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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Doctor of Philosophy

THE ALMOST EVERYWHERE CONVERGENCE OF EIGENFUNCTION
EXPANSIONS OF ELLIPTIC DIFFERENTIAL OPERATORS IN THE

TORUS

By

EHAB SALEM MATARNEH

March 2018

Chair: Hishamuddin bin Zainuddin, PhD
Faculty: Institute for Mathematical Research

Many of the equations of physical sciences and engineering involve operators
of elliptic type. Most important among these is non-relativistic quantum the-
ory, which is based upon the spectral analysis of second order elliptic differ-
ential operators. Spectral theory of the elliptic differential operators is an ex-
tremely rich field which has been studied by many qualitative and quantita-
tive techniques like Sturm-Liouville theory, separation of variables, Fourier and
Laplace transforms, perturbation theory, eigenfunction expansions, variational meth-
ods, microlocal analysis, stochastic analysis and numerical methods including fi-
nite elements. We note here that the applications of second order elliptic op-
erators to geometry and stochastic analysis are also now of great importance.

In the present research we investigated the problems concerning the almost every-
where convergence of multiple Fourier series summed over the elliptic levels in the
classes of Liouville functions on Tours. The sufficient conditions for the almost
everywhere convergence problems, which are most difficult problems in Harmonic
analysis, are obtained in the classes of Liouville. The difficulty is on the obtain-
ing the suitable estimations for the maximal operator of the partial sums of the
Fourier series, which guarantees the almost everywhere convergence of Fourier se-
ries. The process of estimating the maximal operator involves very complicated
calculations which depends on the functional structure of the classes of functions.
The main idea on the proving the almost everywhere convergence of the eigen-
function expansions in the interpolation spaces is estimation of the maximal oper-
ator of the partial sums in the boundary classes and application of the interpola-
tion Theorem of the family of linear operators. It is well known that the theory of
the eigenfunction expansions of the differential operators closely connected with
the convergence problems of Fourier series and integrals. The one of the most
important summation method which is called spherical summation method con-
nected with the eigenfunction expansions of the Laplace operator, while the ques-
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tions on convergence of the multiple Fourier series summed over the elliptic levels
can be investigated by using the spectral theory of the elliptic differential operators.

In chapter III and IV of the present thesis maximal operator of spherical and el-
liptic partial sums are estimated in the interpolation classes of Liouville and the
almost everywhere convergence of the multiple Fourier series by spherical and el-
liptic summation methods are established. The considering multiple Fourier se-
ries as an eigenfunction expansions of the differential operators helps to translate
the functional properties (for example smoothness) of the Liouville classes into
Fourier coefficients of the functions which being expanded into such expansions.

The sufficient conditions for convergence of the multiple Fourier series of functions
from Liouville classes are obtained in terms of the smoothness and dimensions. Such
results are highly effective in solving the boundary problems with periodic boundary
conditions occurring in the spectral theory of differential operators. The investiga-
tions of multiple Fourier series in modern methods of harmonic analysis incorporates
the wide use of methods from functional analysis, mathematical physics, modern op-
erator theory and spectral decomposition. New method for the best approximation
of the square-integrable function by multiple Fourier series summed over the elliptic
levels are established in chapter V. Using the best approximation, the Lebesgue con-
stant corresponding to the elliptic partial sums is estimated. The latter is applied to
obtain an estimation for the maximal operator in the classes of Liouville.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

PENUMPUAN HAMPIR MERATA-RATA TEMPAT KE PENGEMBANGAN
FUNGSI EIGEN UNTUK OPERATOR ELIPTIK PEMBEZAAN DALAM

TOURS

Oleh

EHAB SALEM MATARNEH

Mac 2018

Pengerusi: Hishamuddin bin Zainuddin, PhD
Fakulti: Institut Penyelidikan Matematik

Dalam sains fizikal dan kejuruteraan banyak persamaan matematik yang meli-
batkan operator jenis elips. Yang paling penting di antaranya adalah teori kuantum
yang tidak relativistik, yang berdasarkan analisa spektrum bagi operator pembezaan
elips peringkat kedua. Aplikasi operator elips peringkat kedua dalam bidang ge-
ometri dan analisis stokastik juga sangat penting. Teori spektrum operator pem-
bezaan elips adalah bidang yang telah dikaji oleh banyak teknik kualitatif dan
kuantitatif seperti teori Sturm-Liouville, pemisahan pembolehubah, Transformasi
Fourier dan Laplace, teori perturbasi, ekspansi eigenfungsi, kaedah variasi, anali-
sis mikrolocal, stokastik analisis dan kaedah berangka termasuk elemen terhingga.

Penyelidikan yang telah dijalankan, kami menyiasat masalah mengenai penumpuan
siri Fourier yang dijumlahkan di atas peringkat eliptik dalam kelas fungsi Liouville
di atas Torus. Syarat-syarat yang mencukupi untuk masalah-masalah penumpuan,
yang merupakan masalah yang paling sukar dalam analisis Harmonik, diperolehi
untuk kelas Liouville. Masalah utama adalah untuk menmperolehu anggaran yang
sesuai untuk operator maksima bagi penjumlahan separa siri Fourier, yang menjamin
penumpuan siri Fourier, melibatkan pengiraan yang sangat rumit dimana ia bergan-
tung kepada struktur fungsi dalam kelas fungsi tersebut. Idea utama yang mem-
buktikan penumpuan pengembangan fungsi eigen dalam ruang interpolasi adalah
untuk memperoleh anggaran operator maksima bagi penjumlahan separa dalam ke-
las sempadan dan penggunaan teorem interpolasi keluarga pengendali linier. Ia
adalah jelas bahawa teori tentang pengembangan eigenfungsi operator pembezaan
berkait rapat dengan masalah penumpuan siri dan kamiran Fourier. Salah satu
kaedah penjumlahan yang penting dikenali sebagai kaedah penjumlahan sfera yang
berkaitan dengan pengembangan fungsi eigen untuk operator Laplace, sementara
persoalan mengenai penumpuan siri Fourier yang dijumlahkan pada tahap elips
boleh disiasat dengan menggunakan teori spektrum buat operator pembezaan elips.
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Dalam tesis ini, operator maksima bagi penjumlahan separa sfera dan elip-
tik diperolehi dalam kelas interpolasi Liouville dan penumpuan siri Fourier
dengan kaedah penjumlahan sfera dan eliptik berjaya dibentuk. Den-
gan mempertimbangkan siri Fourier sebagai pengembangan fungsi eigen
bagi operator pembezaan membantu untuk menterjemahkan ciri-ciri fung-
sional (contohnya kelancaran) kelas Liouville ke dalam pekali Fourier
fungsi-fungsi yang diperkembangkan ke dalam pengembangan tersebut.

Syarat-syarat yang mencukupi bagi penumpuan siri Fourier untuk fungsi dari kelas
Liouville yang diperoleh dari segi kelancaran dan dimensi. Keputusan sedemikian
amat berkesan dalam menyelesaikan masalah persempadanan dengan keadaan sem-
padan berkala yang timbul dalam teori spektrum operator pembezaan. Kajian men-
genai siri Fourier dalam kaedah analisis harmonik moden menggabungkan penggu-
naan kaedah dari analisis fungsi, fizik matematik, teori operator moden dan pengu-
raian spektrum. Kaedah baru yang terbaik untuk penghampiran fungsi serasi segi
empat oleh siri Fourier yang diringkaskan di atas paras eliptik telah dibentukkan.
Dengan menggunakan penghampiran terbaik, konstan Lebesgue yang sepadan den-
gan penjumlahan separa elips berjaya dianggarkan. Yang terakhir ini digunakan un-
tuk mendapatkan anggaran untuk operator maksima dalam kelas Liouville. .
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CHAPTER 1

INTRODUCTION

In this study we deal with the almost everywhere convergence problems of the mul-
tiple Fourier series where is summed over domains bounded by levels of an elliptic
polynomials. The elliptic differential operator with the constant coefficients is un-
bounded operator and has many applications in engineering sciences. Such operators
have self adjoint extension in the Hilbert classes, which can be represented with the
help of the spectral decomposition of unity corresponding to the given elliptic dif-
ferential operator. The latter is closely connected with the multiple Fourier series
summed over the levels of elliptic polynomials. The main problem of the harmonic
analysis is reconstruction of the function from its Fourier expansion. Obtaining the
sufficient conditions for the almost everywhere convergence of the multiple Fourier
series of the functions from different classes gives answer to the main problem of
the harmonic analysis in the mentioned classes of functions. This research is fo-
cused to investigate the problems of the almost everywhere convergence of spectral
expansions of the functions with special behavior in terms of the eigenfunctions of
the elliptic differential operators. This chapter will focus on main fundamental ideas
and concepts from the spectral theory of differential operators to understand modern
status of the investigations in the field of convergence and summability of eigenfunc-
tion expansions related to differential operators. Besides background on our subject
matter, this chapter will entail descriptions on our research objectives, motivation
and a brief outline of this thesis.

1.1 Motivation

The theory of differential equations is one of the outstanding discovers of the human
mind. Its influence upon the development of physical science would be hard to ex-
aggerate. Much of the subject matter in this thesis is confined not only to second
order differential operators but even to elliptic differential operators of order m. One
justification for concentrating on this topic is that many of the equations which have
proved important in the physical sciences and engineering involve operators of this
type. Most important among these is non-relativistic quantum theory, which is based
upon the spectral analysis of Laplace operator. Applications of second order elliptic
operators to geometry and stochastic analysis are also now of great importance. The
importance of study the Fourier series with respect to elliptic polynomial is coming
from the fact of its relative to elliptic partial differential operators (by Fourier trans-
form). Many problems of mathematical physics can be solved by separation methods
of partial differential equations. When separation method is applied then finding a
solution of the partial differential equation will be reduced to the problems of conver-
gence of the eigenfunction expansions of elliptic operators. This connection between
the theory of multiple Fourier series and the theory of partial differential equations
is considered a sub-domain of the spectral theory. It is known that the theory of
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the spectral decompositions of the differential operators closely connected with the
convergence problems of Fourier series and integrals. Moreover elliptic differential
operators play an important role in modern mathematical physics. Such operators are
highly effective in solving the eigenvalue problems occurring in the spectral theory of
differential operators. Spectral theory is an extremely rich field which has been stud-
ied by many qualitative and quantitative techniques - for example Sturm-Liouville
theory, separation of variables, Fourier and Laplace transforms, perturbation theory,
eigenfunction expansions, variational methods, microlocal analysis, stochastic anal-
ysis and numerical methods including finite elements (Alimov et al. (1976), Alimov
et al. (1992), Reed and Simon (1979), Hörmander (1985), Stein and Weiss (1971),
Taylor (1996), Shubin (2001) and Titchmarsh (1958)).

1.2 Multiple Fourier Series and Spectral Theory of Elliptic Differential Oper-

ators in the Torus

The main mathematical objects we work with throughout this thesis are several vari-
able functions which are 2π-periodic in each variable defined on N-torus T N . N is
reserved for dimension.

1.2.1 Functions on Torus

We define Torus as a cube ��π,π�N :

T N
� �x � �x1,x2,�,xN� >RN

� �π @ xi B π, i � 1,�,N�,
which naturally isomorphic to RN~ZN . By this we mean, for x,y >RN we say that

x � y,

if x�y > 2πZN . Here � is an equivalence relation that partitions RN into equivalence
classes, where 2πZN is the additive subgroup of RN and ZN is integer coordinates.

Example 1.1 let n � �n1,n2,�,nN� an element belongs to ZN then

�x1,x2,�,xN� � �x1�2πn1,x2�2πn2,�,xN �2πnN�,
when N � 2, we have �� 2

3 π,� 1
2 π� � � 4

3 π, 3
2 π�, or, equivalently, �� 2

3 π,� 1
2 π� �� 4

3 π, 3
2 π��mod2π�.

By this setting one can visualize T � ��π,π� as a circle by bringing together the
endpoints of line segment ��π,π�. For T 2, one can again bring together the right and
left sides of the square ��π,π�2 and then the top and bottom sides as well, which is
shaped as a 2�dimensional manifold embedded in R3. See Figure 1.2.1. The T N in
this way can be indicated of as Cartesian product of N copies S1

���S1 of the circle.

2
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Figure 1.1: 2-dimensional torus T 2.

The T N is an additive group and then zero 0 � �01,02,�,0N� is the identity element
of the group. Therefore, the inverse of x > T N is denote by �x � ��x1,�x2,�,�xN�,
see Example 1.1.

The T N can be thought of as subset of CN such that

�eix1 ,eix2 ,�,eixN � >CN , �x1,x2,�,xN� > ��π,π�N ,

this mean the interval ��π,π� can be visualized as the unit circle in C once �π and
π are identified. Now, we say that a function f is 2π�periodic in every coordinate, if

f �x1�2πn1,x2�2πn2,�,xN �2πnN� � f �x1,x2,�,xN�,
for all x > RN and n > ZN . Hence, such a function is defined on torus T N . The
N�dimensional Lebesgue measure (i.e volume in RN) is restricted to the set T N ���π,π�N and denoted by dx. By translation invariance of the Lebesgue measure (i.e.
m�E �a� � m�E�, E `RN , a >RN) and the periodicity of functions on T N , we have

S
T N

f �x�dx�S
π

�π

�S
π

�π

f �x1,x2,�,xN�dx1�dxN � S
��π,π�N

f �x�dx� S
�y,y�2πn�N

f �x�dx,

for all f on T N and y >RN . Finally, the LP spaces on T N are nested such that

L1 a� a L2 a� a Lª.

1.2.2 Multiple Fourier Series

As is well known, the classical trigonometric series in one dimensional takes the
form

a0

2
�

ª

Q
n�1

�an cosnx�bn sinnx�, (1.1)

3
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where x >R and the coefficients a0,a1,b1,� are real. The terms of this series are all
of period 2π, therefore, it is sufficient to study the trigonometric series in T � ��π,π�.
The following partial sum

Sν�x� � ao

2
�

ν

Q
n�1

�an cosnx�bn sinnx�, x >R,

is a finite trigonometric sum so-called trigonometric polynomial of order ν , because
of fact that Sν�x� is the real part of an ordinary polynomial P�z� of degree ν , where
z � eix. If Saν S� Sbν S x 0, Sν�x� is said to be strictly of order ν . The complex form of
this partial sum takes the form

Sν�x� � ν

Q
�ν

cneinx

by putting cn �
1
2�an� ibn�, c�n � c̄n, ¦n � 0,1,2,�. This complex form is νth sym-

metric partial sum of the Laurent series, i.e., the sum of the 2ν � 1 central terms
of

ª

Q
�ª

cneinx. (1.2)

The series (1.2) may be written in the form (1.1) with an and bn are real, it will be
a cosine series if and only if the cn are real, while it is a sine series if and only if
the cn are purely imaginary. The form (1.2) gives advantage to leave the coefficients
unrestricted and often suggests a complex method of summation.

Let consider multiple trigonometric series

Q
n>ZN

cnei�n,x�
�

ª

Q
n1��ª

ª

Q
n2��ª

�

ª

Q
nN��ª

cn1n2�nN ei�n1x1�n2x2���nN xN�, (1.3)

with arbitrary complex coefficient cn. We denote by expression �n,x� the inner prod-
uct. Similar to one dimension case the series (1.3) is called trigonometric polyno-
mial, whenever �cn�ZN is a finitely supported sequence in ZN . The degree of series
(1.3) is the large number Sb1S��� SbN S such that cb x 0, where b � �b1,b2,�,bN�.
In the multidimensional case, there will be different concept of partial sum. For
example, in two dimensions one needs to find in what sense will expand the set of
integer numbers (i.e. �n1,n2� > Z2 ) and exhausting R2, thus one may take the set as
circle, cube or ellipsoid, it leads to take the sum in what it is called principle value
sense, thus will face various partial sums of a multiple series, for instant.

i� The rectangular partial sum

Sν�x� � Q
Sn1SBν1

Q
Sn2SBν2

� Q
SnN SBνN

cn1n2�nN ei�n1�x1�n2�x2���nN �xN�, (1.4)

where the vector ν is belong to NN
8�0�.

4
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ii� The cubic partial sum takes the form

Sl�x� � QSn1SBl
Q
Sn2SBl

� Q
SnN SBl

cn1n2�nN ei�n1�x1�n2�x2���nN �xN�, (1.5)

where l is a positive integer.

iii� The spherical partial sum is defined by

Sλ �x� � Q¼
n2

1�n2
2���n2

NBλ

cn1n2�,nN ei�n1x1�n2x2���nN xN�.

If we use the notation SnS2 � n2
1�n2

2���n2
n, then the spherical partial sums will take

the similar form as in one dimensional Fourier series:

Sλ �x� � QSnSBλ

cnei�n,x�. (1.6)

One can visualize this sum as an analogy with multiple integral on spherical domain
with radius λ , (circular in R2 ) see Figure1.2.2.

n1

n2

Figure 1.2: Plot Lattices �n1,n2� >Z2, enclosed by circles, squares and ellipses.

Remark that the cases of spherical and cubical sums form a family of enclosing
sets, but this is not the case in rectangular sum. However, we tend to restrict the
summation methods for the multiple partial sum into two type, as following:
A� If Ω � �G� is a family of finite subsets of ZN such that,
1� ¦G�,G�� > Ω §G > Ω �G�

8G�� ` G;
2� �

G>Ω

G �ZN ,

then one may define the partial sum with respect to the family Ω by

SG�x� �Q
n>G

cnei�n,x�. (1.7)
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It is clear that if Ω is taken as a family of rectangular, cubes or balls, then one
has the rectangular, cubic and spherical partial sums, respectively. The concept of
convergence can be defined as follows:

If ¦ε A 0, §Gε > Ω such that

¦G > Ω � �Gε ` G�� SSG�x�� f �x�S @ ε,

we say that the series (1.3) is Ω-convergent at the point x to f �x�.
B� If Q is any bounded subset of RN containing the origin and Ω is a family of all
sets of the form �n >ZN

� n > λQ�, where λ A 0. Then the corresponding partial sums
have the form

SλQ�x� � Q
n>λQ9ZN

cnei�n,x�. (1.8)

In the case of type B� the series (1.3) is Ω-convergent at the point x, if
limλ�ªSλQ�x� exists. In particular, when Q is the unit cube or ball, respectively,
the SλQ�x� is cubic or spherical partial sum.

Note that the rectangular (1.4) convergence implies cubic (1.5) convergence, but the
converse is not true. On the other hand, the spherical(1.6) convergence dose not
imply cubic convergence, and thus not rectangular convergence, the converse is not
true either.

Example 1.2 1. Let

ª

Q
�ª

ª

Q
�ª

�n2
1δn20�n2

2δn10�ei�n1x1�n2x2�,

where δ jk � 1, if j � k and zero otherwise. Take point �0,0�, then the series is
not rectangularly convergent but quadratically convergent.

2. The series
ª

Q
�ª

ª

Q
�ª

�n2
1�δn20�δn22��ei�n1x1�n2x2�

is rectangularly convergent at the point �0,0� when n2 C 2, but not circularly
convergent, since

SR�0,0� � Q
n2

1�n2
2BR2

n2
1�δn20�δn22� � 2R2

Ð�ª, R A 2.

3. Let
ª

Q
�ª

ª

Q
�ª

cn1n2ei�n1x1�n2x2�

with c5�2k,0 ��c4�2k,3�2k � k, k � 1,2..., and other coefficients are zero. We have

SR�0,0� � Q
n2

1�n2
2BR2

cn1n2 �

R

Q
l�0

Q
n2

1�n2
2�l2

cn1n2 � 0

6
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for all R A 0, because if the circle of radius l contains the point �5 �2k,0� then
will contain a point �4 �2k,3 �2k� as well. However, the sequence

Q4�2k �

4�2k

Q
n1��4�2k

4�2k

Q
n2��4�2k

cn1n2 � �k

tends to �ª as kÐ�ª. Here we used the fact that the point �5 �2k,0� does
not belong to the square

��n1,n2� � Sn1S B 4 �2k, Sn2S B 4 �2k�.
In order to focus on the Fourier series, one may determine the coefficient cn in the
following manner, assume that the series (1.3) converge to a function f �x� in the
sense that allows one to integrate the series term by term, as it is the case of uniform
convergence and convergence in Lp�T N�, then we have

f �x� � Q
n>ZN

cnei�n,x�,

now by multiplying the both side with e�i�n,x� and integrating over T N we obtain

f̂ �n� � �2π��NS
T N

f �x�e�i�n,x�dx, (1.9)

where f̂ �n� � cn is called the Fourier coefficients of f �x�. The nth Fourier coeffi-
cients are defined if a complex-valued function f > L1�T N�, moreover f̂ �n�� 0 asSnS� 0, this is because of Riemann-Lebesgue lemma.

In this point we introduce some elementary properties of Fourier coefficients (see
Grafakos (2008)). Therefore, we denote by f̄ the complex conjugate of the function
f , by f̃ �x� � f ��x� the reflection of f , and by τ

y� f ��x� � f �x� y�, ¦y > T N the
translation of f . Let f ,g > L1�T N�, then for all n,h > ZN , γ >C, y > T N and a multi-
indices α � �α1,α2,�,αN� >NN

8�0� with size Sα S � Sα1S��� SαN S we have

(1) Æ� f �g��n� � f̂ �n�� ĝ�n�,
(2) Ãγ f �n� � γ f̂ �n�,
(3) Ẫf �n� � f̂ ��n�,
(4) Æ�τy� f ���n� � f̂ �n�e�i�n,y�,
(5) Â̄f �n� � ¯̂f ��n�,
(6) f̂ �0� � RT N f �x�dx,

(7) Æ�ei�h,�� f ��n� � f̂ �n�h�,
(8) Æ� f �g��n� � f̂ �n�ĝ�n�,

7
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(9) sup
n>ZN

S f̂ �n�S B Y f YL1�T N�,

(10) Æ�∂ α f ��n� � �in�α f̂ �n�, f >Cα space of the continuously differentiable func-
tions of order Sα S,

where f �g � RT N f �x�y�g�y�dy is convolution function.

Hence, one can associate each function f > Lp�T N�, 1 B p B ª with a multiple
trigonometric series (Fourier series) such that

Q
n>ZN

f̂ �n�ei�n,x�, (1.10)

so-called the Fourier series of the function f �x�. The main and natural questions arise
here: does the Fourier series converge to f ? If it does, in what sense that convergence
is done and with respect to which family �G� as mentioned above?. What is the
effect of dimensions on behavior of the Fourier series? Also under which classes
of functions the convergence may be true?. The study of these questions release an
important field so-called Fourier analysis a sub-domain of the harmonic analysis.

An interesting type of a family �G� is when G � �ξ >RN
� A�ξ� @ λ� and A�ξ� is an

algebraic polynomial of even degree m with constants aα defined

A�ξ� � Q
Sα SBm

aα ξ
α , (1.11)

where ξ � �ξ1, . . . ,ξN� > RN , ξ
α � ξ

α1
1 ξ

α2
2 . . .ξ αN

N , α � �α1, . . . ,αN� is multi-index
with α j� nonnegative integers, and the size of α is defined as follows Sα S � α1�� � ��

αN . If SA�ξ�S A 0, ¦ξ x 0, then A�ξ� is called elliptic polynomial, for instance, if
m � 2,N � 2 and aα are real then we have:

A�ξ1,ξ2� � a00�a10ξ1�a01ξ2�a20ξ
2
1 �a11ξ1ξ2�a02ξ

2
2 .

This family is relative to the elliptic partial differential operator as we will see in
section (1.2.3).

Unfortunately, the set G with (1.11) does not refer to summation method of type B�
as it is mentioned above, the reason for that it is not similar for different values of
λ . However, if we take a homogeneous elliptic polynomial of order m (i.e. Ah�tξ� �
tmAh�ξ� ) defines

Ah�ξ� � QSα S�m
aα ξ

α , (1.12)

then we can have a summation method of type B� by putting Q� �ξ >RN
�Ah�ξ�@ 1�

and λ � t1~m, t A 0, to which the sphere belong (i.e. Ah�ξ� � Sξ S2�. We note that if m
tend to infinity, then the set Q takes a hyper-rectangular shape. Thus, the partial sum
of the Fourier series of function f summed over domains bounded by level surfaces

8
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of an elliptic polynomial takes form

Eλ f �x� � Q
A�n�@λ

f̂ �n�ei�n,x�, (1.13)

where A�n� � �A�ξ� @ λ�9ZN , and λ A 0 (see Figure 1.2.2).

n1

n2

n3

Figure 1.3: Lattices in 3-dimensional.

For functions which are not very smooth the partial sum Eλ f �x� does not approach
the function f �x� as λ �ª but oscillates around it. However, that is the reason to
study the convergence for averages of Eλ f �x�, then by taking the averages of (1.13)
one obtains

1
λ
S

λ

0
Et f �x�dt � Q

A�n�@λ

�1�
A�n�

λ
� f̂ �n�ei�n,x�,

this expression is called spherical Cesàro means (or spherical Fe jér means). It is
natural to expect that the behavior of convergence of series will be better as many as
possible it is integrated, this motivated to study more general operators for complex
number a with R�a� A 0 defined as follows

Ea
λ

f �x� � Q
A�n�@λ

�1�
A�n�

λ
�a f̂ �n�ei�n,x�, (1.14)

is known as Bochner-Riesz means of order a with respect to elliptic polynomial
A. It turns out that for fixed R�a�, the series (1.14) may failed to converge as the
dimension increases (Stein (1958)).

We say the series (1.13) converges to f �x� by Bochner-Riesz method of order a if

lim
λ�ª

Ea
λ

f �x� � f �x�.
9
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As an example we note that the spherical partial sums takes the following form

Sa
λ

f �x� � Q
SnS2@λ

�1�
SnS2
λ

�a f̂ �n�ei�n,x�. (1.15)

It is known that there are various forms of convergence such as pointwise conver-
gence, uniform convergence, almost everywhere convergence and convergence in
Lp�T N�. We define them as follows:

Let � f j� j>N be a sequence of functions from Lp�T N�, and B ` T N . We say that f j�x�
converges pointwise to the function f �x� on set B if

lim
j�ª

f j�x� � f �x� for each x > B.

Unfortunately, this type of convergence does not guarantee to make a sequence of
continuous functions converge to continuous function as well as be differentiable, for
example consider the sequence f j�x� � e� jx, j � 0,1,2,�, on �0,1�, then f j�x�� 0
as j�ª for each x > �0,1�, but f j�0� � 1 for all j.

Therefore, we introduce the uniform convergence, for that we define Lp�norm by

Y f YLp�T N� � �S
T N

S f �x�Sp dx� 1
p
, 1 B p @ª,

and for p �ª by

Y f YLª�T N� de f
� ess.sup S f S de f

� inf�C A 0 � µ��x > T N
� S f �x�S AC�� � 0�,

where µ is a positive measure on T N .

Thus, the sequence f j�x� converge uniformly to function f if

lim
j�ª

Y f j � f YLª � 0.

In general we have the following convergence in norm, it is said that f j converge to
f > Lp�T N� in Lp�norm, if

lim
j�ª

Y f j � f YLP � 0, 1 B p @ª.

We pass forward for definition of the almost everywhere convergence. We said that
the sequence f j almost everywhere converges to f > Lp�T N�, if

µ�x � lim
j�ª

f j�x� x f �x�� � 0.

In this study we focus on the almost everywhere convergence of the multiple Fourier
series related to the functions from classes of Liouville.

10
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1.2.3 Spectral Theory of the Elliptic Differential Operators

Let consider an arbitrary differential operator with constant coefficients:

A�D� � Q
Sα SBm

aα Dα , (1.16)

where Dα � Dα
 . . . DαN

N , D j �

i

∂

∂x j
, and as above, α is a multi-index.

The polynomial (1.11) is associated with differential operator A�D� by replaced D
with ξ >RN and it is called a symbol of operator A�D�, the homogeneous polynomial
(1.12) is called its principle symbol. The operator A�D� is said to be elliptic of order
m if its principle symbol satisfies SAh�ξ�S A 0 for all ξ >RN , ξ x 0.

Example 1.3 1. Cauchy-Riemann operator m � 1,N � 2

A�D1,D2� � 1
2
�D1� iD2�

is elliptic. Since SA�ξ1,ξ2�S � 1
2

¼
ξ 2

1 �ξ 2
2 A 0, if �ξ1,ξ2� x �0,0�.

2. Bitsadze operator
A�D1,D2� � D2

1�2iD12�D2
2

also elliptic.

The operator A�D� is considered in the Hilbert space L2�T N� as an unbounded op-
erator with domain Cª�T N� the class of infinitely differentiable functions on T N . In
case the coefficients are real, the A�D� will satisfy the symmetric condition:

�Au,v� � �u,Av�, ¦u,v >Cª�T N�. (1.17)

In addition, since the operator A�D� is elliptic, then by Gårding’s inequality the
operator A�D� is semi-bounded (see Hörmander (1985))

�Au,u� C λA�u,u�, ¦u >Cª�T N�, (1.18)

where nonnegative constant λA is called lower bound of A. Hence, Friedrichs’s the-
orem asserts that for every symmetric semi-bounded operator there are at least one
self-adjoint extension with the same lower bound, then there is a self-adjoint exten-
sion Ā in L2�T N� of operator A�D� which, indeed, its closure, and they are coincided
on the domain of definition i. e. Āu � Au, u >Cª�T N�. By von Neumann’s spectral
theorem, the operator Ā has a spectral decomposition of unity �Eλ�, and then it can
be represented in the following form (see Alimov et al. (1976), Alimov et al. (1977))

Ā � S
ª

λA
λ dEλ ,

11
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the projections Eλ increase monotonically, and continuous on the left, moreover

lim
λ�ª

YEλ u�uYL2�T N� � 0, u > L2�T N�.
The operator Ā has a complete orthonormal system (see Definition 1.6.1) of eigen-
functions ��2π��N~2ei�n,x�� in L2�T N� corresponding to the eigenvalues A�n�, n >

ZN. Thus, the spectral decomposition of f > L2�T N� coincides with (1.13) partial
sums of the multiple Fourier series of function f related to A�n�. An interesting
fact that the lower order coefficients aα , Sα S @ m of A�D� do not influence the con-
vergence of the spectral decomposition Eλ f provided the function f is sufficiently
smooth. Then one can reduce the study of convergence for partial sum (1.13) to the
study of simpler case, that is, applying the summation over expanding its principle
symbol Ah�n�.
The spectral decomposition Eλ can be written as an integral operator:

Eλ f �x� � S
T N

Ψλ �x,y� f �y�dy,

where the kernel
Ψλ �x,y� � �2π��N Q

A�n�@λ

ei�n,x�y� (1.19)

is called the spectral function of operator Ā. Indeed, the operator Eλ is a convolution
operation Ψλ � f , such that

Eλ f �x� � S
T N

Ψλ �x�y� f �y�dy. (1.20)

In the case of second order differential operator, a Laplace operator

∆ �

N

Q
k�1

∂
2

∂x2
k

(1.21)

is considered in the Hilbert space L2�T N� as an unbounded operator with domain
Cª�T N�. For u,v >Cª�T N�, and by inner product in L2�T N� one can see the oper-
ator �∆ symmetric and nonnegative, indeed

�∆u,v� � �u,∆v���∆u,u� � �©u,©u� C 0,

where © � � ∂

∂x1
,�, ∂

∂xN
� is the gradient of u, and it is a simplest elliptic operators

since its symbol Sξ S2 A 0, ¦ξ x 0. Then, as above, by Friedrichs’s theorem it has
a nonnegative self-adjoint extension, again, denoted by Ā and coincides with the
closure of �∆ in L2�T N�, such that

Ā � S
ª

0
λ dEλ ,

12
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with a complete orthonormal system of eigenfunctions ��2π��N~2ei�n,x��, corre-
sponding to the eigenvalues �SnS2�, n > ZN. Therefore a spectral decomposition of
a function f > L2�T N� have the form

Sλ f �x� � Q
SnS2@λ

f̂ �n�ei�n,x�,

where it shows that the spectral expansion Eλ f coincides with the spherical partial
sums of the Fourier series.

1.3 Functional Spaces on the Torus

We deal in this study with functions which are termed as a Liouville spaces Ls
p where

s A 0 (coincide for s integers with Sobolev spaces). They study the differentiability
and smoothness of functions. A fundamental fact is that smoothness can be measured
and fine-tuned by using the Fourier transform. Indeed, the investigation of the subject
is based on this point. We commence by the Sobolev spaces.

1.3.1 Sobolev Spaces W k
p �T N�

The main idea of introducing of the Sobolev spaces is measuring the smoothness of
a given function in terms of the integrability of its derivatives. We give the classical
definition of Sobolev spaces.

Definition 1.3.1 Let k be a nonnegative integer and let 1 B p @ª. The Sobolev space
W k

p �T N� is defined as the space of functions f in Lp�T N� all of whose distributional
derivatives ∂

α f are also in Lp�T N� for all multi-indices α that satisfy Sα S B k. This
space is normed by the expression

Y f YW k
p
� Q
Sα SBk

Y∂ α f YLp (1.22)

where ∂
�0,�,0� f � f .

The index k indicates the degree of smoothness of a given function in W k
p . These

spaces form a decreasing sequence (see Grafakos (2009))

LP aW 1
p aW 2

p a�,

meaning that each W K�1
P �T N� is a subspace of W k

P�T N� in view of the Sobolev
norms.

The Sobolev space W k
p �T N� is complete. To see this, let f j a Cauchy sequence in

W k
p , then ∂

α f j is a Cauchy sequence in Lp for all Sα S B k. By the completeness of Lp,

13
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there exist functions fα such that ∂
α f j � fα in Lp, then clearly

��1�Sα S` f j,∂
α

ϕe � `∂ α f j,ϕe� ` fα ,ϕe, (1.23)

for all ϕ >Cª�T N�. Here, ` f ,ϕe � f �ϕ� represents the action of a distribution f on
a test function ϕ >Cª�T N� (see Hörmander (1983)). For instance, the Dirac mass at
the origin δ0 is delta distribution defined by

`δ0,ϕe � ϕ�0�
Since the left hand side of (1.23) converges to

��1�Sα S` f ,∂ α
ϕe,

it follows that the distributional derivative ∂
α f of f is fα . This implies that f j � f

in W k
p .

1.3.2 Liouville Spaces Ls
p�T N�

The Liouville space is considered as generalization of Sobolev Spaces, where the
classes W k

p �T N� can also be described in terms of Fourier transform. By that one can
extend the definition of Sobolev space to the case in which the index k is real. We
explain the idea by putting p � 2. By using the Plancherel’s identity we obtain that
the norm (1.22) for f >W k

2 can be introduced in the form

Y f Y2
W k

2
� Q

n>ZN
Q
Sα SBk

Snα S2S f̂ �n�S2.
Taking into account the following inequality

ck�1� Sξ S2�k
B Q
Sα SBk

Sξ α S2 BCk�1� Sξ S2�k,

which holds for all ξ >RN with some positive constants ck,Ck. This gives a motiva-
tion for the following definition (see Alimov et al. (1992)).

Definition 1.3.2 Let s be a real number and let 1 B p @ª. The Liouville space
Ls

p�T N� is defined as the space of all functions f in Lp�T N�, such that

Q
n>ZN

�1� SnS2� s
2 f̂ �n�einx

> Lp�T N�. (1.24)

Thus the norm of f in Ls
p�T N� has a form

Y f YLs
p�T N� �

XXXXXXXXXXX Qn>ZN
�1� SnS2� s

2 f̂ �n�einx
XXXXXXXXXXXLp�T N�

.

14
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We observe that when s � 0 then Ls
p � Lp. The space Ls

p coincides with the space W k
p

when s � k a positive integer number. We also note that when s C 0 the elements of
Ls

p are always Lp, i.e. Ls
p b Lp.

If 0 @ s1 @ s then Ls
p ` Ls1

p . Moreover we have the embedding

Ls
p� Ls1

q , Ls
p ` Ls1

q

provided

s�
N
p
� s1�

N
q
.

Example 1.4 Let f �x� � SxSt , t A 0 and x > T N . Let s � k a positive integer, then for
all α with Sα S � k the derivative ∂

α f has the singularity SxSt�k, t @ k. Thus, f > Lk
p, ifSxSt�k > Lp, provided k� N

p @ t.

1.4 Interpolation Theorem of the Family of Linear Operators

There is two classical interpolation theorems which form the foundation to whole
theory. In brief, they are the Marcinkiewicz interpolation theorem which is well
known as real method, it is applicable for non-linear operators and the endpoint
estimates are of weak type�p,q�. And the Riesz-Thorin interpolation theorem which
is known as the complex method. On contrary of the previous theorem, it is mostly
applicable for linear operators with strong endpoint estimates . The Riesz-Thorin
interpolation theorem was the motivation for new result, namely Stein’s theorem on
interpolation of analytic families of linear operators. Therefore, we demonstrate the
Riesz-Thorin theorem by the next example in order to have clear picture about next
subsections (see Stein and Weiss (1971)).

Example 1.5 Let the operator T acting on Lp by convolution operation such that
T� f � � f �g for fixed g > Lp�RN�, where

� f �g��x� � S
RN

f �y�g�x�y�dy.

One can use the Minkowski’s integral inequality to see that the operator T is bounded
on L1�RN� and having values in Lp�RN� with operator norm YTY B YgYLp�RN�. On
the other hand, one can apply Holder’s inequality to show that the operator T is
bounded on space Lp��RN� and taking values in space Lª�RN� whenever 1~p�
1~p� � 1, again we have YTY B YgYLp�RN�. These endpoint estimates for operator T

led to a natural question that whether T maps Lr�RN�, 1B r B p� boundedly into some
space Lq�RN�, a positive answer one can easily have by applying the Riesz-Thorin
interpolation theorem and the result is so-called Young’s inequality:

Y f �gYLq B YgYLpY f YLr ,
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where 1
q �

1
p �

1
r �1.

The Stein’s theorem is considered a generalization of the Riesz-Thorin theorem in
which the single operator T is replaced by a family of operators �Tz�z that depend
analytically on a parameter z > S � �z >C � 0 B Re�z� B 1�.
Let �X ,µ� and �Y,ν� be measure space. Suppose that to each z > S there is assigned
a linear operator Tz on the space of simple function on X and taking values in the
space of ν-measurable function on Y in such a way that �Tz f �g is ν-integrable on Y
whenever f and g are simple function on X and Y. The family �Tz�z is said to be an
admissible growth if the mapping

z� S
Y
�Tz f �gdν

is analytic (i.e. it can be expanded as a convergent Taylor series for every point in
the domain) in the interior of S, continuous on S and there exists a constant C f ,g such
that

ln VS
Y
�Tz f �gdνV BC f ,g eaSI�z�S, a @ π,

for all z � x� iy in the strip S.

Theorem 1.4.1 (Stein’s Theorem) Let �Tz�z>S be an admissible growth family of
linear operators satisfying

YTiy f YLq0�T N� B M0�y�Y f YLp0�T N�YT1�iy f YLq1�T N� B M1�y�Y f YLp1�T N�

for all simple functions f on T N , where 1 B p j,q j Bª, for j � 0,1 and M j�y� are
positive functions on the real line such that

sup
�ª@y@ª

e�bSyS lnM j�y� @ª
for some b @ π. Let 0 B t B 1 satisfy

1
p
�

1� t
p0

�
t
p1

and
1
q
�

1� t
q0

�
t

q1
.

Then YTt f YLq�T N� B MtY f YLp�T N�
for all simple functions f on T N , where for 0 B t B 1,

lnMt �
sin�πt�

2 S
ª

�ª

� lnM0�y�
cosh�πy��cos�πt� � lnM1�y�

cosh�πy��cos�πt�	 dy.
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1.5 Fractional Powers of Elliptic Operators

Let Λ be a subset of the complex plane (in the applications this will, as a rule, be
an angle with the vertex at the origin). In spectral theory it is useful to consider
operators depending on a parameter λ > Λ. An example of such an operator is the
resolvent �A�λ I��1.

We assume that the differential operator (1.16) is elliptic, symmetric and semi-
bounded, by that we mean respectively, its principle symbol (1.12) is positive and
satisfies both equality (1.17) and inequality (1.18).

We denote by A an operator acting in the Hilbert space L2�T N� with the domain of
definition D�A� �Cª�T N�:

Au � A�D� f �x�, f >Cª�T N�.
It is proven that (see Theorem 9.3 Shubin (2001)) there exists λ0 A 0 such that the
resolvent Rλ � �A� λ I��1 is defined for Sλ S C λ0. The spectrum P�A� of A is a
discrete subset of the complex plane. We choose a number ρ satisfying the condition
that the disk Sλ S @ 2ρ does not intersect with the spectrum P�A�. Now we select a
contour of the form Γ � Γ1�Γ2�Γ3 �

Γ1 � �λ >C � λ � reiπ , �ª A r A ρ�
Γ2 � �λ >C � λ � ρeiφ , π A φ A �π�
Γ3 � �λ >C � λ � re�iπ , ρ @ r @ �ª�.

Consider the integral

Az �
i

2π
S

Γ

λ
z�A�λ I��1dλ , (1.25)

where λ
z is defined as a analytic function of λ > C���ª,0�. Note that the inte-

gral (1.25) converges in the operator norm on L2�T N� for R�z� @ 0 and also Az is a
bounded operator on L2�T N�.
With the help this operator we can define fractional power of the elliptic operator as
follows: Let z >C and k >Z be such that R�z� @ k. Put, on Cª�T N�

Az
� AkAz�k.

Such defined operator is independent of the choice of integer k. And for arbitrary
k > Z, s > R, the function Az is analytic operator function of z in the half-plane
Re�z�@ k with values in the Banach space L �Ls

2�T N�,Ls�mk
2 �T N�� of bounded linear

operators from Ls
2�T N� to Ls�mk

2 �T N� (see Theorem 10.1 Shubin (2001)).

Let the distribution f > �s Ls
2�T N� and let f �x� � Pn>ZN f̂ �n�ei�n,x� be the Fourier
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series of f . We denote the eigenvalues of A by λn. Then

Az f �x� � Q
n>ZN

λ
z
n f̂ �n�ei�n,x�,

which follows from the following identity by putting f �x� � ei�n,x�

Az�ei�n,x�� � i
2π
S

Γ

λ
z�A�λ I��1ei�n,x�dλ

�
iei�n,x�

2π
S

Γ

λ
z�λn�λ��1dλ � λ

z
nei�n,x�,

which it is obtained by note that A �Pλn��,e�i�n,x��ei�n,x�, I �P��,e�i�n,x��ei�n,x�,
where ��, �� is inner product in L2�T N� and by using the Cauchy formula.

Example 1.6 The fractional powers of Laplace operator (1.21). Let I denotes iden-
tity operator, then it is easy to see that

�I�∆�ei�n,x�
� �1� SnS2�ei�n,x�.

For any β > R we define a fractional power of the operator I�∆ as follows

�I�∆�β
φ�x� � Q

n>ZN
�1� SnS2�β

φ̂�n�ei�n,x�, ¦φ >Cª�T N�,
where by φ̂�n� denotes Fourier coefficients of the function φ :

φ̂�n� � �2π��NS
T N

φ�x�e�i�n,x�dx, n > ZN .

1.6 Orthonormal Basis in T N and Menchoff-Rademacher Theorem

In this section we deal with the system of functions �φk�x��ªk�0 from L2�T N�.
Definition 1.6.1 If a sequence of functions �φk�x��ªk�0 satisfy conditions

S
T N

φn�x�φk�x�dx � � 1 when n � k,
0 when n x k,

then �φk�x��ªk�0 is said to be an orthonormal system of functions on T N .

Let �φk�x�� be the orthonormal system of functions in L2�T N� and let define the
following numbers

ck � S
T N

f �x�φk�x�dx, k � 0,1,2, ...., (1.26)
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so-called the Fourier coefficients of f related to φk�x�, then we write

f �x� � ª

Q
k�0

ckφk�x�,
as a Fourier series of f relative to the orthonormal system �φk�x��ªk�0. The symbol �
says nothing about convergence of the series, it only means that the coefficients are
given by (1.26).

The following theorem is important tool to prove almost everywhere convergence of
Fourier series by general orthonormal system. We refer for more facts on the general
orthonormal systems to Zygmund (1959a).

Theorem 1.6.2 (Menchoff-Rademacher) Let �φk�x��ªk�0 ` L2�T N� be an or-
thonormal system of functions and let �ck�ªk�0 be an arbitrary sequence of complex
numbers such that

ª

Q
k�0

SckS2 log2�k�1� @ª.

Then the series
ª

P
k�0

ckφk converges almost everywhere. Moreover

[sup
ν

U ν

Q
k�0

ckφk�x�U[2

L2�T N� BC
ª

Q
k�0

SckS2 log2�k�1�.

The proof of this fact can be found in Alexits (1961). The Menchoff-Radimacher
Theorem will be used in chapter III to establish the almost everywhere convergence
and estimation of the maximal operator in L2�T N�.

1.7 Best Approximation by Trigonometric Polynomials

We denote by C2π a class of 2π-periodic and continuous functions on whole R. Let
us recall some classical results from the theory of approximations of the functions
from C2π by trigonometric polynomials:

Pk�x� � k

Q
n�0

�an cosnx�bn sinnx�, k � 0,1,2, ...

It is well known that any function from C2π can be approximated by trigonomet-
ric polynomials. In fact if f >C2π , then for any ε A 0 there exists a trigonometric
polynomial Pk�x� such that

SPk�x�� f �x�S @ ε, ¦x >R,

for the proof of this fact we refer to Bari (1964).
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Our method of estimation of the maximal operator is based on the best approximation
by trigonometric polynomials of several variables. Here we give the main idea of the
best approximation by trigonometric polynomials of single variable, which will be
extended to several variables in chapter III and IV.

Let Pk denotes the set all of trigonometric polynomials of degree not exceeding k,
by taking an arbitrary trigonometric polynomial P�x� >Pk we put

M�P� � max
x>R

SP�x�� f �x�S.
We define a best approximation of f �x� in Pk as follows

Bk� f � � inf
P>Pk

M�P�.
For any k there exists a polynomial P >Pk, such that

M�P� �Bk� f �.
For the function f >C2π we define the modulus of continuity by the following

ω�δ� � sup
Sx�ySBδ

S f �x�� f �y�S, (1.27)

where it assumed that the number δ is positive. The module of continuity of the
function f has following properties

1. The ω�δ� is increasing function.
2. If a function f �x� is uniformly continuous, then

lim
δ�0

ω�δ� � 0.

3. (a) If k is natural number, then

ω�kδ� B kω�δ�.
(b) If λ is arbitrary positive number, then

ω�λδ� B �λ �1�ω�δ�. (1.28)

The following Theorem is known as Jackson type theorem (see Natanson (1961))
and will be extended to N�dimensional case in chapter III for trigonometric polyno-
mials summed over spherical levels and in chapter IV for trigonometric polynomials
summed over elliptic levels.
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Theorem 1.7.1 For any function f from C2π we have

Bk� f � B 12ω �1
k
� .

From this fact we easily derive the estimation for partial sums of Fourier series. In
fact let f >C2π satisfies the inequality

S f �x�S B M, ¦x >R,

then the partial sums of the Fourier series of the function f satisfy the inequality

SSk f �x�S B M�2� lnk�. (1.29)

From the estimation 1.29 we conclude the following

Theorem 1.7.2 Let Bk� f � be the best approximation of f > C2π by trigonometric
polynomials of order not exceeding k. Then for all x >R one has

SSk f �x�� f �x�S B �3� lnk�Bk� f �. (1.30)

For the proof of this fact we refer to Natanson (1961). The idea of estimation 1.30
will be used in chapter III and IV.

1.8 Research Objectives

Here, we introduce the goals of this research:

1. To obtain the sufficient conditions for the almost everywhere convergence of
the multiple Fourier series summed by spherical method in the classes of Li-
ouville on Torus.

2. To prove almost everywhere convergence of the elliptic partial sums of the
multiple Fourier series in the classes of Liouville on Torus.

3. To investigate the conditions for the best approximation of the summable func-
tions by multiple Fourier series summed over elliptic levels.

4. To generalize the Menchoff-Rademacher Theorem to the spectral decomposi-
tions of the self adjoint differential operators.

1.9 Outline of the Thesis

In this thesis, we have organized the chapter as following.
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• Chapter 1 - Introduction: In this chapter we provide background of tools used
for our subject matter, the objective and methods applied to solve the problems
in hand and the factors responsible for our motivation behind the idea.

• Chapter 2 - Literature review: This chapter deals with researches by previous
authors that dealt with issues related to our topic.

• Chapter 3 - we prove almost everywhere convergence of the spherical partial
sums of Fourier series of functions from the classes of Liouville by estimation
the maximal operators corresponding to the spherical partial sums.

• Chapter 4 - we obtain the sufficient conditions for the almost everywhere con-
vergence of the multiple Fourier series related to elliptic differential operator
using the best approximation of summable functions by Fourier series summed
over domains bounded by levels of the elliptic polynomial.

• Chapter 5 - In this chapter we obtain the sufficient conditions for the al-
most everywhere convergence of the eigenfunction expansions of the square-
integrable functions, related to the spectral decompositions of the self-adjoint
elliptic differential operators.

• Chapter 6 - Summary and Future Work: In the last section of the thesis we will
present the outcome of this thesis. We also discuss the possibility for future
research and give suggestions on open problems for future researchers of the
subject.
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