 

industri besi dan keluli untuk menyambung relau leburan kupola. Sekiranya berlaku 

penutupan industri ini, alternatif yang masih ada adalah dengan mengenal pasti 

bahan refraktori yang ada di dalamnya yang boleh digunakan untuk lapisan kupola 

yang lebih berkesan. Oleh itu, selepas beberapa percubaan mengunakan tanah liat 

tempatan berbeza yang sedia ada, bahan kuarzit kristal seramik refraktori semulajadi; 

silika kristal (SiO2) dapat digunapakai. Masalah utama berkaitan dengan bahan 

lapisan seramik adalah kekurangan rintangan kejutan haba yang baik. Hal ini lebih 

ketara dengan lapisan refraktori yang menggunakan bahan berasaskan silika. Sebagai 

contoh, bahan lapisan yang digunakan di sebuah kilang relau tempatan di daerah 

Kano dan kawasan berdekatannya di Nigeria telah disediakan dari bahan kuarzit 

tempatan berhablur, telah menyebabkan keretakan yang terlalu ketara pada 

permukaan semasa penyejukan selepas peleburan. Hal ini telah dikenalpasti sebagai 

kesan daripada konduksi haba yang lemah oleh penyelidik-penyelidik terdahulu. 

Bagi mengatasi masalah ini secara mendalam, penyelidikan yang kini dijalankan 

adalah bertujuan untuk menggabungkan tiub nano karbon (CNTs) dalam matriks 

kuarzit bata. Ini melibatkan pembuatan dan pencirian nanokomposit kuarzit 

berpenguat CNT. Untuk mendapatkan penggantungan CNT yang stabil untuk 

digunakan dalam penyediaan tiub nano yang terserak secara menyeluruh dalam 

matriks kuarzit, bahan tulen yang digunakan telah difungsikan dengan asid 6M 

H2SO4 melalui kaedah ultrasonikasi menggunakan sonikator rendaman air. CNT 

yang tulen / difungsikan kemudian dicirikan secara komprehensif oleh Spektroskopi 

Inframerah Transformasi Fourier (FTIR), Spektroskopi Raman, Terma Analisis 

Gravimetrik (TGA), Kalorimeter Imbasan Pembeza (DSC), Mikroskop Pengimbas 

Elektron dan Tenaga Penyerakan Sinar-X (SEM / EDX). Juga, kuarzit seperti yang 

dilombong dan tanah liat dibersihkan dengan merendam / membasuh dengan air dan 

kemudiannya dikeringkan. Bahan mentah kering kemudiannya dihancurkan, 
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dikisarkan, dipecahkan dan diperingkatkan dengan menggunakan penghancur 

Rahang dan Kon, pengisar bebola, pengisar, dan penganalisis partikel pengagihan 

saiz. Ini diikuti dengan ciri-ciri struktur dan morfologi serbuk kuarzit dan tanah liat 

oleh analisis spektrometer serakan tenaga sinar X (ED-XRF), X-ray difraksi sinar X 

dan SEM / EDX. Bahan refraktori yang tahan lama untuk lapisan kupola leburan 

dihasilkan melalui pemprosesan serbuk konvensional yang diubahsuai (kaedah 

pencampuran basah); di mana ia melibatkan penyediaan, pemadatan sejuk (dengan 

mesin hidraulik manual) dan pensinteran tanpa tekanan (menggunakan relau tiub) 

pada 1450oC di bawah atmosfera argon selama 2 jam. Ciri-ciri fizikal, mekanikal, 

morfologi dan terma ditentukan untuk 0, 0.01, 1.0, dan 4.0 % berat CNTs, campuran 

batu bata kuarzit. Julat kepekatan pukal setanding yang diperolehi untuk campuran; 

1.722 - 1.760 g / cm3 adalah bukti penyepadatan yang lengkap dan penyebaran 

menyeluruh yang baik oleh FMWNTs dalam matriks hijau, oleh itu, sifat-sifat terma 

mekanikal yang baik dari nano komposit. Peratusan tinggi tridimit, peratusan rendah 

sisa kuarza (1.1%), pengembangan haba boleh ubah yang rendah, tegangan 

sederhana (2.49 MPa) dan kekuatan mampatan (17.39 MPa), modulus Young 

sederhana; tegangan (190 MPa), ketegangan fraktur yang tinggi dalam ketegangan 

(0.013027), kitaran kejutan haba yang tinggi (atas tugas) (7 kitaran), kelimpahan 

haba yang tinggi (> 8 × 10−7 𝑚2/𝑠  𝑎𝑡 117℃)  dan kekonduksian haba yang luar 

biasa (> 0.2 𝑘/𝑊𝑚−1𝐾−1𝑎𝑡 117℃) 1 wt. % nano komposit kuarzit CNT 

menunjukkan kebarangkalian CNT berpotensi untuk digunakan sebagai bantuan 

sintering (penstabil, pemineral, dan lain-lain) dan menguatkan pengisi dalam 

campuran konvensional kuarzit / refraktori silika untuk ketahanan yang tinggi. Akhir 

sekali, model Rangkaian Saraf Tiruan Levenberg Marquardt telah dihasilkan untuk 

meramalkan ciri-ciri fizikal, mekanikal dan terma nano komposit kuarzit CNT dan 

berada dalam formulasi mengikut julat yang digunakan dalam proses eksperimen 

melalui latihan dataset, pengesahan dan ujian. Di samping itu, Antara Muka Grafik 

Pengguna (GUI) telah dicipta dalam kajian ini untuk mendapatkan antara muka yang 

mesra pengguna bagi memudahkan pencirian nano komposit kuarzit CNT. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background to research 

Foundry process or casting involves melting metals, pouring into the mould, and 

extraction of the product after the metal solidified as it cools. The place where these 

operations are carried out and the product outcomes are referred to as foundry and a 

cast respectively. The history of casting process was documented circa 1500 by 

Vannoccio Biringuccio who is popularly known as ‘father of the foundry’(Candeo, 

2012), whereas evidence from Nigerian foundry historic relics was dated 

approximately 900 AD (Childs and Killick, 1993). Depending on the type of end 

users, foundry process can be either commercial foundry; production activity on a 

large scale and casting achieved by sand casting, die casting, investment casting and 

lost foam casting, or hobby foundry; small but fully equipped setup inside a house or 

in the backyard. Also, commercial foundries could be captive foundry; part of a 

manufacturing company which utilizes the cast items to meet the company 

production demand, independent foundry; casting produced to suit customer’s 

specifications, jobbing foundry; carry out contractual casting for other companies, 

production foundry; particular types of casting are made in bulk quantity, and semi-

production foundry; this is the combination of jobbing and production foundry. 

Captive, jobbing and semi-production, are the common foundries in Nigeria, 

examples are Nigerian Foundries Limited (NFL), Grand Foundry and Engineering 

Works Limited, Castmaster Metallurgical Company Limited, Integrated Foundry 

which is the captive foundry of Nigeria Machine Tools Limited, etc. Foundry being 

one of the cheapest manufacturing processes is a primary basis for all technological 

take-off and industrialization. Components ranging from that of machine tools, 

power plants, ship-building, railways, agriculture and food processing, cement and 

textile industries to household utensils such as metal bowls, pots, spoons, etc. are 

realized through casting  (Ibitoye and Ilori, 1998). In fact, it is impossible to think of 

any machinery or equipment which has no components from the foundry. 

Sand casting is by far the oldest and the most commonly used casting process. It 

comprises putting a pattern (possessing the shape of the desired casting) in sand to 

obtain an imprint, integrating a gating system, isolating the pattern and pouring the 

molten metal into the prepared mould cavity, allowing the metal to cool as it 

solidifies, breaking away the sand mould, and removing the casting (Iqbal et al., 

2014; Kalpakjian and Steven, 2014; Sulaiman and Hamouda, 2001, 2004). Problems 

associated with foundries in Nigeria can be broadly categorised as: lack of training of 

foundry personals such as foundry craftsmen, technicians, and engineers; In adequate 

investment in casting technology development to ensure profit at least on the long 
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run; Lack of sustainable government policies towards foundry such as strategies 

setup to better the foundry industries; Lack of developing casting raw materials, 

mismanagement, and over/under utilization of iron scraps, pig-iron, bentonite, silica 

sand, binder, refractories, alternatives, etc.; and lack of research and development, 

foundry being one of the heavy basic industries, an outstanding studies are required 

in air pollution and industrial waste control, safe working environment, raw 

materials, maintenance, and finished product (Jimoh et al., 2013). 

 

 

1.2 Refractory materials 

 

Refractories are materials that withstand high temperatures (usually above 1100oC), 

resist the action of corrosive liquids, and dust-laden currents of hot gases. They are 

used in lining furnaces, kilns, incinerators, reactors, and to make crucibles. The 

refractory materials (depending on whether it is for insulation or conduction) must 

possess high refractoriness, high resistance to abrasion and erosion, high resistance to 

thermal fatigue, low/moderate porosity and permeability, low/high thermal 

conductivity, low coefficient of thermal expansion, and low cost per unit weight of 

the material treated (Chesti, 1986). 

 

 

Based on the composition of oxides present in the refractory; silica (SiO2), alumina 

(Al2O3) and silica, magnesia (MgO), chromite (FeCr2O4), and magnesia and 

chromite, it may be chemically classified as acidic, basic or neutral refractory. Acid 

refractories; are based on silica and consist of SiO2, sillimanite, fireclays with 30-

42% Al2O3, and andalusite containing approximately 60% Al2O3. Acid refractories 

are neutral to acid slag but react readily with basic slags. Basic refractories; are based 

on magnesia (MgO) and comprise magnesite and dolomite, chrome magnesite, 

magnesite, chrome, alumina, mullite, and many special refractories such as ThO2 and 

BeO. The special refractories are mostly new, very expensive, reserved for research 

purposes, atomic energy and gas turbine technologies, etc. They include materials 

like ZrO2 and BeO and can be classified as acid, basic or neutral. Special refractories 

with a melting point above approximately 1900oC are referred to as super 

refractories. Basic refractories are inert to basic slags but are readily attacked by acid 

slags. Neutral refractory; these are relatively inert to both siliceous and limy slags. 

They include carbon, chromite (FeO.Cr2O3) and forsterite (2MgO.SiO2) bricks 

(Arthur et al., 1977). As far as refractory is concerned, there is no such things as best 

properties, rather, a compromise is necessary when it comes to the selection of 

optimum performance criteria based on rigidity, size and shape stability, strength at 

operating temperature, ability to withstand thermal shock, resistance to chemical 

attack; by gas, slag or metal. 

 

 

The silica employed for the fabrication of silica refractories exists in the form of 

quartz; quartz is the only type of silica that is stable at atmospheric temperature, 

therefore, all the un-combined silica in the earth’s crust exists as quartz and is present 

in quartzite, canister, sand, flints, etc. Quartzite which contents the low-quartz 
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modification (α-quartz) is the most used form of quartz employed for the production 

of silica refractories in most countries. This is achieved via conventional coarse 

ceramic manufacturing that involves preparation, shaping, drying and firing (Brunk, 

2000). The silica brick could be dense (≥93% SiO2); used in the construction of coke 

oven, glass furnace and hot blast stoves, lightweight (≥91% SiO2, true porosity >45% 

and up to 72%); employed primarily in thermal insulation of glass melting tank 

crowns, shaped fused or vitreous; used as a material for hot repairs in the glass 

industry, and unshaped silica product (>90% SiO2; precisely between 95 to 98%); 

which find application in induction furnaces for melting copper or steel (Brunk, 

2001).  Silica refractories are also used in the construction of roofs of open hearth 

furnace and in the exposed sidewalls due to their high melting point, rigidity, and 

strength at elevated temperature (Almarahle, 2005; Alnawafleh, 2009; Chesters, 

1983). Almarahle (2005) and Alnawafleh (2009) have been reported to have 

successfully fabricated silica bricks from white quartz sand mixed with lime. 

 

 

The high-quality pure silica fused at 1715oC (3119oF). As much as possible, the 

silica should be pure with merely about 1-2% alumina, titania and other impurities as 

their presence in greater percentages largely reduce its refractoriness (Chesti, 1986). 

The commercially available silica brick was reported to have failed at 1649oC 

(3000oF), and by restricting the number of oxides in a noble silica refractory 

invented, the refractoriness was increased by 38oC (100oF) (Harvey and Birch, 

1944). Silica bricks are relatively resistant to attack by iron oxide and alkalis. To 

avoid iron oxide pick-up (for pure silica brick), Sosman recommended the minimum 

safe operating temperature to 1650oC (3002oF) (Chesters, 1983). 

 

 

Foundry Cupola Furnace is a melting device used in foundries to melt cast iron, Ni-

resist iron, and some bronzes. Most of the conventional cupolas are operated in 

temperature range between 1482oC and 1510oC (2700oF to 2750oF) (Carter, 1953), 

whereas the melting temperatures of commercial cast iron, austenitic nickel iron (low 

expansion type), copper, and bronzes (with tin content 20%) are 1135oC to 1150oC 

(2075 to 2102°F), 1230oC (2246oF), 1084oC (1983oF), and 910oC (1670oF) 

respectively (Angus, 2013; Dainian and Cohen, 1996). 

 

 

The cupola is mostly lined with fire clay or similar heat resistance material (Klug, 

1915). Therefore, in my view, the application of the silica refractory ceramic could 

be extended to the lining of foundry cupola save for its low thermal shock fracture 

resistance. Fracture mechanics is the scientific study of the behavior of the 

progressive crack extension in structures. Using its primary tools; characteristic 

material values, test procedures, and failure analysis procedures (various fracture 

criteria) it controls the brittle fracture and fatigue failures in structures. Prior to the 

advent of the theory of fracture mechanics Kingery (1955), Hasselman (1963a), 

Hasselman (1963b), and Hasselman (1969) were some researchers that study the 

adverse effects of fracture by thermal shock in refractory ceramics (Baker et al., 

2006). With the development of modern (refined) fracture mechanics various 
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researchers (Bahr et al., 1987; Bahr et al., 1986; Bahr and Weiss, 1986; Bahr et al., 

1988; Baker et al., 2006; Dey et al., 1995; Dudczig et al., 2012; Evans and Charles, 

1977; Geyer and Nemat-Nasser, 1982; Gruber et al., 2016; Hou et al., 2013; 

Kašiarová et al., 2014; Lu and Fleck, 1998; Lutz and Swain, 1991; Marshall and 

Swain, 1988; Mcnaney et al., 1999; Nemat-Nasser et al., 1978; Nemat-Nasser et al., 

1980; Ribeiro et al., 2016; Ritchie, 1988; Schneider and Petzow, 2013; Soboyejo et 

al., 2001; Steinbrech et al., 1983; Swain, 1990) applied its concepts to investigate 

and/or model and control the behavior of thermal shock in monolithic and/or 

fibre/nano particle reinforced refractory ceramics. 

 

 

Thermal shock is a failure of the material, especially a brittle material when 

subjected/exposed to a sudden transient thermal condition (a rapid change in 

temperature) (Soboyejo et al., 2001; Tokovyy and Hetnarski, 2014; Wang and Singh, 

2013). Also, thermal shock is observed in a material due to the unequal expansion 

(stress or strain) of its parts as a result of the differential thermal gradient. In some 

instance, this stress could exceed the strength of the material, which eventually gives 

rise to a crack formation. Structural failure in the material may then arise if there is 

no impediment or obstacle to the crack propagation (Wang et al., 2013). The ability 

of a material to withstand the thermal shock is referred to as thermal shock resistance 

(Carter and Norton, 2007; Tite et al., 2001). Thermal shock fracture resistance 

depends on/and increase with high values of tensile strength 𝜎𝑓, thermal conductivity 

𝑘, thermal diffusivity 𝐾, and fracture toughness 𝐾𝐼𝐶; and decrease with low values of 

coefficient of thermal expansion 𝛼, Young's modulus of elasticity 𝐸, Poisson’s ratio 

𝜗, and emissivity 휀, (Hasselman, 1963a; Lu and Fleck, 1998). 

 

 

The facilities for periodic usage; blast oxygen furnace, casting ladles, degasser, heat 

exchangers, gas turbine engines, catalyst support, and solid oxide fuel cell and those 

of continuous casting; ladle shrouds, slide plates, and submerged nozzles are more 

prone to thermal shock than installations of continuous process such as blast furnace 

and electric arc furnace (Atkinson et al., 2004; Colombo, 2002; Soboyejo et al., 

2001; Tokovyy and Hetnarski, 2014; Vedula et al., 1998). Unfortunately, to date, 

there is no simple and unified standard test method for the determination and 

comparison of thermal shock resistance (TSR) of ceramic materials that would at the 

same time simulate the actual conditions in service, thermal cycles, and sample 

geometry. However, sample testing involving transient heating and cooling could be 

carried out but this is only reliable for comparative analysis of similar materials (Li 

et al., 2014; Rendtorff and Aglietti, 2010). Semi silica brick with about 88-93% SiO2 

produced from natural or artificial sand-clay mixtures is cheaper, tougher, more 

volume stable than fire clay brick, possess higher thermal shock resistance than silica 

brick and is prompt to lesser slag attack than fire and silica bricks (Chesters, 1983). 

 

 

In the guess to provide better toughening material for ceramics, variety of reinforcing 

fibers have been explored, these comprise; boron, SiC, α-alumina, mullite, and 

carbon fibres (Bunsell and Berger, 2000; Dicarlo, 1985; Phillips, 1974). However, 
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carbon fibres (CFs) are among the highest performance toughening elements studied, 

and in the context of matrix reinforcement in composites, carbon nanotubes (CNTs) 

are usually considered to be the next generation of carbon fibres (Cho et al., 2009a). 

Due to their unique arrangement of its carbon atoms, carbon nanotubes (CNTs) 

possess a remarkable electrical, thermal, and mechanical properties (Kaushik and 

Majumder, 2015; Li et al., 2009). These properties offer the CNTs wide range of 

applications and studies in the field of nanomaterials that are unique and could not be 

achieved by either fiber or whisker reinforcement (Calvert, 1992; Castillo‐Rodríguez 

et al., 2016; Castillo‐Rodríguez et al., 2015; Estili and Sakka, 2014; Nishida, 2013; 

Ruoff and Lorents, 1995; Suraya et al., 2009; Treacy et al., 1996; Wang, 2017; 

Xiong et al., 2015; Xu and Gao, 2015). Apart from mechanical and physical effects, 

the carbon nanotube as a second phase reinforcement may benefit other functional 

properties viz. thermal expansion coefficient (Cho et al., 2016; Hamamda et al., 

2017; Pal and Sharma, 2014; Van Trinh et al., 2018; Wei et al., 2002), thermal shock 

resistance (Feng et al., 2014; Fu et al., 2015a; Fu et al., 2015b; Roungos and 

Aneziris, 2012; Sasthiryar et al., 2014; Sribalaji et al., 2018), etc. To this extent, the 

present research would apply the functionalized carbon nanotubes within quartzite 

(silica)/CaO-clay refractory ceramic matrix so as to reduce the high-temperature 

gradient responsible for the uneven expansion of the silica, cracks initiation, and the 

low thermal shock resistance. 

 

 

1.3 Problem statement 

 

Most of the Nigerian local foundries used a prepared sand mixture called “plastic 

ramming mixture” (containing mainly high percentage of alumina [Al2O3] and silica 

[SiO2] with the very small percentage of impurities in the form of iron oxides and 

alkalis) to line the foundry cupola furnace before and after each melt. Consequently, 

the downtime in production could be up to eight (8) hours; spent for furnace 

preparation; re-lining the refractory materials before the subsequent melts. This could 

be attributed to the surface cracks/thermal shock of the ceramic lining material 

(commonly made locally from quartzite and clay). These cracks have been identified 

by the previous researchers such as Baker et al. (2006) to occur due to the sudden 

temperature change in pouring metal into a ceramic-lined crucible or rapid cooling of 

the cupola furnace to ambient temperature. They demonstrated an enhancement of 

the thermal shock resistance circle in the monolithic aluminosilicate material with the 

addition of 4 wt. % Na2O by promoting viscoelastic toughening. Also, in an attempt 

to address the above-mentioned problem in our local foundries, Rafukka (2009) was 

able to characterize the various blends used in a typical foundry in Kano State, 

Nigeria and recommended the blend of used-imported brick plus Gezawa clay as the 

best out of the three possible blends based on the highest refractoriness and thermal 

shock resistance. The other two blends were made from as-mined locally available 

materials of Burji clay and Gezawa stone (quartzite); to which Gezawa clay was 

added to each. In the event of the closure of local iron and steel industries which are 

the major consumers of the imported bricks, then the local foundries that depend 

mostly on the used-bricks from these industries were left with two options; either 

Burji clay with Gezawa clay or quartzite with Gezawa clay. It has been established 
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that the quartzite blended with Gezawa clay possess higher refractoriness as 

compared to Burji clay blended with Gezawa clay but the former has lower thermal 

shock resistance (Rafukka et al., 2013a, 2013b). Thus, quartzite could be employed 

advantageously for lining foundry cupola furnace as compared to Burji clay save for 

its low thermal shock cycle. 

 

 

With the aim to improve the physical, mechanical and functional properties of local 

refractory materials, to reduce the production downtime, and also to save refractory 

lining replacement costs, the present study would review the local Gezawa stone 

(quartz/crystalline silica stone) (Rafukka et al., 2013a) and Gezawa white clay (clay). 

Precisely, the CNTs would be added to conventional quartzite to improve its thermo-

mechanical properties. 

 

 

1.4 Objectives 

 

The aim of this study is to determine the mechanical and thermal properties of CNT-

reinforced quartzite nano-composite for furnace lining; this entails the following 

objects:  

 

1. To investigate the microstructural properties of as-received/functionalized 

carbon nanotubes (CNTs), as-mined quartzite and clay. 

2. To determine physical, mechanical, and thermal properties of the novel 

fabricated CNT-quartzite nano-composites. 

3. To apply the Levenberg Marquardt Back Propagation Algorithm (LMBP) for 

training Artificial Neural Network (ANN) models that would be used to 

characterize/predict the physical, mechanical and thermal properties of the 

CNT-quartzite nano-composites possessing formulations within the range of 

those trials used in the experimental datasets. 

 

 

1.5 Scope and limitation of research 

 

The scope of the present research includes the surface activation of as-received 

pristine carbon nanotubes, characterization of the pristine/activated CNTs, 

preparation and characterization (chemical, morphological, and determination of 

particle size distribution) of as-mined quartzite and clay, introduction of 

functionalized (activated) carbon nanotubes as reinforcement into the natural 

crystalline silica (quartzite)/CaO-clay matrix, and the fabrication of CNT-quartzite 

nano-composite test specimen pellets. This is followed by the determination of 

foundry physical properties of the samples; linear and diametrical expansion, 

apparent porosity, bulk density, cold crushing strength, thermal shock resistance, 

microstructure; crystallite size/shapes, and surface morphology. Then mechanical 

properties specifically elastic modulus (tensile), tensile strength, compressive 

strengths, fracture strain in tension and compression (strain tolerance) have been 

obtained. Also, thermal conductivity is determined by an indirect method using the 
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values of bulk density; obtained from Archimedes’ principle, specific heat capacity; 

determined by the equation and using differential scanning calorimetry (DSC) heat 

flow curves, and thermal diffusivity; evaluated by the laser flash apparatus. Lastly, 

the Levenberg Marquardt Back Propagation Artificial Neural Network (LMBP 

ANN) models have been developed based on the limited dataset’s range of the 

experimental work to characterize the nano-composites for physical, mechanical and 

thermal properties. 

The limitations of this study are: 

 The specific heat capacity and the thermal conductivity of the CNT-quartzite

nano-composites were obtained at low temperatures.

 The LMBP ANN developed models are only applicable to the present study

and would be reliable only for the prediction of the thermo-mechanical

properties of the CNT-quartzite nano-composites within the lower and upper

boundaries of the experimental datasets.

1.6 Justification 

There have been rapid declines in the number of industries that manufacture 

silica/silica-based refractories in United Kingdom (UK) in particular and precisely 

world in general. In fact, it has been reported that as per back as 1960, the steel 

industries utilized about three-quarters of all the silica bricks manufactured in the 

UK, the other main users being glass and carbonizing industries. In 1969 the steel 

industries consumption reduced to about one-third, and the carbonizing industries to 

about one-quarter of the 1960 amount. The only high utilization reported is in glass 

industries. The drop could be explained as a result of change from open-hearth to 

basic oxygen furnace (BOF) and arc steelmaking (as the open-hearth is one biggest 

consumer of silica brick), the replacement of silica gas retorts by natural gas, and 

changeover from silica to high-alumina bricks in the roofs of electric-arc furnace to 

decrease the downtime in plants that depend for their survival on high operating 

rates. This led to the closure of many silica brick industries and a significant 

reduction in research work in the high silica area (Chesters, 1983). 

In light of these, the present research would try to address downtime issue, suggest 

additional areas in which the silica bricks could be used as part of the effort to revive 

the silica/silica-based industries and further the research works in the field. Another 

point of pivotal importance is the effort by the present Nigerian government to 

revolutionize the industrial sector; more especially iron and steel industries. 

Silica/silica-based material being one of the very important keys in this area, as its 

application is obvious in coke oven for the production of coke from coal and blast 

furnace for the smelting of iron ore, this and others justify the present research as 

timely and along awaited. 
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