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By 
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October 2018 

 

 

Chair : Samsul Bahari Mohd Noor, PhD 

Faculty : Engineering 

 

 

Underactuated system is a nonlinear system having less actuators than the number of 
states to be controlled. The control for underactuated system is already a challenging 

task. It will be more difficult in the presence of external disturbances. Quadrotor is one 

example of an underactuated system. For quadrotor to overcome the external 

disturbance, it needs energy. However, energy limitation is the main challenges in 

quadrotor to serve the applications. An Extended High-gain Observer (EHGO) is 

proposed to stabilize the underactuated system in the presence of external disturbance 

with optimize energy consumption. In this study, the energy consumption is analyzed 

based on the control effort represented by control signal. 

 

 

EHGO has shown good potential to handle disturbances in the fully actuated system and 

underactuated system. In most studies, EHGO was successfully implemented on 
established board, which is of good quality but high cost. The capability of EHGO in the 

low-cost off-the-shelf common board has a high interest in a wide group of practitioners, 

hence it is worth investigating. Therefore, a control design framework and validation of 

EHGO - output feedback control (EHGO-OFB) for quadrotor trajectory tracking under 

broader flight envelope that is implementable in real-time using off-the-shelf common 

quadrotor platform is presented. 

 

 

A generalised closed-loop underactuated system model using EHGO-OFB in presence 

of disturbances was derived. An additional dynamic state equation is obtained which 

results in a closed-loop system in two-time-scale structure that is less complex. 
Consequently, this thesis extended the existing theorem of EHGO-OFB from fully-

actuated to underactuated nonlinear system. 

 

 

The validation was performed in simulation and experimental. In simulation, the overall 

performance of EHGO-OFB in hierarchical controller (HC) improves the control effort 

by 36% from the standard HC. Meanwhile, the EHGO-OFB in sliding mode control 
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(SMC) shows 15% improvement in the control accuracy achievable using smaller control 

effort compared to standard SMC. This simulation result provides an alternative to deal 

with chattering problem in SMC that has become the limitation of SMC when applied to 

a quadrotor. 

 

 

In experiment, a 39.64% improvement in the control effort was obtained for proposed 

EHGO-OFB based on existing hierarchical flight controller (HFC).  The flight test was 

performed in the Indoor Space flight arena in Universiti Putra Malaysia using low-cost 

off-the-shelf common components with sampling rate of 0.01s. An EHGO gain of 0.01 
was able to achieve a good performance for the quadrotor. The existing HFC based on 

PID algorithm rejects the disturbance by physical means and consume more energy 

whereas the EHGO-OFB reject the disturbance internally. The controller able to maintain 

the quadrotor in a bounded area with notably smaller control effort even in the presence 

of wind as external disturbance. The work in this thesis is expected to enhance the 

performance of quadrotor in various fields.   
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 Oleh 

 
 

ELYA BINTI MOHD NOR 

 

Oktober 2018 

 

 

Pengerusi : Samsul Bahari Mohd Noor, PhD 

Fakulti : Kejuruteraan 

 

 

Sistem underactuated adalah sistem tak linear yang mempunyai penggerak kurang 
daripada bilangan pembolehubah yang perlu dikawal. Kawalan untuk sistem 

underactuated adalah tugas yang mencabar. Ia menjadi lebih sukar dengan adanya 

gangguan luar. Quadrotor adalah satu contoh sistem underactuated. Quadrotor 

memerlukan tenaga untuk mengatasi gangguan luar. Namun, batasan tenaga merupakan 

cabaran utama dalam quadrotor untuk melayani aplikasi. “Extended High-Gain Observer 

(EHGO)” dicadangkan untuk menstabilkan sistem underactuated dibawah gangguan luar 

dengan mengoptimumkan penggunaan tenaga. Dalam kajian ini, penggunaan tenaga 

dianalisis berdasarkan magnitud usaha kawalan. 

 

 

EHGO telah menunjukkan potensi yang baik untuk mengendalikan gangguan dalam 

sistem “fully-actuated” dan sistem underactuated. Namun dalam kebanyakan kajian, 
EHGO berjaya dilaksanakan menggunakan sistem yang berkuali tetapi kos yang tinggi. 

Keupayaan EHGO menggunakan system yang lebih murah mempunyai minat yang 

tinggi dikalangan kelompok pengguna yang lebih ramai, ia bernilai untuk disiasat. Oleh 

itu, rangka kerja reka bentuk kawalan dan pengesahan kawalan EHGO-OFB untuk 

lintasan quadrotor di bawah sampul penerbangan yang lebih luas boleh dilaksanakan 

dalam masa nyata menggunakan platform quadrotor biasa dipersembahankan.  

 

 

Model sistem tertutup yang menggunakan EHGO-OFB di bawah gangguan luar 

diperolehi. Persamaan keadaan dinamik tambahan diperolehi yang menghasilkan sistem 

tertutup dalam struktur dua kali skala yang kurang kompleks. Hasilyna, tesis ini 
memperluaskan teorem EHGO-OFB yang sedia ada dari sistem nonlinear yang 

digerakkan sepenuhnya kepada system underactuated. 

 

 

Pengesahan telah dilakukan dalam simulasi dan eksperimen. Dalam simulasi, prestasi 

keseluruhan EHGO-OFB dalam HC menambahbaik usaha kawalan sebanyak 36% 

daripada standard HC. Sementara itu, EHGO-OFB dalam SMC menunjukkan 
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peningkatan 15% dalam ketepatan kawalan dicapai dengan menggunakan usaha kawalan 

yang lebih kecil berbanding SMC piawai. Hasil simulasi ini memberikan alternatif untuk 

menangani masalah perbualan di SMC yang telah menjadi batasan SMC apabila 

diterapkan pada quadrotor. 

 

 

Dalam eksperimen, usaha kawalan sebanyak 39.64% diperolehi untuk EHGO-OFB yang 

dicadangkan berdasarkan pengawal penerbangan (HFC). Ujian penerbangan dilakukan 

di arena penerbangan Indoor Space di Universiti Putra Malaysia menggunakan 

komponen umum yang kurang mahal dengan kadar sampel 0.01s. EHGO bernilai 0.01 
dapat mencapai prestasi yang baik untuk quadrotor tersebut. HFC sedia ada berdasarkan 

algoritma PID menolak gangguan dengan cara fizikal dan menggunakan lebih banyak 

tenaga manakala EHGO-OFB menolak gangguan dalaman. Pengawal mampu 

mempertahankan quadrotor menggunakan usaha kawalan yang lebih kecil walaupun 

berdepan gangguan angin. Kerja-kerja dalam tesis ini dijangka dapat meningkatkan 

prestasi quadrotor dalam pelbagai bidang. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Background 

 

 

An underactuated system is of great interest in both theoretical and real applications. The 
growing interest in the research of the underactuated system can be attributed to its wide 

application in the industry, spanning from aerospace [2][3], ground robotics [4]  to 

underwater vehicles [5].  

 

 

Being a system having a smaller number of control inputs than the degrees of freedom 

to be controlled, the control design of an underactuated system is a challenging problem. 

The system model does not satisfy Brockett’s necessary condition for feedback 

linearization [6]. For a fully-actuated system, a good number of control techniques are 

available which can be easily applied to the entire class of such systems. However, it is 

not the case for underactuated systems.  The control technique for an underactuated 
system is unique in each application, since the control technique depends on the structure 

that varies among systems [7][8]. 

 

 

Vertical take-off and landing (VTOL) vehicles such as helicopters, ducted-fan and 

quadrotors are some of the examples of an underactuated system. In the VTOL family, 

the quadrotor and ducted-fan are commonly used as the platform for UAV control 

research. These vehicles are able take-off and land vertically and it is usually small in 

size with a physical weight ranging from 2 to 0.5 kg [2]. 

 

 

Over the decade, quadrotor has attracted a significant interest among practitioners owing 
to its numerous applications in civilian sectors to replace human. These includes terrain 

monitoring for agriculture, assessment of damage caused by natural or manmade 

hazards, exploration of remote and inaccessible [9].  Also, the quadrotor is emerging as 

a popular platform in the UAV research. This is due to the vehicle good manoeuvrability, 

its capability to hover and fly at very low altitudes and speeds, and its superiority over 

other types of VTOL in terms of simplicity in the mechanical structure.  

 

 

Flight control is a fundamental problem for quadrotor. Linear flight controllers have been 

successfully applied to quadrotor such as by Bouabdallah et al.[10] and How et al.[11]. 

However, the stability achieved is limited to a small flight envelope. This is because 
linear control law is designed based on a linearized dynamic model. Alternatively, 

nonlinear flight controllers using technique such as backstepping [12], nested-saturation 

[13] and hierarchical controllers [14] were proposed [15] [16] [17]. The advantage of 

nonlinear approach is it considers the nonlinearities in the dynamic model. Hence, 

linearization of model is not required. Consequently, the system can be stabilized at 

wider flight envelope. Several nonlinear flight controller were successfully implemented 

to stabilize quadrotor [3][18][19]. However, the nonlinear flight controllers successfully 
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stabilize the vehicle online in the hovering mode in which the presence of internal system 

uncertainties is small due to modelling errors and parameters uncertainties.  

 

 

To accommodate the numerous applications of quadrotor as the UAV platform, there are 

many control problems that demand more robustness in the control approach that needs 

further study. For example, the robustness in the translational trajectory in the presence 

of external disturbance needs to be enhanced. Due to the quadrotor small size and low-

level atmosphere flight operation, the vehicle is susceptible to unpredictable wind. An 

additional control functions, that increases the stability of quadrotor in much wider flight 
envelope is crucially needed. Generally, there are several approaches to the design of 

flight controllers to solve this problem, as listed below: 

 

i. Adaptive Control: This approach solves the problem of the large range of 

uncertain parameters by an online parameter estimation. The drawback of 

this approach is that it requires the model to be known accurately. In 

addition, this control strategy involves complicated structures and high 

computational cost. 

 

ii. Robust Control – This approach handles system uncertainties through 

dominating the terms using a high-gain switching. The drawback of this 
approach is that the control solution is conservative and constantly 

operating at “hard control” because the system uncertainties are dominated 

by a pre-defined upper-bound constant value. 

 

iii. Extended Observer-based Method: This approach treated system 

uncertainties as an additional variable. It then handles the system 

uncertainties through estimating this term and feedback to the control.  

 

 

The extended state observer (ESO) control is a feasible approach due to the following 

reasons. Firstly, the control law can be designed based on the system nominal model. 

Secondly, apart from estimating the extended state, ESO able to estimate the unmeasured 
states in the system. It is function as an output feedback control to that deal limitation of 

sensors in the actual physical system. 

 

 

The concept of ESO as a disturbance estimator, with an additional  high-gain component 

in the observer, known as the Extended High-Gain Observer (EHGO) was presented in 

2008 by Freidovich & Khalil [20]. The robustness of a fully actuated nonlinear system 

against system uncertainties was successfully achieved and a theorem of the Extended 

High-Gain Observer - Output Feedback Control (EHGO-OFB) was developed. The line 

of study continue to grow [21] and recently in 2015, EHGO-OFB was extended to 

underactuated nonlinear system utilising dynamic inversion as the stabilizing control law 
[22]. In these works, EHGO was successfully implemented in the communication board 

that is well established and of good quality which is high cost. 

 

 

On separate issue, there are a number of successful flight controllers that have been 

reported over the last decades [7][10]. However, existing flight controllers only solve the 

basic hovering flight problem. The range of system uncertainties that these flight 
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controllers able to dominate is usually small, which is particularly due to parameter 

uncertainties or unmodelled dynamics. In this context, Kendoul et al.presented a flight 

controller based on the idea of hierarchical structure that achieves a global stability of 

the control system [18]. The control algorithm was successfully implemented into the 

low-cost communication devices that is commercially available and was able to give a 

good flight performance during hovering in a small flight envelope. 

 

 

Meanwhile, the control robustness is usually achieved through conservative solutions in 

which the system uncertainties are dominated by sliding mode control (SMC) technique. 
This standard approach results in a hard control to the actuators and eventually leads to 

a faster mechanism degradation.  The controller is likely to suffer as the vehicle starts to 

operate in a wide range of the flight domain. 

 

 

Payload is a critical issue for a good flight performance, especially in the small-scale 

VTOL-UAV. In a UAV, the payload includes processing cards and sensors to provide 

the real-time pose estimation, which is necessary for the feedback loop implementation.  

Hence, this thesis focuses on EHGO-OFB to stabilize the quadrotor in the presence of 

external disturbance that is able to accommodate the limitation of energy from battery. 

A hybridization technique utilizing the EHGO-based output feedback control is proposed 
in the flight controller that achieves smaller control effort compared to the standard flight 

control.  

 

 

1.2 Problem Statement 

 

 

According to the Department of Civil Aviation (DCA) Malaysia Regulation  [23], small 

aircraft is defined as any unmanned aircraft weighting less than 20kg, and flying not 

higher than 400 feet above surface. Due to its small and low-weight and flying at low-

level atmosphere, the aerial vehicle of this size has issues to resist wind. It is generally 

known that flying the aerial vehicle on a windy day will drain the battery faster than 
normal because the actuators is working harder to control the vehicle body to maintain 

at the desired position in the air. This challenge is no exception for quadrotor vehicle.  

 

 

Energy limitation is the main challenges in quadrotor to serve the applications in UAV. 

The internal controller that is available in the commercial quadrotor usually stabilizes 

the vehicle attitude at small flight envelope. The vehicle will be utilising using a lot of 

energy to stay afloat as the wind pushes against it.  

 

 

In 2008, a hierarchical flight controller (HC) was proposed to stabilize the quadrotor. 
The HC was implemented on quadrotor and it was proven successful and it is widely 

used today in the quadrotor flight. The existing flight controller needs large control effort 

to stabilize the quadrotor during external wind. At some point, the controller may easily 

fail and lead to crash. Therefore, an additional control function to ensure stabilization of 

the vehicle in broader flight envelope is notably needed. 
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At the same year in 2008, an Extended High-Gain Observer -based output feedback 

control (EHGO-OFB) has shown good potential to handle disturbances and uncertainties 

in the fully actuated nonlinear system, more recently in 2015 in the underactuated system 

regardless of SISO or MIMO configurations. However, in most studies, EHGO was 

successfully implemented on an established acquisition board, which is of good quality 

but comes with high-cost devices. The capability of EHGO to estimate the fast dynamics 

of the quadrotor states and uncertainties using commercially available low-cost 

communication devices was not yet proven. Nevertheless, it has a high interest in a wide 

group of practitioners, hence it is worth investigating. 

 
 

The past five years has seen the research trend on quadrotor control moving from 

stabilization, robust control tracking and now to disturbance rejection. However, the 

existing hierarchical flight controller able to tolerate small disturbances and 

uncertainties. Recently, the EHGO-OFB has been successfully implemented on 

quadrotor flight control and it were able to reject impulse disturbance. As stated 

previously, even though the theorem was successfully implemented, the application was 

done on established board which is high-cost. The capability of EHGO-OFB was not yet 

proven in the low-cost off-the-shelf controller board. 

 

 
In terms of the fundamental control theory, the existing control design framework of 

EHGO-OFB for underactuated system produces a closed-loop system of multi-time scale 

structure. This introduces to complex stability analysis in which the user cannot simply 

adopt the established two-time-scale structure stability analysis which was initially 

developed in 2008 for fully actuated system. 

 

 

A novel control based on sliding mode was proposed in 2008 to stabilize the quadrotor 

under robust condition. The control design framework was inspired by the general form 

of underactuated nonlinear system that been proposed in 2002. The sliding mode control 

(SMC) for the underactuated system that transformable into the general underactuated 

form has simple structure and it is an attractive design to robust flight control. However, 
the standard SMC is designed based on dominating the system uncertainties. The 

controller forced the actuators to constantly operate at its hard limit to ensure robustness. 

Furthermore, the standard SMC has chattering which make its application more 

challenging. In practical situation, these system uncertainties may not always be at the 

worst range. In the UAV flight, the presence of wind in the low-level atmosphere is 

uncertain and unpredictable.  

 

 

1.3 Aim and Objectives 

 

 
The primary aim of this work is on the control design of Extended High-Gain Observer 

Output-Feedback Control (EHGO-OFB) for quadrotor trajectory tracking under broader 

flight envelope that is implementable in real-time using off-the-shelf common platform 

UAV. There are four objectives to achieve this aim. The four objectives are:  

 

1. To construct a simple closed-loop system for underactuated nonlinear system 

that is controlled by EHGO-OFB.  
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2. To design EHGO-OFB in the hierarchical controller (HC) for quadrotor forward 

and sideward motion that able to maintain performance specification at small 

control effort despite under presence of external force signal. 

 

3. To design EHGO-OFB into the sliding mode control (SMC) that able to 

overcome large switching and chattering in the standard SMC. 

 

4. To implement EHGO-OFB in the low-cost quadrotor platform for quadrotor 

real-time trajectory tracking in the presence of the continuous force disturbance. 
 

 

1.4 Contribution 

 

 

The main contributions of this work are: 

 

• In the quadrotor control technology, the proposed EHGO-OFB integrated into 

the existing hierarchical flight controller able to reject disturbance with a 

smaller control effort (more than 36% improvement) compared to the existing 

hierarchical flight controller which uses PID algorithm to reject the 
disturbance by physical means. The proposed EHGO-OFB reject the 

disturbance internally. The controller able to produces similar performance at 

transient and steady-state with minimal control effort even when wind is 

pushing from opposite direction. 

 

• The implementation of the Extended High-Gain Observer-based Output 

Feedback Control (EHGO-OFB) in the off-the-shelf common board that is 

low-cost aerial platform setup has been successfully conducted. The 

importance of tuning the observer gain to a high value for ESO-based control 

is shown. The performance is achieved at observer gain 0.01.  

 

• The development of the discrete-time version of the EHGO. The quality of 
states estimated by EHGO is comparable to the standard numerical procedure 

for which Kalman filter are explicitly added to obtain smooth estimation data. 

The novelty of EHGO lies in its simplicity and minimal tuning of parameters. 

 

• In the EHGO-OFB theorem, the proposed control design framework result in 

a closed-loop underactuated nonlinear system with two-time-scale structure. 

Therefore, this thesis extends the existing theorem of EHGO-OFB for fully 

actuated nonlinear system by Fredovich & Khalil (2008) [19] to underactuated 

nonlinear system. An additional dynamic state equation is emerged due to the 

proposed control design framework. However, stability analysis of the overall 

closed-loop system is simple and straightforward due to the two-time scale 
structure. 

 

• The design of EHGO-OFB into sliding mode control (SMC) able to increase 

the control accuracy (small steady-state error) at minimal control effort which 

is a new way to deal with chattering. 
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1.5 Scope of the Work 

 

 

The scope of the study is on the control framework and validation of proposed EHGO-

OFB for underactuated nonlinear system. The testbed is quadrotor. This thesis focus on 

additional control function in quadrotor UAV that able to resist wind.  

 

 

The control design focus on stabilization of underactuated quadrotor. In general, the 
system is classified as multi-input and multi-output (MIMO) underactuated nonlinear 

system. The size of system uncertainties is wider, extending from internal factor such as 

parameters uncertainties to external disturbances. Related to this point, the scope of the 

thesis is enhancing the trajectory tracking control in the forward (x-axis) and sideward 

(y-axis) motion of quadrotor UAV in the presence of wind disturbance. This is a control 

challenge because the forward and sideward is an underactuated motion. Its dynamic is 

manipulated by rotational angle.  

 

 

The validation is mainly performed on the quadrotor UAV model and then on the actual 

quadrotor aerial platform. In the control design, the system model is assumed a minimum 
phase. Meanwhile, the system uncertainties comprising of external disturbances are of 

matched perturbation to the nominal system model. 

 

 

The scope of study focuses on extended observer-based control in the translational 

subsystem. A translational observer is integrated into the subsystem. Therefore, the 

development of the closed-loop system mode of underactuated nonlinear system based 

on observer design emphasizes on the translational subsystem. The study does not really 

focus on the rotational observer. Nevertheless, the results from using the rotational 

observer may be included in part of the work in the experiment.  

 

 
The system uncertainties comprising parametric uncertainties and external disturbances 

perturbing the vehicle are assumed bounded. In the simulation, the external disturbance 

is a continuously time-varying signal. In the flight experiment, the source of external 

disturbances will be generated artificially from a fan.  

 

 

1.6 Thesis Organization 

 

 

This thesis is divided into seven chapters. The first chapter begins with background of 

the research, followed by the problem statement and stated the objectives of the thesis. 
The thesis contributions are presented in this chapter.  

 

 

Chapter 2 is the literature review underlying the research. The literature review is 

subdivided into four main sections. The first section starts with an overview of the 

underactuated quadrotor vehicle. It introduces the quadrotor physical structure, and 

described the mathematical model representing the vehicle. The third section review the 
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existing quadrotor flight control technology. The fourth section review the hierarchical 

controller and the sliding mode control techniques. The fifth section reviews extended 

high-gain observer (EHGO) and the output feedback theorem (OFB). The limitations 

were highlighted in each section. 

 

 

Chapter 3 comprise of three main sections. The first section presents the quadrotor 

dynamic model in the 𝑥, 𝑦 and 𝑧 -axis structure and the model of system uncertainties. 

The underactuated dynamic mainly the forward and sideward motion of the quadrotor 
model derived in this chapter will be used to solve the control problem in the subsequent 

chapters.  The second section gives the control design framework of EHGO-OFB. This 

thesis extends the existing theorem of EHGO-OFB from nonlinear system to 

underactuated nonlinear system in which a two- time scale closed-loop system obtained 

in presented in this section.  A state-feedback control law based on backstepping 

technique is intentionally derived even though it will not be used in the subsequent 

chapters. The objective is just to show the complexity of backstepping technique, hence 

not a good control law for MIMO system especially for embedded control.  The third 

section validates the EHGO in estimating the unknown states from the underactuated 

dynamic. 

 

 
Chapter 4 comprise of five sections. The first section provides background of 

Hierarchical Controller (HC). Second section formulates the problem. Third section 

presents the control design and analysis of EHGO- OFB in HC to solve the quadrotor 

problem during trajectory tracking under presence of external disturbance. The fourth 

section presents the remarkable performance of proposed EHGO-OFB in hierarchical 

controller shown in simulation using MATLAB/SIMULINK. The performance is 

compared to the standard hierarchical controller. The performance evaluated in terms of 

settling time, steady-state error, and control effort is described for quadrotor in this 

section.   The last section summarizes the findings. 

 

 
Chapter 5 consists of five sections. The first section provides background of sliding mode 

control (SMC) and highlighted the limitations in the standard SMC. Second section 

formulates the problem which outlined the dynamic of sliding surface as the control 

system.  Third section delivers the control design framework of EHGO-OFB in 

continuous SMC. The fourth section provides the simulation results performed in 

MATLAB/SIMULINK and evaluates the performance of EHGO-OFB in SMC 

compared to the standard SMC. The last section summarizes the findings. 

 

 

Chapter 6 presents the implementation of the EHGO-OFB in experimental flight test.  

This chapter comprise of four sections. The first introduces the layout of indoor space 

flight arena located at the Satellite & Space System Lab, Aerospace Department in UPM. 
The artificial generation of wind disturbance is shown. The second section provides the 

digital implementation of EHGO inside the ground station that is then communicated 

wirelessly to the low-cost embedded platform for control action. The third section 

presents the results of experimental flight-test. The real-time trajectory tracking 

performance were investigated under two case studies, i.e. tracking without external 

disturbance and trajectory tracking with external disturbance presence which is wind 
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artificially generated by fan. Lastly, the flight test in terms of waypoint trajectory is 

presented. The last section provides summary of the chapter. 

 

 

Chapter 7 gives the general conclusion of the overall thesis and state the possible 

directions of future research.  
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APPENDIX A 

 
 Mean Value Theorem to Obtain 𝑮𝟏(𝒚)  

 

Dynamic Model:  

 

𝑧2̇ = f1(𝑧1, 𝑧2, 𝑧3, 𝑧4) + 𝐴𝜉 + 𝑑1̇ 

 

where f1 is a continuously differentiable function over D={‖𝑥‖ < 𝑟} for some 𝑟 > 0 and 

f1(0,0,0,0)=0.  

 

Let 𝐽(𝑦𝑥) be the Jacobian matrix of 𝑓1(𝑥), that is  𝐽(𝑥) =
𝑑f1

𝑑𝑥
(𝑥)    

 

f1(𝑧1, 𝑧2, 𝑧3, 𝑧4) − f1(𝑧1, 𝑧2, 0,0) =  
𝑑𝑓1

𝑑𝑥
(𝑧3, 𝑧4) 

 

ℎ(𝜎) = f1[(𝑧1, 𝑧2, 𝑧3, 𝑧4) + 𝜎(𝑧3, 𝑧4)];               0 ≪ 𝜎 ≪ 1 

 

Differentiating ℎ(𝜎) :  

 

Chain rule : ℎ′(𝜎) =
𝑑f1

𝑑𝑥
[(𝑧1, 𝑧2, 𝑧3, 𝑧4) + 𝜎(𝑧3, 𝑧4)](𝑧3, 𝑧4) 

f1(𝑧1, 𝑧2, 𝑧3, 𝑧4) − 𝑓1(𝑧1, 𝑧2, 0,0) = ℎ(1) − ℎ(0) 

∫ ℎ′(𝜎)
1

0

=  ℎ(1) − ℎ(0) 

=∫
𝑑𝑓1

𝑑𝑥
[(𝑧1, 𝑧2, 𝑧3, 𝑧4) + 𝜎(𝑧3, 𝑧4)](𝑧3, 𝑧4)

1

0
 

 

𝑓1(𝑧1, 𝑧2, 𝑧3, 𝑧4)= ∫
𝑑𝑓1

𝑑𝑥
[(𝑧1, 𝑧2, 𝑧3, 𝑧4) + 𝜎(𝑧3, 𝑧4)](𝑧3, 𝑧4)

1

0
+ 𝑓1(𝑧1, 𝑧2, 0,0) 

 

Therefore, 𝐺1(𝑧)𝑧3 = ∫
𝑑𝑓1

𝑑𝑥
[(𝑧1, 𝑧2, 𝑧3, 𝑧4𝑥4) + 𝜎(𝑧3, 𝑧4)](𝑧3, 𝑧4)

1

0
   

 

The system Equation (3.12a) is replaced by Equation (3.13) and rewriting the system 

Equation (3.12a)-(3.12b) as  
 

 𝑧1̇ = 𝑧2 + 𝑑1  

(A.1a) 
 𝑧2̇ = 𝑓1(𝑧1, 𝑧2) + 𝐺1(𝑧)𝑧3 + 𝐴𝜉 + 𝑑1̇ 

 𝑧3̇ = 𝑧4  

(A.1a) 
 𝑧4̇ = 𝑓2(𝑧1, 𝑧2, 𝑧3, 𝑧4) + 𝑏(𝑧1, 𝑧2, 𝑧3, 𝑧4)𝑢 + 𝐴𝜂 
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APPENDIX B  

 
Derivation of Estimation Errors Dynamics  

 

Based on the system model Equation (3.8) and the EHGO algorithm in Equation (3.22a) 

– (3.22b), the variables of estimation error for translational and rotational subsystems are 

defined as: 

 

 
𝜂𝑥1 = 

𝑥1 − 𝑥1

휀2
,    𝜂𝑥2 = 

𝑥2 − 𝑥2

휀
,      𝜂𝑥3 = Aξ − �̂�𝜉 

 

 
𝜂𝛼1 = 

𝑥3 − 𝑥3

휀2
,   𝜂𝛼2 = 

𝑥4 − 𝑥4

휀
,
    
 𝜂

𝛼3
= A𝜂 − �̂�𝜂 

 

 

where 𝜂 =  [𝜂𝑥 , 𝜂𝛼]𝑇 , 𝜂𝑥 = [𝜂𝑥1, 𝜂𝑥2, 𝜂𝑥3]
𝑇, 𝜂𝛼 = [𝜂𝛼1, 𝜂𝛼2, 𝜂𝛼3]

𝑇 ,  

A𝜂 = Δ𝑓2(𝑥,𝑑3) + Δ𝑏(𝑥, 𝑑)𝑀𝑔𝜖 (
𝜓(𝑥,𝐴𝜂)

𝑀
) , where 

Δ𝑓2(𝑥,𝑑3) = 𝑓2 − 𝑓2(𝑥) 

Δ𝑏(𝑥, 𝑑) = 𝑏(𝑥) − �̂�(𝑥) 

 

The derivatives of 𝜂𝑥 along the translational trajectories Equation (3.8) are: 

 

휀�̇�𝑥1 = −𝛼11𝜂𝑥1 +  휀𝜒𝜂𝑥1 + 𝜂𝑥2 

휀�̇�𝑥2 = −𝛼12𝜂𝑥1 +  휀𝜒𝜂𝑥2 + 𝜂𝑥3 + 𝑓𝑥 − 𝑓𝑥(𝑥, �̂�ξ) 

휀�̇�𝑥3 = −𝛼13𝜂𝑥1 +  휀�̇�ξ 

 

 

The above equations are simplified into state-space form, given by: 

 

휀𝜂�̇� = 𝐴1𝜂𝑥 + 휀𝑑1𝜂𝑥 + 휀[𝐵1Δ1+ 𝐵2Δ2] 

 

where 𝐴1 = [
−𝛼11 1 0
−𝛼12 0 1
−𝛼13 0 0

] , 𝑑1 = [
𝜒 0 0
0 𝜒 1
0 0 0

] , 𝐵1 = [0,1,0]𝑇, 𝐵2 = [0,0,1]𝑇, 

 

The term Δ1 and Δ3 are defined by: 

 

 Δ1 =
f1 − f̂1(𝑥, 𝛼)

휀
 (A.2a) 

 Δ2 = �̇�ξ (A.2b) 

 

The derivatives of 𝜂𝛼 along the rotational trajectories Equation (3.8) are: 
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휀�̇�𝛼1 = −𝛼21𝜂𝛼1 + 𝜂𝛼2 

휀�̇�𝛼2 = −𝛼22𝜂𝛼1 + 𝜂𝛼3 + Δ0 

휀�̇�𝛼3 = [−1 − Δ3]𝛼23𝜂𝛼1 +  휀[Δ1] 
 

The term Δ0, Δ1 and Δ3 are defined by: 

 

 

Δ0 = f̂2(𝑥) − f2(𝑥) + 𝑎(𝑥)𝑀[𝑔𝜖 (
𝜓(𝑥, �̂�3)

𝑀
) − 𝑔𝜖 (

𝜓(𝑥, �̂�3)

𝑀
)

+ �̂�(𝑥)𝑀𝑔𝜖 (
(𝑥, �̂�3)

𝑀
) − �̂�(𝑥)𝑀𝑔𝜖 (

𝜓(�̂�, �̂�3)

𝑀
)

+ [𝑎(𝑥, 𝑑) − �̂�(𝑥)]𝑀𝑥[𝑠𝑎𝑡 (
𝜓(𝑥, �̂�3)

𝑀
)

− 𝑔𝜖 (
𝜓(�̂�, �̂�3)

𝑀
)] 

(A.2c) 

 Δ1 = Δ̇𝑏 + Δ̇𝑎𝑀𝑔𝜖 (
𝜓(𝑥, �̂�3)

𝑀
) + Δ𝑎𝑔𝜖

′ (
𝜓(𝑥, �̂�3)

𝑀
)

𝜕𝜓

𝜕𝑥
(𝑥, �̂�3)�̇� (A.2d) 

 Δ3 =
Δ𝑎(𝑥, 𝑑3)

�̂�(𝑥)
 𝑔𝜖

′ (
𝜓(𝑥, �̂�3)

𝑀
) (A.2e) 

 

The fast subsystem for 𝜂𝛼 is given by: 

 

휀𝜂�̇� = 𝐴2𝜂𝛼 − 𝐵2∆3𝛼23𝜂𝛼1 + 휀[𝐵1Δ4+𝐵2Δ5] 

 

where 𝐴2 = [
−𝛼21 1 0
−𝛼22 0 1
−𝛼23 0 0

] , 𝐵1 = [0,1,0]𝑇 ,𝐵2 = [0,0,1]𝑇 ,. 

 

 

The term Δ3, Δ4 and Δ5 are defined by: 

 

∆𝟑= 
Δ𝑎(𝑥, 𝑑3)

�̂�(𝑥)
 𝑔𝜖

′ (
𝜓(𝑥, �̂�3)

𝑀
) (A.2f) 

Δ4= 
Δ0 (A.2g) 

Δ5 = Δ̇𝑏 + Δ̇𝑎𝑀𝑔𝜖 (
𝜓(𝑥, �̂�3)

𝑀
) + Δ𝑎𝑔𝜖

′ (
𝜓(𝑥, �̂�3)

𝑀
)

𝜕𝜓

𝜕𝑥
(𝑥, �̂�3)�̇� (A.2h) 
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APPENDIX C  

 
 Coding for EHGO -based Hierarchical Flight Controller 

//         Kalman Filter  // 

 

MyKalman filter_k = new MyKalman(); 

 

//         Declare : EXTENDED High Gain Observer(EHGO)  // 

double yhgo = 0; 

double zhgo = 0; 

double eps = 0.01     //user input 

 

double[,] A_hgo = new double[3, 

3]{{𝑎11,𝑎12,𝑎13},{𝑎21,𝑎22,𝑎23},{𝑎31,𝑎32,𝑎33}}; 

double[,] B_hgo = new double[3, 1] { { 𝑏11, }, { 𝑏12, }, { 𝑏13 } }; 

// user input from 

Matlab c2d command 

double[,] q_hgo = new double[3, 1];     //x 

double[,] q_zhgo = new double[3, 1];     //y 

double[,] x_in = new double[3, 1] { { 0 }, { 0 }, { 0 } };   //x 

double[,] z_in = new double[3, 1] { { 0 }, { 0 }, { 0 } };   //y 

double[,] b_yhgo = new double[3, 1];    //x 

double[,] b_zhgo = new double[3, 1];     //y 

#endregion//         Update : Position and Velocity  // 

MAV_DATA[rowIndex].xp = MAV_DATA[rowIndex].x;    // previous data 

MAV_DATA[rowIndex].zp = MAV_DATA[rowIndex].z; 

MAV_DATA[rowIndex].x = rb.x * m_ServerToMillimeters;// *= 1000.0;  

MAV_DATA[rowIndex].z = rb.z * m_ServerToMillimeters;// *= 1000.0; 

MAV_DATA[rowIndex].xv = (MAV_DATA[rowIndex].x - 

MAV_DATA[rowIndex].xp) / 0.01; 

MAV_DATA[rowIndex].zv = (MAV_DATA[rowIndex].z - 

MAV_DATA[rowIndex].zp) / 0.01; 
  



© C
OPYRIG

HT U
PM

 
 

154 

 

APPENDIX D  

 

Coding of Extended High-Gain Observer (EHGO) 

Matlab (.m) 

Input : 𝛼1, 𝛼1, 𝛼1, 휀 

sys_ss=ss(A,B,C,D) 

sys1 = c2d(sys_ss,0.01) 

sim('discrete') 

 

Output : [𝑎]3𝑥3, [𝑏]3𝑥1,c,d 

 

//         Update : EXTENDED High Gain Observer(EHGO)  // 

% EHGO for x 

yhgo = filter_k.update(MAV_DATA[0].x);    // x from Optitrack 

xvh = filter_k.update(MAV_DATA[0].xv);  // xv from algorithm 

in C# 

  

b_yhgo[0, 0] = B_hgo[0, 0] * (yhgo / eps); 

b_yhgo[1, 0] = B_hgo[1, 0] * (yhgo / eps); 

b_yhgo[2, 0] = B_hgo[2, 0] * (yhgo / eps); 

 

double[,] A_hgo_xin = Multiplication(A_hgo, x_in); 

 

q_hgo[0, 0] = A_hgo_xin[0, 0] + b_yhgo[0, 0]; 

q_hgo[1, 0] = A_hgo_xin[1, 0] + b_yhgo[1, 0]; 

q_hgo[2, 0] = A_hgo_xin[2, 0] + b_yhgo[2, 0]; 

 

x_in[0, 0] = q_hgo[0, 0]; 

x_in[1, 0] = q_hgo[1, 0]; 

x_in[2, 0] = q_hgo[2, 0]; 
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