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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment
of the requirement for the degree of Doctor of Philosophy

FUNCTIONAL EXTREME DATA ANALYSIS METHODS AND ITS
APPLICATION TO RAINFALL DATA

By

NOOR IZYAN BINTI MOHAMAD ADNAN

January 2018

Chairman: Mohd Bakri Adam, PhD
Institute: Institute for Mathematical Research

Functional data analysis is one of the new techniques to transform a discrete or con-
tinuous observation into a functional form. Conventional classical statistics meth-
ods now can be observed and analyzed through a curve for almost all types of data
with neither distribution assumption nor goodness of fit test that are necessary to be
followed. Literature reviews show that there is no study found for functional data
analysis application on extreme data which deals with maximum value in the data
set.

In this thesis, the study has extended the functional data analysis methodology to
cover on extreme data with several substitution methods have been introduced. Some
characteristics of functional extreme data analysis such as on environmental data are
explained. The tolerance bands for functional mean extreme data is proposed using
bootstrapping method by implementing the percentile computation in determining
the upper and lower limits of the mean function.

The performance of the functional extreme data analysis is carried out. The equal
and unequal space of time cases are considered to be implemented for the functional
extreme data. The study found that only data that consists a large number of extreme
data will be performed in functional extreme data for unequal space of time. Other-
wise, a small number of extreme data is suggested to use the equal space of time to
obtain a smooth curve.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

ANALISIS FUNGSIAN BAGI DATA EKSTRIM DAN APLIKASINYA
TERHADAP DATA TABURAN HUJAN

Oleh

NOOR IZYAN BINTI MOHAMAD ADNAN

Januari 2018

Pengerusi: Mohd Bakri Adam, PhD
Institut: Institut Penyelidikan Matematik

Analisis data fungsian adalah salah satu kaedah baru yang digunakan bagi men-
gubah data berbentuk diskret atau berterusan kepada data yang berbentuk fungsian.
Kaedah statistik yang klasik kini telah dapat dianalisa menerusi lengkuk bagi ham-
pir keseluruhan jenis data dengan tiada andaian taburan atau ujian penyuaian model
diperlukan. Kajian literatur menunjukkan masin tiada kajian yang menggaplikasikan
analisis data fungsian terhadap data ekstrim yang melibatkan nilai maksima di dalam
sesebuah set data.

Kaedah analisa data fungsian ini telah dipanjangkan aplikasinya terhadap data ek-
strim dan beberapa kaedah baru juga telah di perkenalkan di dalam kajian ini.
Ciri-ciri tertentu yang dimiliki oleh analisis data fungsian contohnya terhadap data
persekitaran juga dibincang dan dijelaskan dengan terperinci. Had toleransi bagi
data ekstrim dicadangkan dengan menggunakan kaedah bootstrapping melalui pen-
giraan peratusan yang diterapkan didalam mencari had atas dan bawah purata sesuatu
fungsi.

Kemudian, ujian tahap prestasi analisis data ekstrim fungsian dijalankan. Situasi
samada jarak atau selang masa yang sama atau berbeza untuk diaplikasikan terhadap
data ekstrim fungsian juga diambil kira. Kajian mendapati bahawa hanya data ek-
strim yang besar sahaja yang sesuai bagi selang masa yang berbeza. Manakala, bagi
data ekstrim yang mempunyai bilangan data yang kecil adalah dicadang untuk meng-
gunakan selang masa yang sama bagi menghasilkan lengkuk yang licin.
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CHAPTER 1

INTRODUCTION

This chapter presents the theory of the functional data analysis and extreme value
data with some related references in the functional data along with an extreme value
application over the various field of study. Moreover, the motivation of the study,
objectives of the study, expected outcome, scope of the study and significance of the
study as well as the structure of the thesis are also described here.

1.1 Background

”Functional Data Analysis” is known as FDA and an extreme data are two impor-
tant things to be comprehended in this study. Method of functional data analysis
will be used as a main technique to the extreme environmental data. New approach
of functional data analysis might give a different point of view to the data with a
functional observations as a replacement of discrete observations. At the same time,
the extreme value data will possibly be implemented by considering only the highest
values present in the data. The development of FDA methods can be seen through
various problems occurred in many fields of study, Ramsay and Silverman (2002).
Hence, this study proposes a method development of functional data analysis for
extreme data and the application of FDA on the extreme environmental data. The
entire all three extreme value data approaches are tested to FDA which can be listed
as Block Maxima, r-Largest Order Statistics, and Peak Over Threshold (POT). The
extreme data used for this study will be transformed into functional form. The idea
of how FDA and extreme data work are explained in the next subsection.

1.1.1 Functional Data Analysis

One Function

Either raw discrete or continuous data which is widely used as a current conventional
approach in various research areas are easy to be implemented and dealt with as
numerous data are collected and presented in this form. A discrete or continuous
observations of one data set values always be represented as {x1,x2,x3, . . . ,xT }
or simply written as xt for data which are recorded in time, t for t = 1, . . . ,T
where T is the finite value of t. This conventional method gives less information
especially for an illustration of the pattern to shows the behavior of the collected data.

As can be seen in Figure 1.1, an example of plotting a raw continuous data as a
single observation over the time for t = 1, . . . ,36. The plot shows that it is not enough
evidence to obtain towards the behavior of the data. Nothing much can be achieved
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rather than a summary value of the data like a minimum, maximum, range, mean and
median value. The most general behavior that can be seen here there is an increasing
pattern along the time.

0 5 10 15 20 25 30 35

20
40

60
80

10
0

12
0

Time

V
al

ue

x1

x3

x2

xT=36

Figure 1.1: Example of plotting the 36 raw continuous data over time. Each
point treated as a single observation.

One can easily use time series analysis in obtaining the pattern of the data which
also provide forecast for the future pattern. Unfortunately, time series analysis
only work for equally time space and required for stationary assumption. However,
compared to the functional data analysis, FDA provides additional and extensive
evidence to the research that aid further analysis without any restriction where the
data can be arranged in unequal time space and no assumptions need to be followed.

Influenced by the features of FDA, the data used in this study is in functional form.
FDA basically represents the observations xt from the raw data into a functional form
or functional observation. The number of xt which is represent for the observations
of raw data is denoted as n. FDA will represents the entire xt as one function denoted
as f (t). This functional form of function f (t) contains the fitted values of ft that
are also recorded in time t, which can be written as f (t) = { f1, f2, f3, . . . , fT }. The
process of how to transform the raw of discrete or continuous data into functional
form will be discussed in Chapter 3.

Figure 1.2 shows the example of smooth curve of functional observation of function
f (t) for the fitted values of ft for t = 1, . . . ,36. The raw data of xt known as observed
values represent by white points while the fitted values of ft represent by the black
points. It is obviously illustrates that the raw data from the conventional approach is
actually has an interesting pattern to be explored which need an advance technique
such as FDA.
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There is a situation where each value of observed data xt , are equal to each fitted
values ft , where xt = ft . This is known as interpolation, where the data is trusted
with no error presents, that need to be removed. This type of function can be seen
from Figure 1.3 where all the points are joint to obtain one functional form.
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Figure 1.2: Example of smooth functional observation represented by function
f (t). The white points are the observed values or raw data xt , the black points
are the fitted values ft .
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Figure 1.3: Example of interpolation of functional observation. The raw data
have the same value with the fitted values, xt = ft .

For a large data, taking every value at time, t would be loaded for a huge number of
values, Ramsay and Silverman (2005). Thus, a smooth function is advised so that
the derivatives of the function can be obtained which enhance an excellent features
of the data.
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Therefore, there are subtle features in functional data which are not appear and
available in a raw discrete and continuous data. Besides, FDA also ables to analyze
and examine what the raw discrete and continuous data from classical statistics
can do. FDA not only deal with a single (short or long) record, nevertheless FDA
also permits independent replications, Ramsay and Silverman (2005). This types of
functional data explained in the next subsection.

Many Functions

Functional data in general consists of replication and regularity as a features. The
replication is refer to the number of subject in the data. Replication is a summariza-
tion across the curves and regularity involves an exploration of information within
the curves, Ramsay and Silverman (2005).

Instead of having only one function or one subject, the function can be replicated to
i subject for i = 1, . . . ,N, where N is the number of functional observations. Then
the ith function can be written as fi(t) with each i treated as a different subject. The
raw data values for replication i can be written as {xi,1,xi,2,xi,3, . . . ,xi,T }, and the
function fi(t) has a list of converted values as { fi,1, fi,2, fi,3, . . . , fi,T } over the time t .

Figure 1.4 depicts an example of one replication functional observation together
with the fitted values along the function for t = 1, . . . ,36. The curve is denoted
as f1(t) represents for the first functional observation. The values for this first
function denoted as f1,1, f1,2, f1,3 for the values recorded at t = 1, t = 2 and t = 3
in the function respectively or written as f1(t) = { f1,1, f1,2, f1,3}. Whereas f1,T
is the fitted value recorded at the last number of t in the first function, as in this
example, f1,T = f1,36. In general, the i replication of functions can be expressed as
fi(t) = f1(t), . . . , fN(t).

Figure 1.5 illustrates example of the functional observations with i replication for
N = 5 subjects. There are functions representing five subjects by f1(t), f2(t), f3(t),
f4(t), f5(t) with blue, black, turquoise, green and red curves respectively. The
replication of the curves from N number of subject propose and discover for the
variation occurs between or across the curves.

A new descriptive statistics for FDA towards analysis of variation found by Keser
et al. (2016) give a value added in FDA. This different approach in analyzing
variation, named as functional coefficient of variation will be completely defined in
Chapter 3.
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Figure 1.4: Example of one replication of functional observations, f1(t) with the
values of the function, { f1,1, f1,2, f1,3, . . . , f1,36}.
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Figure 1.5: Example of more than one functional observations. The first func-
tion represents the first subject by f1(t) as a blue curve. The second, third and
fourth subject represent by f2(t), f3(t), and f4(t) as a black, turquoise and green
curve respectively. The red curve be the last function that we denoted as fN(t)
represents by f5(t).
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Perspectives on Functional Data Analysis

Functional data analysis able to convert any types of data into functional form and
tremendously analyzed these data in a functional way even though each data has a
specialty in a certain field in classical statistics.

Functional data analysis aims similar purpose as classical statistics as clarified by
Ramsay and Silverman (2005) such as representing data to the advance analysis,
displaying the several features of data, indicating the significant cause of pattern and
variation among data, and describing variation of the dependent variable through the
evidence of the independent variable.

Nevertheless, FDA offers a convenient technique in data arrangement and outcome
where FDA does not require for stationary assumption and not limited to the equally
time space sample of data as applied in time series analysis. This means that the
interval of t which denoted as τ , can be unequal for t = 1, t = 2, t = 3 and so forth.
The recorded time also can vary from one subject to another subject.

Functional data is similar to multivariate data in terms of infinite dimension. This
takes some difficulties in theory and computation although it contains full of
information, Wang et al. (2015). At this point, FDA modelling and analysis require
a reduction in dimension and smoothing assist as an instrument of standardization,
Wang et al. (2015).

The finest occurrence in FDA is an easy way in performing measurement error
since each subject observes for one repeated measurements, and the time recorded
in unequally space for every subjects, Wang et al. (2015). On the other hand, FDA
gives challenge that caused by the small covariance operator in functional regression
and functional correlation measures which encourage the inverse operators to be
limitless, Wang et al. (2015).

Functional data will take a few methods or processes to convert a raw data into
a functional data. Ramsay and Silverman (2005) explain the details about the
transforming process and all methods regarding to the functional data analysis. This
process are also easy to be practiced as the functional data analysis is unrestricted
by any distribution assumption which is no specific assumptions need to be followed
and no goodness of fit test is needed, Ramsay and Silverman (2005).

Basically, an essential assumption of FDA is smoothness, however noisier and less
frequent data also permitted, Ramsay and Silverman (2002). Through this functional
data, the first view easily detected by eyes are the characteristics and the pattern of
the data either increasing, decreasing or fluctuate.
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As a preliminary step, the first and second derivatives of the function yield the
changes rate and the acceleration of the data respectively. Furthermore, the addi-
tional exploration in FDA will create an excessive outcome. The research emphasis
the first generation of FDA that deal with the univariate data cases. Wang et al.
(2015) classify a complex data objects, multivariate data, correlated data comprises
of images or shapes as the next generation in FDA.

The key assumption of FDA is the smoothness of the data where this is to distin-
guishes the FDA from the multivariate analysis. The smoothness will take into
account for an error or noise and the concept of standard regression analysis model
is implied.

Consequently as motivated by the error model from a linear regression model,
the raw data can be fitted using the functional error model that can be written
in a general form as x = f + e with x represents for the observed values from
the raw data, f represents the fitted values of smooth function f (t), which are in
interval of time, denoted as τ while e is the error term, assumed to be independent
and identically distributed with mean zero and variance is constant, Ramsay and
Silverman (2005).

Figure 1.6 shows example of the model in graphically for t = 1, . . . ,36. The ob-
served value, the fitted value and the value for an error are indicated as xt , ft and et
respectively at a specific time t. As a result, one can conclude that, the functional
error is xt = ft + et , where x̂t = f̂t and error can be obtained by et = xt − f̂t at a
respective time t.
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Figure 1.6: The error model of the smooth function f (t). The observed value
denoted as xt , the fitted value denoted as ft and the error is represented by et .
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Functional Data Analysis Process

The functional data analysis flow process starts from the beginning of the raw ob-
servation to the end of the smoothing function techniques represent in Figure 1.7.
The R and S+ software for FDA are available in Ramsay et al. (2009) and Douglas
et al. (2005). As an important step, the raw discrete or continuous data have to be
transformed into the functional data. According to Ramsay and Silverman (2005),
there are two methods of transforming either by interpolation or by smoothing.

Discrete Observations

Interpolation Smoothing

Fourier

Least Squares
Approach

Roughness
Penalty

Figure 1.7: Flow diagram of functional data analysis process from raw obser-
vation to functional observation. (Ramsay and Silverman, 2005)

The smoothing technique used if the data required an error to take into account
in order to obtain a smooth function, Ramsay and Silverman (2005) and Ramsay
et al. (2009). While Ramsay and Silverman (2005) state that interpolation scheme
which simply connecting all observations using straight line segment might be not
an adequate for derivative information, compared to the more advance extraordinary
feature such as smoothing technique.

This study considers a smoothing method in a way to represent a non-parametric
continuous-time functions by basis expansion methods, where the function f (t) can
be examined by
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f (t) =
K

∑
k=1

βkφk (1.1.1)

where K is the maximum number of basis function for k = 1, . . . ,K. The coefficients
of basis function is denoted by βk and φk is the basis function. The basis function
φk will be followed a basis system which have several series of functions used to
represent the functional data. The familiar series of basis system function can be
listed as fourier basis, spline basis, constant basis and monomial basis systems.
Ramsay et al. (2009) focus more on fourier and spline basis systems because these
systems are complementary of constant and monomial basis systems.

Basically, the fourier basis is usually used for periodic functions which refer to
the time series data, while the spline basis intended for non-periodic functional
data, Ramsay and Silverman (2005) and Ramsay et al. (2009). There are lots
of other potential basis systems such as exponential, polygonal, polynomial and
step-function, but those basis systems seem to be less important to functional data
analysis, Ramsay et al. (2009). Fourier basis system is selected as a basis function
since the study applies a periodic data to be implemented.

A least squares criterion is used in determine the basis coefficient, βk by minimizing
the sum of squared residuals (SSE) which can be written as

SSE =
T

∑
t=1

[
xt −

K

∑
k=1

βkφk(t)

]2

, (1.1.2)

where ∑
K
k=1 βkφk(t) represent the function f (t) from Equation (1.1.1). The Equation

(1.1.2) can be simplifies as

SSE =
T

∑
t=1

[xt − ft ]2 (1.1.3)

where xt is the observed value and ft is the fitted value from the functional
obseration f (t). The least squares approach has a normality assumption for the
model xt = ft + εt where the residuals εt are assumed to be independently and
identically distributed with zero mean and variance σ2 must be constant, Ramsay
and Silverman (2005).

In order to prepare the basis function for each basis system, it is necessary to
determine the maximum size of the basis required, denoted as K. This number
of basis, K will fit the smooth function well. Ramsay and Silverman (2005) and
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Ramsay et al. (2009) indicate two ways in defining the number of basis which is
through the Least Squares approach and Roughness Penalty process.

The Least Squares is the simplest approach to obtain a small value of K which is K
is less than T , whereas the following powerful process of Roughness Penalty will
be conducted to compute a large number of K for K is greater than T , Ramsay and
Silverman (2005) and Ramsay et al. (2009).

The simplest and straightforward way in determining the number of basis, K is by
calculating the unbiased estimated of residual variance, s2 through the formula de-
fined by

s2 =
1

T −K

T

∑
t=1

[xt − ft ]2 (1.1.4)

where s2 is the unbiased estimated value of residual variance, σ2. The maximum
value of K then is determined by adding the value of K starting from K = 1 until the
value of s2 shows a small decrease that fails to decline in substantial amount. This
methods can easily be seen by plotting the value of variance estimated, s2 versus the
number of basis, K.

Figure 1.8 shows an example of s2 against number of basis K plot, for K =
1, . . . ,720. Through a very sharp and close view that need to handle with care,
K = 121 is chosen as the number of basis function since s2 significantly fails to
decline substantially after K = 121. There are more than one values show for lower
s2, but not selected as K.

0 100 200 300 400 500 600 700

30
0

35
0

40
0

45
0

50
0

55
0

Number of basis functions

V
ar

ia
nc

e 
es

tim
at

e

Figure 1.8: The relationship of number of basis K and the unbiased estimated
of residual variance for K = 1, . . . ,720.
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This is for the reason that, by adding more value of K possibly will not change
the smoothness to a smoothest curve, yet will under smooth the data, Ramsay and
Silverman (2005).

The relation between the number of basis function and the estimated variance
besides, can be retrieved easily by using a deviance analysis, Jamaludin and
Jemain (2011). The model in Equation (1.1.4) is approximate to a multiple of χ2

with T −K as a degree of freedom, Jamaludin and Jemain (2011). Thus, the anal-
ysis of deviance consists of p-value from χ2 test of reduction in deviance for each K.

Table 1.1 shows an example of deviance analysis with several values of p-value of
reduction in deviance for K = 113, . . . ,129. The analysis supposedly represents the
p-value from K = 1, . . . ,720. The significant value is K = 121 as p-value is less
than 0.05. This K which also has a largest reduction in deviance of 20.4477 and
show that s2 is fails to decline for the next value of K. Through these plotting and
analysis of deviance approaches, an appropriate value of K can be obtained. It is
important to select a suitable K in order to obtain a smooth function, since a very
small value of K lead to over smooth the curve while a very large value of K gives
an under smooth curve.

Table 1.1: Example of the analysis of deviance for respective value of K.

Basis,K Estimated Variance,s2 Reduction in Deviance p-value

113 492.5549 0.3064 0.8579
115 491.3333 1.2216 0.5429
117 491.2973 0.0359 0.9821
119 492.6675 -1.3702 1.0000
121 472.2198 20.4477 < 0.0001
123 473.7527 -1.5329 1.0000
125 474.1958 -0.4430 1.0000
127 475.7003 -1.5046 1.0000
129 476.5167 -0.8164 1.0000

Smoothing penalties are introduced to reduce noise in measurements and very
useful when the value of K is large. This study will be used both least squares and
roughness penalty approaches in order to gain an appropriate results of smoothing.
Roughness penalties is suit well for general problems in FDA and practical for an
extensive range especially in smoothing problems. It also provides a good estimation
in derivatives and can be represented by penalized residual sum of squares (PENSSE)

PENSSE =
T

∑
t=1

(xt − ft)2 +λ

∫ [
f
′′
(t)
]2

dt (1.1.5)
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where f
′′
(t) is a second derivative of function f (t) which measures for a roughness

of f (t), and λ is a smoothing parameter that stabilized fit to the xt and roughness.

The significant value of K define in the previous least squares approach with the
respective value of basis function, φk is used as a reference value in the roughness
penalty approach. In roughness penalty method, the parameter λ represents a
smoothing parameter which identifies the amount of the smoothing that best
represent K.

There are few conditions to be concerned in determining the value of λ . A very
small value of λ lead the curve turn into more variable as the roughness consists
of fewer penalty. For λ → 0, then each of the observed value is equal to the fitted
value, where xt = ft for all t and the curve f (t) is interpolate which will fit the
data well as roughness is less. In contrast, if λ is very large, the curve is more
smoother and at the same time less to fit the data. Whereas as λ → ∞, there is no
penalty in roughness that nearly results to the standard linear regression, Ramsay
and Silverman (2005).

Figures 1.9 shows an example of the result for a small value of λ , for t = 1, . . . ,36.
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Figure 1.9: Example of the illustration of the curve for a small value of λ for
n = 36.

The curve is slightly to have a smooth function, however it is more variable and more
noises are taken into account since λ have too small value. Figure 1.10 depicts an
example of the result when λ → 0, for t = 1, . . . ,36. The curve is not smooth as it
approximately join the entire points in the data but then fit the data well.
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Figure 1.10: Example of the illustration of the curve for the value of λ → 0 for
n = 36.

Figure 1.11 shows an example of the result of a curve when λ has a large value,
for t = 1, . . . ,36. The function obtained seems illustrates a smooth curve, but more
accurately the curve is slightly over smooth.
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Figure 1.11: Example of the illustration of the curve for a large value of λ for
n = 36.

Figure 1.12 displays an example of the result of a curve for λ →∞, for t = 1, . . . ,36.
As the λ value approach ∞, the function obtain a smooth curve, nevertheless the
curve is approximate to a straight line. Therefore, it is important to chose the appro-
priate value of K and λ in oder to obtain for the best smooth curve which at the same
time can fit the data well.
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Figure 1.12: Example of the illustration of the curve for the value of λ → ∞ for
n = 36.

The generalize cross-validation (GCV) suggested by Craven and Wahba (1979), is
used to determine the best value of the λ . The GCV can be calculated by the follow-
ing formula

GCV(λ ) =

(
T

T −d f (λ )

)(
SSE

T −d f (λ )

)
(1.1.6)

where d f (λ ) is a degree of freedom for smooth function. Here, λ gives the smallest
value of GCV will be chosen, Ramsay and Silverman (2005) and Ramsay et al.
(2009). The smallest value of GCV that have to be chosen can be aided by plotting
the log10 λ against log10 GCV, King (2014).

Some suitable values of λ are selected to setup precisely and will be tested in order
to determine the value of GCV. As an example, Table 1.2 shows several values
are setup for λ to obtain the values of GCV, together with the values of log10 λ

and log10 GCV respectively. The smallest value of GCV is 521.2416 at λ = 1.
The values of log10 λ and log10 GCV are use to plot the relationship between λ

and GCV as an alternative to search for a smallest value of GCV, as displays in
Figure 1.13.

There is condition where the least squares and roughness penalty give a slightly
similar smooth function like in the Figure 1.14. This situation shows that fitting with
least squares consider is an adequate result since there is no large lose in the fitted
curve.

14



© C
OPYRIG

HT U
PM

Table 1.2: Example of the analysis of deviance for respective value of K.

λ GCV log10 λ log10GCV

0.001 566.3580 -3 2.7531
0.01 557.1718 -2 2.7459
0.1 529.4524 -1 2.7238
1 521.2416 0 2.7170
10 523.9413 1 2.7192
100 532.3276 2 2.7261
1000 537.6095 3 2.7304
10000 538.3993 4 2.7311
100000 538.4820 5 2.7311
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Figure 1.13: The relationship between log10 λ and log10 GCV. The value of
log10 λ = 0 result for the smallest value in GCV.

Nevertheless, some values of λ obtain from GCV leans toward an under smooth
or over smooth the functions. In this case, the fundamental method of trial and
error is needed to indicate the most appropriate λ through a self judgment, Yaraee
(2011). Moreover, the value of K in the least squares approach are also difficult to
be chosen. Thus, one believes that the best way in selecting the value of K and λ is
to use the value which a fitted curve seems closer to the raw data.

A new selection model method in functional extreme data analysis is propose since
the extreme data in FDA facing the same problem in selecting the value of K. This
is due to a small data represents in extreme data. The proposed method is properly
discussed in Chapter 5.
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Figure 1.14: The smooth curve from least squares and roughness penalty
method. The black line is a least squares smooth and the red line is a rough-
ness penalty smooth for 36 observations with K = 7 and λ = 0.1.

1.1.2 Extreme Value Data

The extreme value data is fundamentally from extreme value theory with mathemat-
ical dominated by Leadbetter in 1980 and statistically explored by Gumbel in 1958.
The details method and theory of extreme value can be found in Coles (2001) and
Leadbetter and Rootzen (1988). This study will not discuss the detail of the theory
and method in extreme value since the study simply implement the data from the
extreme value approaches.

The tail of the distribution in classical statistics is an important thing to care of
as it might influence the results of the analysis for most of the time, which can
be categorized as short tail, long tail, heavy tail and etc. This tail can sometimes
give a difficulty in the analysis that lead for other methods or approaches to be
considered to solve for the problems occurred. On the other hand, the behavior of
the tail distribution is an important thing to study. The extreme value data is a study
that concerns for the tail distribution behavior either at the minimum or maximum
values of X1,X2,X3, . . . ,Xn that are independent and identically distributed random
variables, Haan and Ferreira (2006). Furthermore, extreme value data take into
account for the large or small levels of process which involve the rare events, Coles
(2001).

This study focus on maximum values as a data. The method of minimum values in
the data will be not consider as a data. Let X1,X2,X3, . . . ,Xn a random variables of
independent and identically distributed with distribution function F . The extreme
value can be denoted as
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Mn = max{X1, . . . ,Xn} (1.1.7)

where Xi in time scale measurement for i = 1, . . . ,n and Mn is the maximum value
of observations over n time units, Coles (2001). As an example, if n is the number
of observations in a months, then Mn is a monthly maximum value.

The extreme value data consists of three approaches in order to obtain the extreme
data which can be listed as block maxima, r-largest order statistics and peak over
threshold data as shown in Figure 1.15.

Extreme
Value Data

Block
Maxima

Data

r-Largest Order
Statistics Data

Peak Over
Threshold

Data

Figure 1.15: The diagram of extreme value data approaches which are block
maxima, r-largest order statistics and peak over threshold data. (Coles, 2001)

The block maxima takes the data based on the highest value in every n number of
observations, the r-largest order statistics choose the data based on the highest r
order value in n observations, while peak over threshold data picks the data that fall
above the threshold line.

These three extreme data approaches have the advantages and disadvantages
according to the type of the data set used to be implemented on the analysis. Plus,
not all the three approaches can be applied on the same data set where it is depends
and can be influenced by the analysis to be carried out.
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Block Maxima Data

The idea of extreme data is starts with the block maxima approach. This approach
is obtained through the blocking time system of equal length of n, then will create
m number of blocks which generates a block maxima series of Mn,1, . . . ,Mn,m. The
blocking system has a critical concern in choosing the size of the block. A small
length of block lead to the extrapolation and estimation bias. While large length of
block will give a few number of block maxima lead to large estimation variance. For
that reason, Coles (2001) suggests to block the data by one year period of length, n
or known as annual maxima.

Figures 1.16 and 1.17 show an example of the length of the block maxima which
could affect the raise of the bias if too small or too large length of block will be
chosen. As can be seen in Figure 1.16, the block has a small n where the extreme
values from each block are too close that give an inaccurate result for estimation.
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Figure 1.16: Example of too small n of blocking system of block maxima for 365
days.

Figure 1.17 shows an example of the block that has a large n which give a large
distance of extreme value from every block that contribute to a large variation in
estimation.

Thus, a big size of block gives a small number of data, while a too small size of block
provides a lot of data which is close to each other. The notation for the value of block
maxima, Mn,i for i = 1, . . . ,m, then can be simplified into Zi. The value taken from
each block maxima again can be written as
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Mn,i = max
{

X1,i, . . . ,Xn,i
}

(1.1.8)
Zi = Mn,i. (1.1.9)

As the number of block represents as m, then for the maximum value from m block
will be written as Zi, . . . ,Zm for a correspond time length n.
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Figure 1.17: Example of too large n of blocking system of block maxima for 365
days.

r-largest Data

The block maxima limitation in obtaining a large number of data has come to a new
search of extension for other approach. Taking more than one largest value from
the block possibly will gain the amount of extreme data rather than taking only one
maximum or minimum value from each block. Then, this approach is called as
r-largest order statistics which is based on the behavior of the next largest values in
the block. The other extreme order statistics of equal time length n in block i defined
by

M(r)
n,i = rth largest of

{
X1,i, . . . ,Xn,i,

}
where k is the value of order statistics. Dissimilar with Mn,i from block maxima,

M(r)
n,i from r-largest order statistics consists of several values of order r. These values

are influenced by each other as they connected by M(1)
n,i ≥M(2)

n,i ≥M(3)
n,i . . .≥M(r)

n,i .
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The r-largest order statistics series are then can be obtained by blocking the data into
m blocks. Determine the value of r to be taken from each block as r usually setting
as equal for every block, unless there are less data in some blocks . Each block will
be denoted as i and the values of largest ri recorded as zi which can be simplified as

M(ri)
n,i = z(1)i , . . . ,z(ri)

i , for i = 1, . . . ,m. (1.1.10)

The appropriate choice of values of r is required to avoid other uncertainty to be
occurred such as high variance for a small values of r and leading to bias for a large
r. As usual practice, r is selected to be as large as possible, follow the model solving
adequacy.

Figure 1.18 shows an example of how the 3rd largest order statistics values are taken
from each of the block. Then only the most three largest values from each block that
represent by the solid black points will be treated as a data to be analyzed. This 3rd

largest data can be written as M(3i)
30,i = {z

(1)
i ,z(2)i ,z(3)i } as n = 30.
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Figure 1.18: Example of 3rd r-largest order statistics values taken from the each
block. The solid points are selected as a data since the points represents the
three highest values in each block.

The advantage of the r-largest approach is the size of the sample or data can be
increased. The extreme data from block maxima and r-largest order statistics still
have a limitation. The extreme data obtained are the highest values from each block.
It is possibly that the other values from other block still represent a higher value
than the selected values. It seems like a wasteful approach if other extreme data are
available, Coles (2001). The third approach in obtaining the extreme data is applied
and briefly introduce in the next subsection.
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Threshold Data

Threshold approach is not follows the blocking procedure as practiced in block
maxima and r-largest order statistics approaches. This contrast approach takes all
the values above the threshold u, as an extreme data. The exceedances can be written
as {xi : xi > u} and denoted by x1, . . . ,xk. As well as block maxima approach,
threshold approach has a problem in selecting the threshold value. This is due to the
balance between the bias and the variance. A too low threshold will lead to the bias
as the asymptotic basis of the model seems to be violate. While a few extreme data
will be produce for a too high threshold which lead the variance to be high, Coles
(2001).

These two problems clearly assist by graphical display as in Figures 1.19 and 1.20
for a well understanding. Figure 1.19 depict the example of too low threshold that
involve too many exceedances treated as extreme data.
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Figure 1.19: Example of extreme data from a too low threshold approach. The
points over the threshold are treated as extreme data.

Figure 1.20 depict the example of too high threshold that involve too few ex-
ceedances treated as extreme data.

As a result, the threshold will be selected as low as possible where the model pro-
viding a reasonable approximation. There are few method used in selecting and
determine an appropriate threshold such as by the graphical method or by follow-
ing the some rules of thumb, Esther (2014). The details of these method will be
explained in Chapter 4.
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Figure 1.20: Example of extreme data from a too high threshold approach. The
points over the threshold are treated as extreme data.

1.2 Motivation

Flood and drought are the calamity that can be cause by imbalance amount of
rainfall and amount of run off in the certain area. Flood happen when the amount of
rainfall is greater than the outflow of water, Jamaludin et al. (2011). Both disasters
will give a great impact to agriculture sector and cause death if the disaster is
seriously befallen. Hence, study the characteristics of the rainfall is one of the early
preparation to overcome these disasters in order to reduce any lose, Jamaludin and
Jemain (2011).

Markov chain models are often used to fit the rainfall occurrence. While two
parameters gamma distribution, exponential distribution, weibull and lognormal are
among the theoretical distribution used to fit the rainfall attribute, Ison et al. (1971),
Cho et al. (2004), Bhakar et al. (2006).

Mixed-exponential is the best fit distribution for hourly rainfall data among expo-
nential, gamma and weibull. While the mixed lognormal is the most appropriate
distribution for describing the daily rainfall amount compare to lognormal and skew
normal, Jamaludin and Jemain (2011).

On the other hand, time series analysis is often used to analyse environmental topics
such as climate, hydrology, ozone level and etc. However, since the time series plots
often resemble combined curves of acceleration and deceleration in either a positive
or negative manner, one can conclude that some of the variation among curves could
be explained at some level by derivatives, Ramsay and Silverman (2005).
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The data in a functional form is more appropriate for derivatives rather than simply
vectors of measurements over time, Ramsay and Silverman (2005). Besides,
functional data analysis provides an extremely useful plot of velocity versus
acceleration and also adds a modern twist on typical analysis, Allen (2011). Allen
(2011) claims that functional data analysis compliments time series analysis fairly
well. Nevertheless, functional data analysis offers a convenient technique in data
arrangement and outcome where functional data analysis does not require for
stationary assumption and not limited to the equally time space sample of data as
applied in time series analysis, Ramsay and Silverman (2005).

1.3 Problem Statement

Functional data analysis has shown a various application in many fields by Ullah
and Finch (2013), including in the environmental studies area. The early detection
in Western region of air environmental studies are in the year 2007 by Meiring
(2007) in Germany and Gao (2007) in Southern California, followed by Torres
et al. (2011) in Spain while Shaadan et al. (2012) and Shaadan et al. (2014) from
Malaysia represent the Eastern region.

In the recent years, the environmental application of functional data analysis has
shown an increasing number of studies either in the Western or Eastern region.
Jamaludin and Jemain (2011) starts to explore the rainfall data by using functional
data analysis in Peninsular Malaysia, followed by Hamdan et al. (2013) and the
latest by Wan and Jamaludin (2015). These three studies describe the characteristics
of daily rainfall data by region and explore the similarity of the pattern for each
region.

Many unexpected events occurred currently in the environment that need to be
concerned as it cause a huge number of death and also damage to the affected areas
especially by flooding events. Excessive rain is one of the floodplain which happen
in almost of the country in the world including Malaysia at the end of the year 2014.
The exploration on daily data is not appropriate to be applied to explore the behavior
of these rare events.

King (2014) explores the functional data analysis on the climate change weather
data instead of daily data. The climate change data also important in observing
the changes in average weather condition but not involve the rare events such as
Tsunami wave in Acheh 2004, a big flood in Malaysia in 2014, El Nino, La Nina
phenomenon and etc.
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Based on the literature review, all the previous studies on functional data analysis are
concern only for daily rainfall data instead of extreme rainfall data that represent the
rare events. Yet more studies of functional data analysis in environment especially
for extreme events are needed to discover a huge and wider analysis which can not
be done by discrete data.

In order to completely observe these rare events, a study of extreme data has to
be done. The implementation of functional data analysis on extreme data can be a
perfect match to analyse the rare events comprehensively. The aims of the study is
to analyse the extreme data by using functional data analysis with the descriptive
statistics exploration on rainfall data.

1.4 Objective

The study proposes a method development in functional extreme data analysis
(FEDA) and the application on environmental data. The objectives of the study are
to:

1. introduce functional data analysis (FDA) method to extreme data i.e. func-
tional extreme data analysis (FEDA).

2. obtain smoother function in functional extreme data analysis (FEDA) by using
Corrected Akaike Information Criterion (AICc) and Smoothing Index Rank
(SIR).

3. develop tolerance bands for functional extreme data analysis (FEDA) based on
bootstrapping method.

4. conduct an application of functional extreme data analysis (FEDA) on rainfall
data.

1.5 Expected outcome

The uses of FDA in extreme data constitute the finest way in performing the rare
events. The general expectation of this unification is to propose a new theoretical
development for functional extreme data analysis (FEDA) for univariate cases. This
method is extended to the threshold exceedances which the value for the mean is
determined by the method of the rules of thumb. The results obtain will contribute for
general features of FEDA that need an evaluation in preparing a fitted curve. The use
of simulation data from generalized extreme value distribution and an application of
a rainfall environmental data for both FEDA and threshold methods are also proposed
to show and proved for the reliability of the outcome.
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1.6 Significance of the study

The environmental data can be a very useful basis to study and monitor the specific
critical area. This can be seen more clearly by the curve which represent the
information in a different way and in a well view. Since many unexpected event
over the world in this recent year that is caused by the unstable environment cyclic,
these events recorded as rare events. These rare events might give a big impact to the
world once it happened. Thus results from these types of data are greatly needed for
a several countries and even to the world in estimating the future. The purpose of the
thesis is to reduce damage from any natural disasters such as flooding, earthquake
or huge wave by giving an alarm or alert on specific time. Study on extreme rainfall
data allows decision makers to avoid or reduce flood which can affect on loses
of economy, to construct water management system and also to advice insurance
against water damage, Ender and Tong (2014).

1.7 Scope of the study

There scope of the study and its relevance are as follows:

1. The study explores the functional data analysis on extreme data in descriptive
statistics stage as the extreme data are different with the normal data. Besides,
there are no references for functional data analysis on extreme data except one
reference on climate change data.

2. The study uses the fourier basis function system for functional data analysis
on extreme data since it is periodic data.

3. The study uses to block the raw daily data by month for each year in appli-
cation to extreme rainfall data since the study have the whole complete daily
data set as suggested by Coles (2001).

4. The study applies the functional data analysis method on extreme rainfall data
to five stations in Peninsular Malaysia to represent the north, south, east, west
and middle areas for 30 years period of data.

5. The study uses only one parameter which is rainfall in application to real data.

1.8 Overview

This thesis chapters are divided into seven chapters start from introduction of the
study to the recommendation for future work with each chapter have their own
importance to the thesis. Chapter 1 introduces briefly of the background of the study
related to the theory of FDA and method in determine the extreme data. Specifically,
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the objectives of the study, how this thesis is motivated, what are the significance
of this study that will contribute more or less to the country otherwise to the world,
the expected outcome of the study and what are the limitation this study facing are
stated here.

Chapter 2 represents some review on functional data analysis in environmental
application with a table of summary comparing previous studies in functional
data analysis application on rainfall data also provided. Chapter 3 discusses an
implementation of methodology between FDA and extreme data from block maxima
and r-largest approaches. As well as simulation and real data are tested along with
an appropriate results and conclusion. An implementation of methodology between
FDA and threshold data are extended in Chapter 4 with the results and conclusion of
the simulation and application to real data presented in this chapter.

Chapter 5 defines a new approach for model selection in FDA for extreme data by
introducing the corrected Akaike Information Criteria (AICc) and Smoothing Index
Rank (SIR). A new concept in finding a tolerance bands for extreme data in FDA
is discussed in Chapter 6. The additional of the latest set of rainfall data from five
stations are performed in Chapter 7 and the recommendation for the future work is
presented in Chapter 8.
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