
 
 

UNIVERSITI PUTRA MALAYSIA 
 

 
PURSUIT AND EVASION DIFFERENTIAL GAMES DESCRIBED BY 

INFINITE TWO-SYSTEMS OF FIRST ORDER DIFFERENTIAL 
EQUATIONS 

 

 
 
 

   
 
 
 
 
 

PUTERI NUR AIZZAT BINTI KAMAL MUSTAPHA 
 
 
 
 
 
 
 
 
 
 
  

                    
     
        IPM 2018 14 

  
 
 

   



© C
OPYRIG

HT U
PM

PURSUIT AND EVASION DIFFERENTIAL GAMES DESCRIBED BY
INFINITE TWO-SYSTEMS OF FIRST ORDER DIFFERENTIAL

EQUATIONS

By

PUTERI NUR AIZZAT BINTI KAMAL MUSTAPHA

Thesis Submitted to the School of Graduate Studies, Universiti Putra
Malaysia, in Fulfillment of the Requirements for the Master of Science

April 2018



© C
OPYRIG

HT U
PM

COPYRIGHT

All material contained within the thesis, including without limitation text, logos,
icons, photographs and all other artwork, is copyright material of Universiti Pu-
tra Malaysia unless otherwise stated. Use may be made of any material contained
within the thesis for non-commercial purposes from the copyright holder. Commer-
cial use of material may only be made with the express, prior, written permission of
Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia



© C
OPYRIG

HT U
PM

DEDICATIONS

This thesis dedicated to;

Both my parents
Kamal Mustapha Bin Muhaiyat & Jamilah Binti Abu Samah

for their endless love, patience and support.

My husband & son
Mohd Johari Bin Ibrahim & Muhammad Qhideer Bin Mohd Johari

for their full encouragement, love and care.

My friends in Differential Game Field
for their kindness and encouragement for me to finish this thesis



© C
OPYRIG

HT U
PM

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the Master of Science

PURSUIT AND EVASION DIFFERENTIAL GAMES DESCRIBED BY
INFINITE TWO-SYSTEMS OF FIRST ORDER DIFFERENTIAL

EQUATIONS

By

PUTERI NUR AIZZAT BINTI KAMAL MUSTAPHA

April 2018

Chairman:Gafurjan Ibragimov, PhD
Faculty: Institute for Mathematical Research

Differential games are a special kind of problems for dynamic systems particularly
for moving objects. Many reseachers had drawn interests on control and differential
game problems described by parabolic and hyperbolic partial differential equations
which can be reduced to the ones described by infinite systems of ordinary differen-
tial equations by using decomposition method.

The main purpose of this thesis is to study pursuit and evasion differential game
problems described by first order infinite two-systems of differential equations in
Hilbert space, l2. The control functions of the players are subjected to the geometric
constraints. Pursuit is considered completed, if the state of the system coincides with
the origin. In the game, the pursuer’s goal is to complete the pursuit while oppositely,
the evader tries to avoid this.

First, we solve for first order non-homogenous system of differential equations to
obtain the general solution zk(t), k = 1,2, . . . . Then, to validate the existence and
uniqueness of the general solution, we first prove that the general solution exists in
Hilbert space. Next, we prove that the general solution is continous on time interval
[0,T ].

Our main contribution is that we examine the game by solving an auxiliary control
problem, validating a control function and find a time for which state of the sys-
tem can be steered to the origin. Then, we solve pursuit problem by constructing
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pursuit strategy and obtain guaranteed pursuit time, θ1, under the speed of pursuer
∑

∞
k=1|uk(t,v(t))|2 ≤ ρ2 for any v(·) ∈ S(σ). However, for evasion differential game

problem, we prove that evasion is possible when the speed of evader, σ , is greater or
equal than that of pursuer, ρ , on the interval [0,T ].
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk Ijazah Sarjana Sains

PERMAINAN PEMBEZAAN PENGEJARAN DAN PENGELAKKAN YANG
DI TERANGKAN OLEH DUA-SISTEM PERSAMAAN PEMBEZAAN TAK

TERHINGGA TERTIB PERTAMA

Oleh

PUTERI NUR AIZZAT BINTI KAMAL MUSTAPHA

April 2018

Pengerusi: Gafurjan Ibragimov, PhD
Fakulti: Institut Penyelidikan Matematik

Permainan pembezaan adalah sejenis masalah khas untuk sistem dinamik teruta-
manya bagi menggerakkan objek. Ramai penyelidik berminat akan kepentingan
kawalan dan masalah permainan pembezaan yang diterangkan oleh persamaan
pembeza separa parabola dan hiperbolik yang mana masing-masing menggunakan
kaedah penghuraian.

Tujuan utama tesis ini adalah untuk mengkaji masalah permainan pembezaan penge-
jaran dan pengelakkan yang dijelaskan oleh dua-sistem persamaan pembezaan
tertib pertama tak terhingga di dalam ruang Hilbert, l2. Fungsi kawalan pemain
berdasarkan kekangan geometri. Pengejaran dianggap selesai, sekiranya keadaan
sistem bertemu dengan asalan. Dalam permainan, matlamat pemangsa adalah un-
tuk menamatkan pengejaran manakala secara bertentangan, mangsa perlu mengelak
daripada penamatan pengejaran berlaku.

Pertama, kami menyelesaikan sistem persamaan pembezaan bagi tertib pertama
bukan homogen untuk mendapatkan penyelesaian am zk(t), k = 1,2, . . . . Kemudian
untuk mengesahkan kewujudan dan keunikan penyelesaian am, kami membuktikan
bahawa penyelesaian am wujud dalam ruang Hilbert. Seterusnya, kami membuk-
tikan bahawa penyelesaian am adalah berterusan pada selang masa [0,T ].

Sumbangan utama kami adalah kami mengkaji permainan dengan menyelesaikan
masalah kawalan tambahan, mengesahkan fungsi kawalan dan mencari masa dimana
keadaan sistem boleh dikemudikan kepada asalan. Kemudian, kami menyelesaikan
masalah pengejaran dengan membina strategi pengejaran dan mendapatkan masa
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pengejaran yang terjamin, θ1, di bawah kelajuan pemangsa ∑
∞
k=1|uk(t,v(t))|2 ≤ ρ2

untuk mana-mana v(·) ∈ S(σ). Walau bagaimanapun, bagi permasalahan persamaan
pembezaan pengelakkan, kami membuktikan kemungkinan pengelakkan apabila ke-
lajuan mangsa, σ , adalah lebih besar atau sama berbanding dengan yang mengejar,
ρ , pada selang [0,T ].
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CHAPTER 1

INTRODUCTION

1.1 Differential Games

1.1.1 A Brief History

Game theory was originally created to provide a new approach to economic prob-
lems. Jon Von Neumann and Oskar Morgenstern felt that the typical problems of
economic behavior become strictly identical with the mathematical notions of suit-
able games of strategy. Friedman (1986) described that the term game might suggest
that the subject is narrow and unimportant, but this is far from the case. Since the
classical work of Von Neuman and Morgenstern was published, the theory of games
has proven to be sufficient interest to justify its study as an important discipline.

In business and economics literature, the term game refers to the general situation of
conflict and competition in which two or more competitors (or participants) are in-
volved in decision-making activities in anticipation of certain outcomes over period
of time. The competitors are referred as players. A player may be an individual, a
group of individuals or an organization. Dockner et. al (2000) shows a few exam-
ples of competitive and conflicting decisions environment involving the interaction
between two or more competitors where techniques of theory of games may be used
to resolve them are:

• Pricing of products, where a firm’s best sales are determine not only by the
price levels selected but also by the prices of its competitors set.

• Various TV networks have found that program success is largely depends on
what the competitors presents in the same time slot. Therefore, the outcomes
of one networks programming decisions have been increasingly influenced by
the corresponding decisions made by other networks.

• Success of business tax strategy depends greatly on the position taken by the
internal revenue service regarding the expenses that may be disallowed.

• Success of an advertising/marketing campaign depends largely on various
types of services offered to the customers, etc.

The competitive situation and outcome not only depend on the decision of one party
alone, but rather depends on the interaction between the decision maker and that of
a competitor. Therefore, in a world of competitive business, one of the most relevant
problems is to study/guess the activities/actions of his rival competitor.

1
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In conjunction with that, the theory of dynamics games raised its concerned with
multi-person decision making. The principal characteristics of a dynamic game is
that it involves a dynamic decision evolving in time (continuous or discrete), with
more than one decision maker, each with its own cost function and possibly having
access to different information.

Differential games belong to a subclass of dynamic games called games in the state
space. Friedman (1971) indicates that a game in the state space, the modeler intro-
duces a set of variables to describe the state of dynamic system, at any particular
instant time in which the game takes place.

Esparza et. al (2013) stated that differential games are a special kind of problems
which particularly for moving objects. Differential games began to be studied in
1950’s. The notion of the differential game concentrates on such concepts as con-
flicts, control, optimisation, current information and equilibrium. Differential games
are also an attractive mathematical task. Therefore, Theory of Differential Game
were intensively developed during 1960’s till 1980’s.

The origins of differential game theory can be traced back to the late 1940’s. Rufus
Isaacs (1955) had an appointment with RAND where he formulated missile versus
enemy aircraft pursuit schemes in terms of descriptive and navigation (state and con-
trol) variables. Further innovation in differential game techniques and basic concepts
is followed. However, due to lack of financial support Isaacs’s work did not appear
in print until 1965.

1.2 Fundamental Concepts

1.2.1 Models in Differential Game Theory

Differential game theory has emerged as a fundamental instrument in pure and ap-
plied research. Hajek (1975) divides the game into two different parts which are
stochastic and deterministic. The differential game theory can be illustrated in the
abbreviated schema where it shows the scope and application of the developed pro-
cedures as in Figure 1.1.

In solving a number of practical problems in various fields, it is required to analyse a
situation where at the outset, there are two or more opposing parties with conflicting
interests and where the action of one depends on the action which the opponent takes.
This situation is called as “conflicting situations”.

2
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Figure 1.1: Differential game theory scheme

According to Rapoport (1966), numerous examples of conflicting situation can be
cited such as situation in the course of military operations. Each of the parties in
the operation takes all available measures to prevent the opponent from succeeding.
The planning of military operations such as the choice of a armaments system and
possible ways of its application in battle are all belong to conflicting situations. Each
decision taken in this field must be calculated to ensure that it is least advantageous
to the opponent.

The need for analysing such situations is a special calls for mathematical techniques.
The theory of differential games, essentially is nothing but a mathematical theory of
conflicting situations. The objective of the theory is to analyse and elaborate what
constitutes to rational behaviour of each of the opponents in the course of conflicting
situation.

The models in Theory of Differential Games described by Rapoport (1966) can be
classified depending upon the following factors:

• Number of Players: If a game involves only two players (competitors), then
it is called a two-person game. However, if the number of players is more, the
game is referred to as n-person.

• Sum of Gains and Losses : If in a game, sum of the gains to one player
is exactly equal to the sum of losses to another player, so that sum of the
gains and losses equals zero. Then the game is said to be a zero-sum game.
Otherwise it is said to be non-zero sum game.

• Strategy : The strategy for a player is the list of all possible actions (moves or
course of action) that he will take for every payoff (outcome) that might arise.
The particular strategy (or complete plan) by which a player optimizes his
gains and losses without knowing the competitor’s strategies is called optimal
strategy.

Each opposing party or player is known as Pursuer and Evader, where players are

3
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denoted as P and E respectively. The pursuer’s goal is simply to capture the evader
while the evader’s goal is certainly to avoid being captured.

1.3 Strategy of Parallel Approach

One of the fundamental concepts in differential game theory is strategy. The enumer-
ation of rules, defining simply the choice for every personal move of a given player
depending on the situation arising in the process of the game, is called the strategy of
a player. In this section, we will discuss the strategy of parallel approach or known
as P-strategy that is often used by many researchers to solve pursuit games.

1.3.1 Control and Trajectory

The equations is govern by the following differential equations

P : ẋ = u, x(0) = x0, (1.3.1)
E : ẏ = v, y(0) = y0,

where x,y,x0,y0,u,v ∈ R2, u and v are the control parameters of pursuer, P and
evader, E respectively, x0 and y0 are initial conditions for the system (1.3.1).

Vectors u and v must satisfy the geometric constraints

|u| ≤ ρ, |v| ≤ σ ,

where ρ and σ are a given positive number.

Prior to define control functions, we need the following definitions

Definition 1.1 The set

{x = (x1,x2, . . . ,xn)| a < xi < b, i = 1, . . . ,n}

is called n-cube.

Definition 1.2 A subset N of Rn is called a null set (or set of measure zero) in case N
can be covered by (is contained) a countable union of n-cubes whose total n-volume
is less than an arbitrarily prescribed number ε > 0.

Example. Any finite or countable infinite set of points in Rn has measure zero.

Definition 1.3 Two functions f (x) and g(x) defined on [a,b] that differ in value only

4
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on null set are said to be equal almost everywhere [a,b].

Definition 1.4 Measurable sets of Rn are defined as the members of the smallest of
sets of Rn that contains all open sets, all closed sets, all null sets of Rn, and also
every difference, and countable union, and countable intersection of its members.

Definition 1.5 A real-valued function h(t) on a real interval I is called measurable
in case for any real α and β , the set {t|t ∈ I, α < h(t)< β} is measurable on I.

Definition 1.6 A measurable function u(t) = (u1(t),u2(t)), u2
1(t)+u2

2(t)≤ ρ2, t ≥
0 is called admissible control.

Thus, equation (1.3.1) has the solution of the form

x(t) = x0 +
∫ t

0
u(s)ds,

where x is the state variable, x0 is the initial position and u is the control parameter.

1.3.2 P-Strategy

In this section, we study construction of P-strategy. Let the dynamics of pursuer, P
and evader, E be described by the differential equations

P : ẋ = u, |u| ≤ ρ, x(0) = x0, (1.3.2)
E : ẏ = v, |v| ≤ σ , y(0) = y0,

where ρ > σ , x,y,x0,y0 ∈ R2, x0 6= y0, u and v are control parameters of the pursuer
and evader respectively.

Let x0 and y0 be any initial positions of players and the unit vector, e, be defined as

e =
y0− x0
|y0− x0|

. The direction of unit vector, e, is shown in Figure 1.2.

Let
v = v′1 + v′2, (1.3.3)

where the vector v′2 parallel to e, and v′1 is orthogonal to e.

To define a stratgey for pursuer, set

u′1 = v′1. (1.3.4)

5
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Figure 1.2: Direction of unit vector, e

Then, we illustrate the strategy of pursuer

Figure 1.3: Illustration strategy of pursuer

We construct P-strategy as follows

u = u′1 +u′2. (1.3.5)

From equation (1.3.3), by applying projection of vector, v, as shown in Figure 1.4,
we obtain v′2 = |v|cosα.e = (v,e)e. Then, we have

v′1 = v− v′2
= v− (v,e)e. (1.3.6)

We obtain from equation (1.3.4) that,

u′1 = v′1 = v− (v,e)e. (1.3.7)

6
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Figure 1.4: Vector projection, v

Assume that the pursuer is moving with maximal speed, ρ . Then

|u′2|
2 = |u|2−|u′1|

2

= ρ
2−|v− (v,e)e|2

= ρ
2−
[
|v|2−2(v,(v,e)e)+(v,e)2

]
= ρ

2−|v|2 +(v,e)2.

Hence
|u′2|

2 =
√

ρ2−|v|2 +(v,e)2.

Set
u′2 = e

√
ρ2−|v|2 +(v,e)2. (1.3.8)

Thus, substituting equation (1.3.7) and (1.3.8) into (1.3.5) yields

u = v− (v,e)e+ e
√

ρ2−|v|2 +(v,e)2. (1.3.9)

However, if the evader moves with maximal speed, σ , the strategy takes the form

u = v− (v,e)e+ e
√

ρ2−σ2 +(v,e)2. (1.3.10)

As the application of P-strategy, we prove the following statement.

Theorem 1.1 If ρ > σ , then pursuit can be completed in differential game for the

time T =
|y0− x0|
ρ−σ

.

[Petrosjan (1976)]

7
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Proof.
Let y0 6= x0 and ρ > σ , then

y(t)− x(t) = y0 +
∫ t

0
v(s) ds− x0−

∫ t

0
u(s) ds

= y0− x0 +
∫ t

0
v(s) ds−

∫ t

0

[
v(s)− (v(s),e)e+ e

√
ρ2−σ2 +(v(s),e)2

]
ds

= y0− x0−
∫ t

0
e
[√

ρ2−σ2 +(v(s),e)2− (v(s),e)
]

ds

= e d(t),

where d(t) = |y0− x0|−
∫ t

0

(√
ρ2−σ2 +(v(s),e)2− (v(s),e)

)
ds.

Then, we estimate d(t). To this end, consider the following function

f (z) =
√

ρ2−σ2 + z2− z, −σ ≤ z≤ σ . (1.3.11)

It is not difficult to show that min f (z) = f (σ) = ρ−σ .

Therefore,

d(t) = |y0− x0|−
∫ t

0
f (z) ds

≤ |y0− x0|−
∫ t

0
fmin(z) ds

= |y0− x0|−
∫ t

0
(ρ−σ) ds

= |y0− x0|− (ρ−σ)t. (1.3.12)

Obviously, the right hand side of equation (1.3.12) is t = T =
|y0− x0|
ρ−σ

. Thus, we

obtain d(T )≤ 0. Observe, d(0) = |y0−x0|> 0. Since d(t) is a continuous function,
d(0)> 0 and d(T )≤ 0, then d(τ) = 0 at some time τ ∈ [0,T ]. Hence y(τ)−x(τ) = 0
that is y(τ) = x(τ). Hence, pursuit is completed.

1.4 Lion and Man Game

In a game of pursuit and evasion, one player (the pursuer) tries to get close to, and
possible capture the other (the evader). The evader, in turn, tries to avoid being
captured. Consider the task of surveillance, where a guard (pursuer) has to chase
and capture an intruder (evader). Another scenario is search-and-rescue, where a

8
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rescue worker has to locate a lost hiker. Since the actions of the hiker are not known,
worst case pursuit and evasion strategies guarantee that the hiker is found no matter
what he does. Many applications related to pursuit-evasion game such as collision-
avoidance, search-and-rescue, air traffic control and surveillance. Here, we show
lion and man game as an example of pursuit-evasion problem.

A game situation consisting of two players is referred to as two-person game. Based
on Rapoport (1966), when there are more than two players, the game situation is
known as an n-person game. Games are also classified according to their outcomes
in terms of each player’s gains and losses. If the sum of the players’ gains and losses
equal zero, the game is referred to as a zero-sum game. The two-person zero-sum
game is the most frequently used to demostrate the principles of game theory because
it is the simplest mathematically.

Here we introduce Besicovitch (1953) classical two-person zero-sum game (pursuit-
evasion) called lion and man game. In this game, it is posed as to determine a strategy
for a pursuer (lion), which has a mission to capture evader (man) in a given environ-
ment. When the position of the lion and man coincide after a finite time, it means that
the lion has successfully capture the man. The aim of the lion is to catch the man and
the aim of the man is to avoid being catch by lion, where both have identical motion
capabilities. The man wins the game if it can avoid being capture.

In this problem, we are going to show that evasion is possible in differential game of
the lion and man. Here, the man constructs strategy to ensure the possibility of not
being captured by the lion indefinitely. We say that evasion is possible in the game.
Suppose P as a Pursuer (lion) and E as an Evader (man).

The movement of the players are governed by the following equations

P : ẋ = u, |u| ≤ 1, (1.4.1)
E : ẏ = v, |v| ≤ 1,

where u and v are the control parameters of the pursuer and evader respectively. We
denote the radius of the circle by R.

Theorem 1.2 Evasion is possible in the game of Lion and Man.
[Besicovitch (1953)]

Proof.
1. Construction of Man (evader’s) strategy

9
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In this game, both lion and man have identical motion capabilities and move with
maximum speeds equal to 1. The positions of the players are always in a circle for
any trajectory, and must not leave the given circle.

Figure 1.5: State of the players

Both players have perfect information of each other position, but have different goals.
Figure 1.5 shows the state of players which are always in a circle.

There are three possible cases for movement of the players in the game as shown in
Figure 1.6:

Figure 1.6: The possible movement of Evader (E)

In case (1), we can see that P is on the right side of straight line OE, thus E will
move to the left perpendicularly to straight line OE. In case (2), E will move to the
right perpendicularly to the straight line OE as P is on the left side of straight line
OE. In case (3), if P is on the straight line OE, thus E can either move to the left
or right. Therefore, we can conclude that movement of E depends on positions of P
whether it is on the left or right side of straight line OE where O is the origin of the
circle. However, without loss of generality, we assume P is always on the right or on
the straight line OE. Thus, E will always moves to the left perpendicularly to line
OE.

From Figure 1.7, we denote Ei and Pi for i ∈ {0,1,2, . . . ,n, . . .} as point of position
of E and P respectively at time ti. At each time, ti, the distance from Ei to the
circumference equal to

r
i+1

. Specifically, at time, t0, the distance between E0 to the
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Figure 1.7: Trajectory of P and E inside circular area

circumference is r. If the position of P0 is on the right or on the line OE0, then E0
will move to the left perpendicularly to OE0 until it reaches at point E1 at time t1.
The distance between E1 to circumference is

r
2

. At E1, if the position of P1 is on the
right or on the line OE1, then E1 will move to the left perpendicularly to OE1 until
it reach at point E2 at time t2. The distance between E2 to circumference is

r
3

. This
strategy will continue in a similar manner.

2. Evasion is possible on each section, EiEi+1

Here, we show that evasion is possible on each section EiEi+1, i = 0,1,2, . . . . First,
we let E(ti) = Ei and P(ti) = Pi is not on the left of OEi. We assume Pi is moving
with speed of α(t) where 0≤ α(t)≤ 1.

Figure 1.8: Trajectory of P and E on Section EiEi+1

In order to prove that E can avoid from being captured by P in each section EiEi+1,
we assume the contrary, that is pursuit is completed at some time τ ∈ [ti, ti+1] at point

11
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M ∈ EiEi+1. Thus,
P(τ) = E(τ) = M.

As all players move with the maximum speed 1, then the time taken of P to reach
point M is calculated as follow

P̃iM =
∫

τ

ti
α(t) dt ≤

∫
τ

ti
1 dt = τ− ti, (1.4.2)

where P̃iM is length of the curve.

On the other hand, the time taken of E to reach point M on EiEi+1 is shown as
follows

EiM = (τ− ti).1 = τ− ti.

Hence, we can see from (1.4.2) that

EiM = τ− ti ≥ P̃iM ≥ PiM ≥ P
′
i M > EiM

where PiM and P
′
i M are segments of straight lines and P

′
i M is the hypotenuse of the

right angle triangle MP
′
i Ei. A contradiction. Hence, our assumption P(τ) = E(τ) is

wrong. Thus, on each section EiEi+1 evasion is possible.

3. Estimation of total time

Next, we estimate the total time spent by the evader for sections EiEi+1.

Figure 1.9: Figure of estimation of total time
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The time spent by the evader to travel the section EiEi+1 is equal to

ti =
EiEi+1

1
= EiEi+1 =

√(
R− r

i+2

)2
−
(

R− r
i+1

)2
,

where R is the radius of the circle and i = 0,1,2,3, . . . ,n. Thus, for sections
E0E1,E1E2, . . . ,EnEn+1, we obtain

t0 = E0E1 =

√(
R− r

2

)2
− (R− r)2,

t1 = E1E2 =

√(
R− r

3

)2
−
(

R− r
2

)2
,

...

tn = EnEn+1 =

√(
R− r

n+2

)2
−
(

R− r
n+1

)2
. (1.4.3)

We need to show that tn ≥
r

n+2
. Indeed,

tn2 =

(
R− r

n+2

)2
−
(

R− r
n+1

)2

=

((
R− r

n+2

)
−
(

R− r
n+1

))((
R− r

n+2

)
+

(
R− r

n+1

))
=

(
r

n+1
− r

n+2

)(
2R− r

n+1
− r

n+2

)
.

Since R≥ r, then

tn2 ≥
(

r
n+1

− r
n+2

)(
2r− r

n+1
− r

n+2

)
=

(
r

(n+1)(n+2)

)(
2rn2 +4rn+ r
(n+1)(n+2)

)
.
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Since 2n2 +4n+1≥ n2 +2n+1, then

tn2 ≥
(

r
(n+1)(n+2)

)(
rn2 +2rn+ r
(n+1)(n+2)

)
=

r2(n2 +2n+1)
(n+1)2(n+2)2

=
r2(n+1)2

(n+1)2(n+2)2

=
r2

(n+2)2 .

Hence, we have shown that

tn =
EnEn+1

1
≥ r

n+2
.

Calculating the sum of times spent up to point En, we have

n

∑
i=0

ti ≥
n

∑
i=0

r
i+2

= r
n

∑
i=0

1
i+2

.

However,
n

∑
i=0

1
i+2

→∞ as n→ 0, then the series
∞

∑
i=0

1
i+2

is divergent. Thus, for the

time t1 + t2 + · · ·+ tn, the evader will not be captured. Therefore, evasion is possible
in the Lion and Man game.

1.5 Objectives of Thesis

The main purpose of this present thesis is to study pursuit and evasion differential
game problems in Hilbert space, l2 with geometric constraints on the control func-
tions of players. Differential game is described by the following infinite system of
differential equations:

ẋk =−αkxk−βkyk +uk1− vk1, xk(0) = xk0, (1.5.1)
ẏk = βkxk−αkyk +uk2− vk2, yk(0) = yk0,

where αk, βk are real numbers, k = 1,2,3, . . . , x0 = (x10,x20,x30, . . .) ∈ l2, y0 =
(y10,y20,y30, . . .) ∈ l2, u = (u11,u12,u21,u22, . . .) and v = (v11,v12,v21,v22, . . .) are
control parameters of pursuer and evader respectively.
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Objectives of the thesis are organized as follows:

• To suggest and validate a control function for the control problem described
by the following infinite system of differential equations:

ẋk =−αkxk−βkyk +ωk1, xk(0) = xk0, (1.5.2)
ẏk = βkxk−αkyk +ωk2, yk(0) = yk0,

where ω(·) = (ω1(·),ω2(·),ω3(·), . . .) ∈ C(0,T ; l2), ωk = (ωk1,ωk2), k =
1,2, . . . .

• To verify a strategy for the pursuer subject to geometric constraints.

• To obtain a guaranteed pursuit time.

• To prove evasion is possible on interval [0,T ].

1.6 Outline of thesis

This thesis covers six chapters with the following contents:

Chapter 1 describes briefly about the history of differential games and fundamental
concepts of game theory. Number of players, sum of gains and losses and strategy
are the fundamental concepts of game theory. Besides, strategy of parallel approach
or P-strategy is widely used by many researchers and therefore we discussed it in
this chapter. Here, we also discuss on evasion game problem of a classical lion
and man game. In this problem, the man (denoted as Evader, E) tries to avoid being
captures by the lion (denoted as Pursuer, P). Both P and man E have identical motion
capabilities and move with maximum speeds equal to 1. The positions of players are
always in a circle. Here, the evader constructs strategy to ensure the possibilty of
not being captured by pursuer. Then, it was shown that evasion is possible on each
section EiEi+1. Next, the total time spent by the evader to travel on the section
EiEi+1 is estimated.

Chapter 2 focuses on the literature review.

Chapter 3 discusses on how to solve first order non-homogenous linear ordinary dif-
ferential equations with an initial condition generally. Here, for solving the system,
it is divided into two parts. The first part is to obtain solution for first order non-
homogenous differential equations and the second part is to solve for homogenous
differential equations.

Chapter 4 discusses on the paper of Ibragimov (2013) on a two-person zero-sum
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pursuit-evasion differential game in Hilbert space, l2. Here, the pursuer tries to force
the state of the system towards the origin of the space, l2, and the evader tries to
avoid this. In this paper, Ibragimov (2013) obtain an equation for the optimal pursuit
time and construct optimal strategies for the players in an explicit form. The control
functions of the players are subject to integral constraints. It is assumed that the
control resource of the pursuer is greater than that evader.

Chapter 5 is devoted to some control and pursuit-evasion differential game problems.
These control and differential game problems described by parabolic and hyperbolic
partial differential equations can be reduced to ones described by an infinite sys-
tems of ordinary differential equations using decomposition method. Besides, in this
chapter we also prove for the existence and uniqueness theorem for the infinite sys-
tem of differential equations in the Hilbert space l2. First, we prove that the general
solution exists in Hilbert space l2. Next, we prove that the general solution is con-
tinous on the interval [0,T ]. Other than that, for evasion differential game problem,
we prove that evasion is possible on the interval [0,T ] under geometric constraints
on the control functions of players.

Chapter 6 gives a brief conclusion on this thesis and proposes some future studies as
an extension to this research.
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