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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment
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SUCTION

By

NURUL SYUHADA BINTI ISMAIL

July 2018

Chairman: Norihan binti Md. Arifin, PhD
Institute: Institute for Mathematical Research

At the surface of the object in the flow field, there exist stagnation points when the
fluid is brought to rest effected from the object. This stagnation region experiences
the highest pressure. This thesis studies some problems in stagnation point region
by considering five problem in different situation. The five problems considered
are stagnation point flow over exponentially shrinking sheet, stagnation point flow
over shrinking sheet in homogeneoues heterogeneous reactions, MHD stagnation
point flow over shrinking sheet, MHD stagnation point flow over shrinking sheet in
nanofluid and unsteady MHD stagnation point flow over shrinking sheet. Shrinking
sheet and suction parameter is considered in all the problems. The partial differ-
ential equations for each problem are first transformed into similarity equations in
ordinary differential equations form by similarity transformations. Then, the equa-
tion obtained are then solved numerically by using the bvp4c function and shoot-
ing method. We used commercially available software which is Maple to generate
the shooting technique where Runge-Kutta method together with Newton-Raphson
method is involved. Meanwhile bvp4c function is used in MATLAB. Comparisons
with existing solutions in literature for specific cases have been made and the present
results show an excellent agreement from previous work. It is found that dual solu-
tions exist for a certain range of shrinking and suction parameter for all problems.
Therefore, stability analysis is performed to determine the stable solutions by using
the bvp4c function. This analysis concludes that, only the first solution is stable and
physically significant while the second solution is unstable.
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ANALISIS KESTABILAN BAGI PENYELESAIAN DUAL UNTUK ALIRAN
LAPISAN SEMPADAN TITIK GENANGAN TERHADAP PERMUKAAN

MENGECUT DENGAN SEDUTAN

Oleh

NURUL SYUHADA BINTI ISMAIL

Julai 2018

Pengerusi: Norihan binti Md. Arifin, PhD
Institut: Institut Penyelidikan Matematik

Di permukaan objek di medan aliran, terdapat keberadaan titik genangan apabila
bendalir terkesan untuk berehat hasil daripada objek tersebut. Titik genangan ini
mengalami tekanan tertinggi. Tesis ini bercadang untuk menyelesaikan masalah di
kawasan titik genangan dan ini dilakukan dengan mempertimbangkan lima masalah
yang berbeza dengan situasi yang berlainan. Lima masalah yang ditakrifkan ialah
aliran titik genangan terhadap permukaan mengecut secara mendadak, aliran-aliran
genangan terhadap permukaan mengecut dalam reaksi heterogen - homogen, ali-
ran titik genangan MHD terhadap permukaan mengecut, aliran genangan MHD ter-
hadap permukaan mengecut di nanobendalir dan aliran titik genangan MHD yang
tak mantap terhadap permukaan mengecut. Sebagai catatan, parameter pengecutan
dan penyedutan dipertimbangkan dalam semua masalah. Persamaan terbitan separa
untuk setiap masalah diubah menjadi persamaan kesamaan dalam bentuk persamaan
pembezaan biasa melalui penjelmaan keserupaan. Kemudian, persamaan yang diper-
oleh diselesaikan secara berangka dengan menggunakan fungsi bvp4c dan kaedah
tembakan. Kami menggunakan perisian yang tersedia secara komersial iaitu Maple
untuk menghasilkan kaedah tembakan di mana kaedah Runge-Kutta bersama-sama
dengan Newton-Raphson juga terlibat. Sementara itu, fungsi bvp4c digunakan di
MATLAB. Perbandingan dengan penyelesaian yang sedia ada dalam kesusasteraan
untuk kes-kes tertentu telah dibuat dan hasilnya menunjukkan perbandingan yang
baik daripada kajian sebelumnya. Adalah didapati bahawa penyelesaian dual telah
wujud bagi sesetengah julat paramater ketakmantapan, parameter pengecutan dan
parameter sedutan untuk semua masalah. Oleh itu, analisis kestabilan dilakukan
untuk menentukan kestabilan penyelesaian yang diperoleh dengan menggunakan
fungsi bvp4c. Kajian ini menyimpulkan bahawa, hanya penyelesaian pertama yang
stabil dan penting secara fizikal sementara penyelesaian kedua tidak stabil.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This thesis concerned with the mathematical theory of fluid flows. Fluid mechanics
is one of the major areas for the application of mathematics and has obvious prac-
tical applications in many important disciplines such as aeronautics, meteorology,
geophysical fluid mechanics, biofluid mechanics, and many others. Using a general
continuum mechanical approach, we will first derive the governing equations
(the famous Navier-Stokes equations) from first principle. We will then apply
these equations to a variety of practical problems and examine the appropriate
simplifications and solution strategies.

From a historical perspective, by the mid-1800s, the Navier-Stokes equation was
known, but couldn’t be solved except for flows of very simple geometries. Until in
year 1904, Ludwig Prandtl (1875-1953) had introduced the boundary layer approxi-
mation. The boundary layer concept had become the workhorse of engineering fluid
mechanics throughout most of the 1900s. The detailed explanation about boundary
layer will be discussed in the Section 1.2. Instead of boundary layer concept, there
are also a few of general introductions in fluid dynamics that discuss on stagnation
point, types of fluid flow, types of fluid, type of boundary conditions, dimensionless
parameters and parameters that involved in this study. Other than basic introduction
about fluid dynamics, the importance of the research, objectives and scopes of study,
and thesis organization for the whole research are also discussed.

1.2 Boundary layer Theory

To solve the problems that are related to the boundary layer, having a basic under-
standing about boundary layer theory is really important. A major revolution in
fluid mechanics occurred in 1904 when Ludwig Prandtl had introduced the bound-
ary layer approximation. His analysis simplifies the complicated Navier-Stokes and
energy equations and makes it possible to obtain solutions for the problems that in-
volve in many applications. Prandtl’s idea was to divide the flow into two regions.
First, an outer flow region that is inviscid and is described by the Euler equations.
The second one is an inner flow region called a boundary layer, which is a very thin
layer region of flow near a solid wall where viscous forces and rotationality cannot
be brushed aside. This region obeys Navier-Stokes equation but could be reduced to
much simple form, called boundary layer equation (Yunus and Cimbala (2006)).The
boundary layer interpretation is valid only for the portions of the surface for which
the main flow remains attached, that is unseparated.
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1.2.1 Types of Boundary Layer

The concept of boundary layers is central to the understanding of convection heat
and mass transfer between a surface and a fluid flowing past it. For flow over any
surface, there will always exist a velocity boundary layer and hence surface friction.
Likewise, a thermal boundary layer, and hence convection heat transfer, will always
exist if the surface and free stream temperatures differ. Similarly, a concentration
boundary layer and convection mass transfer will exist if the surface concentration
of a species differs from its free stream concentration. Thus, velocity, thermal, and
concentration boundary layers are described, and their relationships to the friction
coefficient, convection heat transfer coefficient, and convection mass transfer coeffi-
cient are introduced (Bergman and Incropera (2011))

1.2.1.1 The Velocity Boundary Layer

Figure 1.1: Velocity boundary layer development on a flat plate [Bergman and
Incropera (2011)]

Velocity boundary layer develops when there is fluid flow over a surface. When
fluid particles make contact with the surface, they assume zero velocity. These
particles then act to retard the motion of particles in the adjoining fluid layer which
is responding to retard the motion of particles in the next layer, and so on until at a
distance y = δ the surface, the effect becomes negligible. With increasing distance
y from the surface, the x velocity component of the fluid u must then increase until
it approaches the free stream value u∞. The quantity δ is termed the boundary layer
thickness and it is typically defined as the value of y for which u = 0.99u∞.

The boundary layer velocity profile refers to the manner in which u varies with y
through the boundary layer. Because it pertains to the fluid velocity, the foregoing
boundary layer may be referred to more specifically as the velocity boundary layer.
It develops whenever there is fluid flow over a surface and it is of fundamental im-
portance to problems involving convection transport. In a velocity boundary layer,
the velocity gradient at the surface depends on the distance x from the leading edge

2



© C
OPYRIG

HT U
PM

of the plate. Therefore, the surface shear stress and friction coefficient also depend
on x (Bergman and Incropera (2011)).

1.2.1.2 The Thermal Boundary Layer

Figure 1.2: Thermal boundary layer development on an isothermal flat plate
[Bergman and Incropera (2011)].

A thermal boundary layer develops when a fluid at specified temperature flows over
a surface that is at a different temperature. At the leading edge the temperature pro-
file is uniform, with T (y) = T∞. The region of the fluid in which these temperature
gradients exist is the thermal boundary layer, and its thickness δt is typically defined
as the value of y for which the ratio [(Ts−T )/(Ts−T∞)] = 0.99. With increasing
distance from the leading edge, the effects of heat transfer penetrate further into the
free stream and the thermal boundary layer grows.

The thickness of the boundary layer increases in the flow direction since the effects
of heat transfer are felt at greater distances from the surface towards further down
stream. The convection heat transfer rate over places along the surface is directly
related to the temperature gradient at that location. Therefore, the shape of the tem-
perature profile in the thermal boundary layer dictates the convection heat transfer
between a solid surface and the fluid flowing over (Cengel and Ghajar (2011)).

1.2.1.3 The Concentration Boundary Layer

A concentration boundary layer is similar to the velocity and thermal boundary lay-
ers. It is the region of the fluid in which concentration gradients exist, and its thick-
ness δc is typically defined as the value of y for which [(CA,s−CA)/(CA,s−CA,∞)] =
0.99. With increasing distance from the leading edge, the effects of species transfer
penetrate further into the free stream and the concentration boundary layer grows.
Species transfer by convection between the surface and the free stream fluid is deter-
mined by conditions in the boundary layer and we are interested in determining the
rate at which this transfer occurs. Therefore, conditions in the concentration bound-
ary layer which strongly influence the surface concentration gradient also influence

3
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Figure 1.3: Species concentration boundary layer development on a flat plate
[Bergman and Incropera (2011)].

the convection mass transfer coefficient and hence the rate of species transfer in the
boundary layer (Bergman and Incropera (2011)).

1.2.2 Boundary layer Stagnation Point Flow

Figure 1.4: Psychical model for flow at Stagnation point

When the course collides with solid object and the constant speed at the stagnation
point is zero as shown in Figure 1.4, the stagnation point take place. Highest point
of the degree of the pressure, maximum values of heat transfer and mass deposition
happen in the stagnation area. Hiemenz (1911) was the first who analyzed the stable
flow in the proximity of a stagnation level. Generally, these courses are broadly used
in the product formation procedures in manufacturing. The aerodynamics extrusion
of plastic layers, the partition sheet throughout product operating conveyors, cooling
of nuclear reactors and many hydrodynamic procedures, fabric and paper sectors, the

4



© C
OPYRIG

HT U
PM

cooling of an unlimited metallic panel, cooling of electronic appliances by ventilators
and blood movement issues (Batool and Ashraf (2013)).

1.3 Typed of Fluid Flow

1.3.1 Compressible and Incompressible Flow

A flow can be classified as compressible or incompressible depending on the level
of variation of density during flow. A flow is said to be incompressible if the density
remains nearly constant throughout. Therefore, the volume of every portion of fluid
remains unchanged over the course of its motion when the flow ( or the fluid ) is
incompressible.

1.3.2 Steady and Unsteady Flow

The term steady implies no change at a point with time. During steady flow, the fluid
properties can change from point to point within a device, but at any fixed point they
remain constant. Steady flow conditions can be closely approximated by devices that
are intended for continuous operation such as turbines, pumps, boilers, condensers
and refrigeration systems (fluid mechanics). Unsteady or non-steady flow is the flow
where its properties depends on time.

1.4 Types of Fluid

1.4.1 Viscous Fluid

A viscous fluid is one which resists movement or the movement of an object through
the fluid. All fluids, liquid, gas or plasma have some measure of viscosity which can
be compared using mathematical formulas or direct measurements of movement.
Though all fluids have viscosity, a viscous fluid in the everyday sense of the term is
one that has a high level of viscosity. These types of fluid may move slowly or not
at all, depending on how viscous they are.

The type of matter a fluid is made of is the main determiner of how viscous it is,
though other factors including temperature will also affect viscosity. In general,
liquids will become less viscous as their temperature rises while gases will become
more viscous with an increase in temperature. Gases become more viscous when
they are heated because the atoms in the gas move more rapidly as temperature
rises resulting in more collisions between atoms and thus more resistance. Pressure
also can affect viscosity, though this is not generally seen in liquids because unlike
gaseous matter, liquid matter is very difficult to compress.
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An extremely viscous fluid may have properties that make it behave more like a solid
than a liquid. Butter is an example of a fluid with a high viscosity. Though butter
does flow at room temperature, it is so resistant to movement that it is difficult to
perceive it as a fluid. Heating butter will cause it to become noticeably less vis-
cous. Glass is also a liquid. When glass cools and hardens into a solid-like state, its
viscosity approaches infinity, meaning that it no longer flows at all.

1.4.2 Nanofluids

Figure 1.5: Psychical model for Nanofluid [Kakaç and Pramuanjaroenkij
(2009)]

As shown in Figure 1.5, a current type of thermal conducting fluids known as
nanofluids comprise of minimal number of nanosized particles (typically less than
100nm) which are steadily and consistently suspended in a fluid firstly used by Choi
and Eastman (1995). By including nanoparticle into the basis mixture, the trans-
fer attributes, flow and thermal transport capacity of the fluids can be improved and
the thermal conductivity of the basic solution incidentally expanded which is recog-
nized as the leading barrier in heat transfer performance (Zaimi et al. (2014)). Since
they are adequately minor to act to fluid molecules, they can run evenly via micro
passages in the absence of blocking (Khanafer et al. (2003)). Due to their various
technical and biomedical implementations, countless researches on nanofluids are
being carried out by scientists and engineers. For examples, food and drink, cancer
therapy, vehicle cooling, paper and printing and textiles, transformer cooling, oil and
gas and electronics cooling and detergency(Uddin et al. (2012)).

1.5 Heat Transfer

Heat transfer is thermal energy in transit due to a spatial temperature difference. The
basic requirement for heat transfer is the presence of a temperature difference. There
can be no net heat transfer between two mediums that are at the same temperature.
The larger the temperature gradient, the higher the rate of heat transfer. The literature
of heat transfer generally recognizes three distinct modes heat transmission that are
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Figure 1.6: Psychical model Type of Heat Transfer

conduction, convection and radiation. The term conduction is used to refer to the
heat transfer that will occur across the medium when a temperature gradient exists
in a stationary medium either a solid or a fluid. In contrast, the heat transfer that will
occur between a surface and a moving fluid when they are at different temperatures
is explained by the term convection. Energy in the form of electromagnetic waves
is emitted by the surfaces of finite temperature. Therefore, radiation between two
surfaces at different temperatures produces net heat transfer in the absence of an
intervening medium.

Heat transfer plays a major role in the design of many other devices such as car radi-
ators, various components of power plants and even spacecraft. Heat transfer is im-
portant not only in engineered systems but also in nature. Temperature regulates and
triggers biological responses in all living systems and ultimately marks the boundary
between sickness and health. Two common examples include hypothermia, which
results from excessive cooling of the human body, and heat stroke, which is triggered
in warm, humid environments (Bergman and Incropera (2011)) .

1.6 Mass Transfer

Many significant heat transfer problems encountered in practice involve mass
transfer. Mass transfer requires the presence of two regions at different chemical
compositions and mass transfer refers to the movement of a chemical species from
a high concentration region toward a lower concentration one relative to the other
chemical species present in the medium. Mass transfer can also occur in liquids and
solids as well as in gases as shown in Figure 1.7. Another factor that influences that
diffusion process is the molecular spacing. The larger the spacing, in general, the
higher the diffusion rate. Therefore, the diffusion rate are typically much higher in
gases than they are in liquids and much higher in liquids then in solids.

Mass transfer is the basis for many biological and chemical processes. Biological
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Figure 1.7: Some examples of mass transfer that involve a liquid and/or a solid

processes include the oxygenation of blood and the transport of ions across mem-
branes within the kidney. Chemical processes include the chemical vapor deposition
(CVD) of silane (SiH4) onto a silicon wafer, the doping of a silicon wafer to form
a semiconducting thin film, the aeration of waste water, and the purification of ores
and isotopes (Welty et al. (2009)).

1.7 Types of Boundary Conditions

1.7.1 Stretching and Shrinking Sheet

Figure 1.8: Psychical model and coordinate system for flow towards shrinking
sheet

As shown in Figure 1.8(a), when the velocity on the boundary shuts off a fixed point,
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stretching sheet occurs. The boundary layer flow due to a stretching surface is im-
portant in extrusion processes such as metal sheet extrusion, polymer extrusion and
other industrial processes. As depicted in Figure 1.8(b), the movement of the veloc-
ity at the boundary towards a fixed point generates shrinking sheet. There are two
conditions for the flow of a shrinking sheet to exist, namely whether a stagnation
flow is considered (Wang (2008)) to maintain the velocity of shrinking sheet in the
boundary layer or a sufficient suction is added on the boundary (Miklavcic and Wang
(2006)). Shrinking issue is applicable in the research of the environmental manage-
ment strategies, shrink swell behavior and the capillary effects in smaller pores and
the hydraulic properties of agricultural clay soils which are important for agricultural
development (Batool and Ashraf (2013)).

1.7.2 Suction

Suction is one of the methods of boundary layer control, which have the aim of re-
ducing drag on bodies in an external flow or of reducing losses of energy in channels.
This method was suggested by L. Prandtl in 1904 as one of the means of preventing
or ”delaying” boundary layer separation. Suction is applied in practice for increas-
ing the efficiency of diffusers with high compression ratio of the working fluid (with
large convergence angles) by means of delaying early separation of the boundary
layer. Boundary layer suction through slots near the trailing edge is used for increas-
ing lift and decreasing drag of aerofoils operating at large incidence angles. Suction
is also an effective means of the boundary layer laminarization, which decreases
friction losses

1.7.3 Slip and No Slip

All experimental observations indicate that a fluid in motion comes to a complete
stop at the surface and assumes a zero velocity relative to the surface. That is, a
fluid in direct contact with a solid to the surface due to viscous effects and there
is no slip known as the no slip condition. However, the flow velocity at the solid
wall is non-zero in the presence of slip flow. The fluids that exhibit boundary slip
have important technological uses like in the polishing the synthetic heart valves and
internal cavities.

1.8 Magnetohydrodynamics (MHD) Fluid Flow

In reference to the fact that the rate of cooling can be controlled by the application
of magnetic field, the study of magnetohydrodynamics (MHD) flow an electrically
conducting fluid is of considerable interest in metallurgical and metal working pro-
cesses. In metallurgical processes, the process of drawing the strips in an electrically
conducting fluid subject to a magnetic field is able to controls the rates of cooling and
stretching of the strips in order to obtain a final product with desired characteristics.
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1.9 Dimensionless Parameters

In convection studies, it is common practice to non-dimensionalize the governing
equations and combine the variables, which group together into dimensionless num-
bers in order to reduce the number of total variables (Cengel (2003)). All of the
foregoing dimensionless parameters have physical interpretations that relate to con-
ditions in the flow, not only for boundary layers but also for other flow types as well
(Bergman and Incropera (2011)). The parameters that involve in this study are:

1. Prandtl number : Provides a measure of the relative effectiveness of momen-
tum and energy transport by diffusion in the velocity and thermal boundary
layers, respectively. From this interpretation, it follows that the value of Pr
strongly influences the relative growth of the velocity and thermal boundary
layers (Bergman and Incropera (2011)). It is named after Ludwig Prandtl, who
introduced the concept of boundary layer in 1904. The Prandtl numbers of flu-
ids range from less than 0.01 for liquid metals to more 100,000 for heavy oils.
The Prandtl numbers of gases are about 1, which indicates that both momen-
tum and heat dissipate through the fluid at about the same rate. Heat diffuses
very quickly in liquid metal (Pr ≤ 1) and very slowly in oils (Pr ≥ 1) relative
to momentum (Cengel and Ghajar (2011)).

2. Nusselt number : Provides a measure of the convection heat transfer occur-
ring at the surface. The Nusselt number is named after Wilhelm Nusselt, who
made significant contributions to convective heat transfer in the first half of
the twentieth century. The larger the Nusselt number, the more effective the
convection (Cengel and Ghajar (2011)).

3. Reynolds number : After exhaustive experiments in the 1880s, Osborn
Reynolds discovered that the flow regime depends mainly on the ratio of the
inertia forces to viscous forces in the fluid (Cengel and Ghajar (2011)). We
should also expect the magnitude of the Reynolds number to influence the ve-
locity boundary layer thickness . With increasing Re at a fixed location on a
surface, we expect viscous forces to become less influential relative to iner-
tia forces. Hence the effects of viscosity do not penetrate as far into the free
stream, and the value of diminishes (Bergman and Incropera (2011)).

4. Eckert number : Named after Ernst R. G. Eckert that provides a measure
of the kinetic energy of the flow relative to the enthalpy difference across the
thermal boundary layer. It plays an important role in high-speed flows for
which viscous dissipation is significant (Bergman and Incropera (2011)).

5. Schmidt number : Provides a measure of the relative effectiveness of momen-
tum and mass transport by diffusion in the velocity and concentration bound-
ary layers (Bergman and Incropera (2011)). It was named after the German
engineer Ernst Heinrich Wilhelm Schmidt (1892−1975). Schmidt number is
the mass transfer equivalent of Prandtl Number. For gases, Sc and Pr have
similar values (0.7) and this is used as the basis for simple heat and mass
transfer.
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6. Lewis number : It is named after Warren K. Lewis (1882−1975), the Lewis
number is a measure of the relative thermal and concentration boundary layer
thicknesses. It is used to characterize fluid flows where there is simultaneous
heat and mass transfer (Cohen (2007)).

7. Sherwood number : Represents the ratio of the convective mass transfer to
the rate of diffusive mass transport (Heldman (2003)) and is named in honor
of Thomas Kilgore Sherwood. It is particularly valuable in situations where
the Reynolds number and Schmidt number are readily available.

8. Coefficient of friction : A coefficient of friction is a value that shows the re-
lationship between the force of friction between two objects and the normal
reaction between the objects that are involved. The coefficient of friction de-
pends on the objects that are causing friction. A value of 0 means there is no
friction at all between the objects. A value of 1 means the frictional force is
equal to the normal force.

1.10 Heat Generation

In the problems dealing with chemical reactions and those concerned with dissociat-
ing fluids, the research of heat generation or absorption in moving fluids is crucial.
Temperature distribution may be modified by possible heat generation effects, which
may influence particle deposition and distribution rate; therefore, the particle depo-
sition and distribution rate in the conductor wafers.

1.11 Thermal Radiation

The emission by the hot walls and working fluid cause the thermal radiation within
such systems to take place. At great operating temperature the existence of thermal
radiation modifies the thermal boundary layer structure and the thermal radiation ef-
fects are relatively significant when the difference between the sheet and the ambient
temperature is large. The importance of the heat transfer analysis of boundary layer
flow with radiation can also be seen in space vehicle re-entry, electrical power gen-
eration, solar power technology, astrophysical flows and more manufactural sectors.

1.12 Viscous Dissipation

In a viscous fluid flow, the viscosity of the fluid will change the motion of the fluid
(kinetic energy) into internal energy of the fluid by taking the energy from it. This
refers to the process of heating up the fluid. The process is called as dissipation or
viscous dissipation and it is partly irreversible. Viscous dissipation modifies the tem-
perature distribution through a key role playing like an energy source which directs
to influence heat transfer rate.
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1.13 Objectives and Scope of Study

The objectives of this study are to analyse the mathematical formulation to obtain
the numerical solutions and perform the stability analysis on the dual solutions for
the following :

1. The stagnation-point flow and heat transfer over an exponentially shrinking
sheet in the presence of heat generation.

2. The stagnation-point flow over a shrinking sheet with homogeneous heteroge-
neous reactions. The parameter involve in this problem are suction parameter
s, homogeneous reaction K, heterogeneous reaction Ks and Schmidt number
Sc.

3. The MHD stagnation-point flow and heat transfer over a shrinking sheet in the
presence of heat generation where velocity and thermal slips will be consid-
ered at the boundary.

4. MHD stagnation-point flow and heat transfer over a shrinking sheet in the pres-
ence of viscous dissipation and thermal radiation in nanofluids where velocity
slips will be considered at the boundary.

5. Unsteady MHD stagnation-point flow and heat transfer over a shrinking sheet
in the presence of viscous dissipation and thermal radiation.

The scope of this study is limited to the problems of stagnation point boundary layer
flows for steady and unsteady, incompressible and two dimensional towards shrink-
ing sheets with suction in viscous fluids or nanofluid. Slip effect at the boundary con-
dition is also considered in this study. The governing partial differential equations
for each problem considered are transformed into the ordinary differential equation
by using similarity transformation. We used commercially Maple software to obtain
the numerical result by shooting method and MATLAB software by bvp4c function.
For all the problems, stability analysis are performed for the dual solutions obtained.

1.14 Thesis Organization

This thesis consists of nine chapters. The first chapter start with the background of
fluid dynamics where the inauguration of boundary layer theory begins. The under-
standing about the boundary layer theory is the most important part to solve any kind
of problems related to boundary layer. In solving boundary layer problem, there are
some significant comprehensions that should be emphasized, like the type of fluid
flow, type of fluid, stagnation point flow, type of boundary conditions, dimensionless
parameter and also the parameters that involve in this study. The scope and ob-
jective of the study and the organization of the thesis are also included in this chapter.
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The summaries of the previous studies that were carried out by the various re-
searchers which are related to the scope of study are included in literature review
in chapter 2. This chapter has been divided into seven parts which began with the
introduction to the chapter. This study had examined five problems, because of that,
the literature review was divided into five parts which refer to the first until the
fifth problem. While the last part will discuss on the literature review for stability
analysis.

Chapter 3 will discuss on the methodology and numerical method which are divided
into 4 parts. Firstly, initiated with introduction, followed by boundary layer equation
and the last section is the numerical method. Section 3.2 will deliberate on the
derivation of the basic of boundary layer equation at the stagnation point over
shrinking sheet with suction. Then, continue with derivation of stability analysis
in Section 3.3. The last part of this chapter is Section 3.4 that confers about the
numerical method to obtain numerical solutions for every problem stated in this
study.

Next, all of the five problems in this study are given in Chapter 4 until Chapter 8
where every chapter is divided into five parts. For the first section, the section begins
with introduction of this study. Then, mathematical formulation of the problem
and the stability analysis are deliberated in the second section and the third section.
Results and discussions obtained from this study are presented in section four.The
fifth section is the conclusion section.

Finally, the conclusion for the whole problems study will be summarized in Chapter
9. This chapter will also give the suggestions for improvements in the future studies.
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Roşca, A. V. and Pop, I. (2013a). Flow and heat transfer over a vertical permeable
stretching/shrinking sheet with a second order slip. International Journal of Heat
and Mass Transfer, 60:355–364.
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