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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Master of Science

DIRECT ONE-STEP BLOCK METHODS FOR SOLVING THIRD AND
FOURTH ORDER ORDINARY DIFFERENTIAL EQUATIONS

By

EHAB HASAN ABDULRAHMAN

July 2018

Chairman : Zanariah Abdul Majid, PhD
Faculty : Institute for Mathematical Research

One-step block methods are presented in this research work to solve initial value
problems (IVPs) of general third and fourth order ordinary differential equations
(ODEs). These methods are utilized to solve general third and fourth order ODEs
using constant step size. The methods will simultaneously obtain the approximation
solutions at two and three points in a block. The general third order and fourth order
ODEs are solved directly. Most of existing literatures have used IVPs to reduce
problems in first order ODE systems. However, the approach in the current research
is more efficient than the common technique involving first order equations. This
research defines the order of the derived two-point and the three-point one-step block
methods. In addition, the block method adopts Lagrange’s interpolation formulae to
compute the integration coefficients. Notably, a new code is developed to solve the
IVPs of third order and fourth order ODEs using constant step size. In the numerical
results, the performance of the developed methods generated better results in terms
of the total number of steps, maximum error, and total function calls compared with
existing methods. In conclusion, the proposed direct one-step block methods in this
thesis are appropriate for solving third and fourth order ODEs.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Master Sains

KAEDAH LANGSUNG BLOK SATU-LANGKAH BAGI
MENYELESAIKAN PERSAMAAN PEMBEZAAN BIASA

PERINGKAT KETIGA DAN KEEMPAT

Oleh

EHAB HASAN ABDULRAHMAN

Julai 2018

Pengerusi : Zanariah Abdul Majid, PhD
Fakulti : Institut Penyelidikan Matematik

Kaedah blok satu-langkah dibentangkan di dalam tesis ini untuk menyelesaikan
masalah nilai awal (MNA) persamaan pembezaan biasa (PPB) peringkat ketiga dan
keempat. Kaedah-kaedah ini digunakan untuk menyelesaikan PPB peringkat ketiga
dan keempat menggunakan saiz langkah malar. Kaedah tersebut akan mendapatkan
penyelesaian penghampiran pada masa yang sama di dua dan tiga titik dalam satu
blok. PPB peringkat ketiga dan peringkat keempat diselesaikan secara langsung.
Kebanyakan bahan rujukan yang sedia ada akan menurunkan masalah dalam sistem
PPB peringkat pertama. Walau bagaimanapun, pendekatan di dalam penyelidikan
ini adalah lebih cekap daripada teknik biasa yang melibatkan persamaan peringkat
pertama. Penyelidikan ini mendefinisikan peringkat kaedah blok satu-langkah dua-
titik dan tiga-titik yang diterbitkan. Tambahan lagi, formula kaedah blok melibatkan
formula interpolasi Lagrange untuk mengira pekali-pekali kamiran. Selanjutnya,
algoritma dibangunkan untuk menyelesaikan MNA PPB peringkat ketiga dan keem-
pat menggunakan saiz langkah yang malar. Di dalam keputusan berangka, prestasi
kaedah-kaedah yang dibangunkan menjana hasil yang lebih baik dari segi jumlah
bilangan langkah, ralat maksimum, dan jumlah panggilan fungsi berbanding dengan
kaedah yang sedia ada. Sebagai kesimpulan, cadangan kaedah blok langsung satu-
langkah di dalam tesis ini adalah sesuai untuk menyelesaikan PPB peringkat ketiga
dan keempat.
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CHAPTER 1

INTRODUCTION

1.1 Background

Researchers aim to transform mathematics into a practical field as opposed to theo-
ries and formulas. They employ a numerical solution of ordinary differential equa-
tions (ODEs) as a noteworthy approach to this goal. At present, applied mathematics 
is generally utilized in the sciences and engineering fields, such as in fluid dynamics, 
and in electrical and other areas. Formulations and concepts of differential equa-
tions are generally fundamental and involve a specific problem that can be classified 
as a one-step method and multi-step method. In an example of a one-step method, 
implicit Runge-Kutta method used a value from only from one previous point to 
indicate the solutions. A multi-step method or a method such as the Adam model 
formula defines the solutions attributed to more than one previous p oint. Therefore, 
any acceptable method can be used to obtain the acceptable approximate solution. 
The fundamental concept of the block method is to simultaneously obtain the ap-
proximate solutions at several points in a block. This approach can avoid lengthy 
calculation, thereby minimizing computational work. This block method also re-
duces computational time, thus enabling the method to be more competitive.

Initial value problems (IVPs) are also included in the differential equation. In those 
parts of the IVPs, the solution of advantage is determined by specifying the values 
of all the solution components at two point and three-point as well as a direction of 
integration. In particular, differential equations for third order and four order ODEs 
were established with emphasis to propose two-point and three-point one- step block 
method directly which consist of order three and four for solving initial value prob-
lems. Mainly, researchers focused on the derivation of one step block method and 
multistep methods with the constant coefficients for solving general ordinary dif-
ferential equations directly based on Lagrange interpolation formula, B-spline and 
Newton-Gregory backward interpolation. The explanation of the definition can be 
referred in Burden and Faires (1993).

1.2 The Initial Value Problem

The initial value problems (IVPs) for a system of s first order ordinary differential
equations are defined by

y′ = f (x,y) y(a) = η . (1.1)

where y(x) = [y1(x) ,y2(x), . . . ,ys(x)]T .

and η = [η1, . . . ,ηs]
T is the vector of the initial condition.

1
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1.3 Linear Multistep Method

Consider the initial value problem for a single first-order ordinary differential as in
equation (1.1). With the solution in a ≤ x ≤ b and assume that f (x,y) satisfies the
Lipschitz condition. The following equality

xn = a+nh, n = 0,1,2, . . .

where h is a constant step size denoted the theoretical solution. Let yn be approxi-
mation to the theoretical solution at (xn,y(xn)). So, fn = f (xn,yn). The computation
of the sequence {yn} takes the form of a linear relationship between yn+ j, fn+ j ; j =
0,1,2, ...,k .

Therefore, the equation is called as a linear multistep method of k-step or a linear
k-step method. The general form of the linear multistep method is as follows:

k

∑
j=0

α j yn+ j = h
k

∑
j=0

β j fn+ j. (1.2)

α j and β j are constants, αk 6= 0 and both α0 and β0 are not zero. Usually, we assume
that αk = 1. If βk = 0, then the method is said to be explicit and implicit otherwise.

1.4 Objectives of the Thesis

This research aims to investigate the performance of the proposed direct one-step
block method for solving third order and fourth order ODEs. The objectives of this
research are outlined as follows:

1) To derive the formulae of two-point and three-point one-step block methods for
solving the general third order and fourth order ODEs.

2) To determine the order and stability analysis of the proposed block methods.

3) To construct a code for each proposed method by implementing the block
methods using constant step size.

4) To compare the numerical results with the existing methods.

2
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1.5 Scope of the Study

This research focuses on solving third order and fourth order ODEs without reduc-
ing a system of first order ODEs. The proposed method involves the derivation of
two-point and three-point one-step block methods based on the closest point in a
block. During the implementation of the block method, the iteration process will
only involve the simple iteration for convergent. Furthermore, this research aims to
show that the proposed method has zero stability. All the programs for the proposed
methods were written in C language and implemented using the constant step size.

1.6 Outline of the Thesis

Chapter 1 provides a brief introduction to the field of numerical analysis. The
objectives and the scope of the study are also discussed.

Chapter 2 presents the review of relevant literature and relates the same to the
concept of the numerical solution in this research. This chapter also describes the
preliminary theory of the included numerical methods and explains the review of
previous works related to this study.

Chapter 3 discusses the derivation of the two-point one-step block methods using the
constant step size technique, including the numerical results and resulting analysis.
The requisite conditions to determine the order of the methods is described, and
stability analysis is also demonstrated.

Chapter 4 focuses on the derivation of the three-point one-step block method ODE
using constant step size. The order of method is discussed. Discussion of the
numerical results and the performance of the methods are also shown.

Chapter 5 provides a summary of this thesis and discusses directions for future work.

3
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