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MOLECULAR GRAPHS AND FAMILIES OF NANOSTAR DENDRIMERS 

 
 

By 
 
 

RAAD SEHEN HAOER 
 
 

June 2018 
 
 

Chairman : Mohamad Rushdan Md. Said, PhD. 
Institute :  Institute for Mathematical Research 
 
 
Chemical graph theory is a branch of mathematical chemistry which applies 
graph theory in mathematical modeling of chemical phenomena. One of the 
most active fields of research in chemical graph theory is the study of 
topological indices that can be used for describing and predicting 
physicochemical and pharmacological properties of organic compounds. 

A topological index is a single unique number characteristic of the molecular 
graph and is mathematically known as the graph invariant. Eccentric 
connectivity Index, Zagreb-eccentricity indices and Wiener index are three of 
the most popular topological indices and used in wide spectrum of 
applications in chemical graph theory. 

Motivated by the works done on characterization of mathematical properties 
for some nanostructures (dendrimers, nanotubes, nanotori, fullerenes etc.), 
we continue to investigate and obtain novelty formulas of the eccentric 
connectivity index for unicyclic chemical graph, chemical trees and some 
families of nanostar dendrimers. Also, we consider novelty formulas of the 
Zagreb-eccentricity indices for some families of nanostar dendrimers. Finally, 
novelty formulas for Wiener index of a new class of nanostar dendrimers are 
considered and new formulas associated with it are determined. 

In this thesis, we study and analyses the molecular structures and structural 
properties of chemical compounds with the objective to represent them 
graphically and construct new classes of graphs. We use mathematical 
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methods of mathematical induction and mathematical logic to arrive at our 
theorems. 

In particular, the Eccentric Connectivity Indices 𝜉(𝐺) are obtained for certain 
special graphs constructed by joining some special graphs to path graph. 
Through those graphs constructed are found 𝜉(𝐺) for graphs associated with 
some of molecular graphs such as chemical trees, chemical unicyclic graphs 
and some infinite families of nanostar dendrimers. Also, the Zagreb-
eccentricity indices 𝑍(𝐺)  are found for some families of chemical trees, 
chemical unicyclic graphs and some infinite families of nanostar dendrimers. 
Finally, novel formulas for Wiener index of some dendrimers such as 
Polyphenelene dendrimers are established. Based on these investigations 
and graphical analysis novel formulas for the topological indices of these 
chemical compounds and nanotechnology are then obtained. 
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PENGKOMPUTASIAN TIGA INDEKS TOPOLOGI BEBERAPA GRAF 
MOLEKULAR DAN FAMILI DENDRIMER NANOBINTANG 

 
 

Oleh 
 
 

RAAD SEHEN HAOER 
 
 

Jun 2018 
 
 

Pengerusi :  Mohamad Rushdan Md. Said, PhD 
Institut :  Institut Penyelidikan Matematik 
 
 
Teori graf kimia merupakan satu cabang tidang kimia bermatematik yang 
mengaplikasikan teori graf dalam pemodelan bermatematik fenomena kimia. 
Salah satu tumpuan bidang penyelidikan yang paling giat aijalankan dalam 
bidang teori graf kimia adalah pengkajian terhadap indeks topologi yang 
boleh digunakan untuk memperihalkan dan meramalkan sifat-sifat fisiokimia 
dan farmakologi sebatian organik. 

Indeks topologi adalah suatu nombor unik yang tunggal yang mencirikan graf 
molecular yang dikenali dalam matematik sebagai ciri tak berubah grafitu. 
Indeks keberkaitan berpusat, indeks berpusat-Zagreb dan indeks Wiener 
merupakan tiga indeks topologi yang paling dikenali dan digunakan secara 
meluas aplikasinya dalam bidang teori graf. 

Usaha penyelidikan yang dijalankan terhadap pencirian sifat-sifat matematik 
beberapa struktur nano (dendrimer, tiub nano, nanotori, fulleren dsb) telah 
menerbitkan minat dan motivasi dalam diri kami untuk menyelidik dan 
mendapatkan formula-formula baharu indeks keberkaitan berpusat bagi graf 
kimia unikitaran, pohon kimia dan beberapa keluarga dendrimer bintang 
nano. Kami juga cuba mendapatkan formula baru bagi indeks berpusat-
Zagreb beberapa keluarge dendrimer bintang nano. Akhirnya, formula baru 
indeks Wiener suatu kelas baru dendrimer bintang nano dikaji dan formula 
baharnya diperoleh. 
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Dalam tesis ini, kami mengkaji dan menganalisis struktur molecular dan ciri-
ciri struktur sebatian kimia dengan matlamat untuk menjelmakannya secara 
grafikal dan kemudian membina kelas-kelas baharu graf. Kami 
menggunakan kaedah induksi matematik dan juga kaedah mantik dalam 
bidang matematik untuk menghasilkan teorem-teorem yang berkaitan. 

Khususnya, Indeks Keberkaitan Eksentrik 𝜉(𝐺)  telah diperolehi bagi 
beberapa graf tertentu yang dibina dengan mencantumkan beberapa graf 
tertentu dengan graf lorong. Melalui graf yang dibina ini telah diperoleh 𝜉(𝐺) 
bagi graf yang disekutukan dengan beberapa graf molekular seperti graf 
pohon kimia, graf kimia unikitaran dan beberapa famili tak terhingga 
dendrimer nanobintang. Juga Indeks Keeksentrikan Zagreb Z(G) diperolehi 
bagi beberapa graf pohon kimia, graf kimia unikitaran dan beberapa famili 
yang tak terhingga dendrimer nanobintang. Akhir sekali rumusan indeks 
Weiner yang baharu bagi beberapa dendrimer seperti dendrimer Polifenelin 
telah dibangunkan. Berdasarkan penyelidikan ini dan cerakinan secara 
bergraf, rumusan baharu bagi indeks topologi sebatian-sebatian kimia dan 
teknologi nano tersebut telah diperolehi. 

  
 
 
 



© C
OPYRIG

HT U
PM

 

 
v 
 

ACKNOWLEDGEMENTS 
 
 

First of all, my deepest and wholehearted thanks to ALLAH, the almighty, for 
without His blessings, guidance and support, this work would have never 
been possible.   

I would like to express my gratitude to my supervisor Prof. Dato Dr. Kamel 
Ariffin bin Mohd Atan for his guidance, support, cooperation and patience 
during the period of my Ph.D study. 

I would also like to thank the all my supervisory committee members, namely 
Dr. Mohamad Rushdan, Dr. Abdul Jalil Khalaf, Dr. Roslan Hasni and Dr. 
Athirah Nawawi, for their limitless motivation and assistance throughout my 
study.  

Many thanks to all those who provide me with their insightful remarks and 
comments during my study. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



© C
OPYRIG

HT U
PM

vii 

This thesis was submitted to the Senate of Universiti Putra Malaysia and has 
been accepted as fulfilment of the requirement for the degree of Doctor of 
Philosophy.  

The members of the Supervisory Committee were as follows: 

Mohamad Rushdan Md. Said, PhD 
Associate Professor 
Institute for Mathematical Research 
Universiti Putra Malaysia  
(Chairman) 

Athirah Nawawi, PhD 
Senior Lecturer 
Faculty of Science 
Universiti Putra Malaysia 
(Member) 

Roslan Hasni, PhD 
Associate Professor 
Faculty of Sciences and Technology
Universiti Malaysia Terengganu  
(Member) 

Abdul Jalil Manshd Khalaf, PhD 
Assistant Professor 
Faculty of Computer Sciences and Mathematics
University of Kufa  
(Member) 

ROBIAH BINTI YUNUS, PhD
Professor and Dean School of 
Graduate Studies Universiti 
Putra Malaysia 

Date: 



© C
OPYRIG

HT U
PM

 

 
ix 
 

Declaration by Members of Supervisory Committee  
 
 
This is to confirm that: 
 the  research conducted and the writing of this thesis was under our 

supervision; 
 supervision responsibilities as stated in the Universiti Putra Malaysia 

(Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to. 
 
 
 

Signature:  
Name of 
Chairman of 
Supervisory 
Committee: 

 
 
Associate Professor 
Dr. Mohamad Rushdan Md. Said 

 
 
 
Signature: 

 

Name of Member 
of Supervisory 
Committee: 

 
 
Dr. Athirah Nawawi 

 
 
 
Signature: 

 

Name of Member 
of Supervisory 
Committee: 

 
Associate Professor 
Dr. Roslan Hasni 

 
 
 
Signature: 

 

Name of Member 
of Supervisory 
Committee: 

 
Assistant Professor 
Dr. Abdul Jalil Manshd Khalaf 

 



© C
OPYRIG

HT U
PM

 

 
x 
 

TABLE OF CONTENTS 
 
 

Page 
 

ABSTRACT i 
ABSTRAK iii 
ACKNOWLEDGEMENTS v 
APPROVAL  vi 
DECLARATION viii 
LIST OF TABLES xii 
LIST OF FIGURES xiii 
LIST OF ABBREVIATIONS xv 

CHAPTER 
 
 
1 INTRODUCTION 1 

1.1 Motivation and Scope of the Study 1 
1.2 Basic Definitions and Notations 3 
1.3 Objectives of Study 5 
1.4 Organization of Thesis 5 

 
2 LITERATURE REVIEW 7 

2.1 Introduction 7 
2.2 Overview of Topological Indices 7 
2.3 Eccentricity-Based Topological Indices 8 
2.4 Distance-Based Topological Indices 16 
2.5 Conclusion 21 

 
 
3 ECCENTRIC CONNECTIVITY INDEX OF CERTAIN GRAPHS 22 

3.1 Introduction 22 
3.2 Construction of Special Graphs and Their Internal Indices 22 
3.3 The Eccentric Connectivity Index of Some Special Graphs 28 

3.4 Conclusion 34 
 
 
4 ECCENTRIC CONNECTIVITY AND ZAGREB-ECCENTRICITY 

INDICES OF SOME MOLECULAR GRAPHS 35 

4.1 Introduction 35 
4.2 Eccentric Connectivity Index of Chemical Trees 35 
4.3 Eccentric Connectivity Index of Chemical Unicyclic 

Graphs 41 
4.4 Zagreb-eccentricity Indices of Chemical Unicyclic Graphs 52 
4.5 Conclusion 67 

 



© C
OPYRIG

HT U
PM

 

 
xi 
 

5 ECCENTRIC CONNECTIVITY AND ZAGREB-ECCENTRICITY 
INDICES OF SOME FAMILIES OF DENDRIMERS 68 
5.1 Introduction 68 
5.2 Eccentric Connectivity Index of Some Families of 

Dendrimers 68 
5.3 The First Zagreb-eccentricity Index for Some Families of 

Dendrimers 84 
5.4 The second Zagreb-eccentricity Index for Some Families 

of Dendrimers 89 
5.5 Conclusion 95 

 
 
6 ON THE WIENER INDEX FOR SOME FAMILES OF 

DENDRIMER 96 
6.1 Introduction 96 
6.2 Definitions and preliminaries 96 
6.3 Wiener Index of Nanostar Dendrimers 97 
6.4 An Extension of Wiener Index 103 
6.5 Conclusion 105 

 
 
7 CONCLUSION AND FUTURE WORKS 106 

7.1 Summary 106 
7.2 Future Works 107 

 
REFERENCES 108 
BIODATA  OF STUDENT 117 
LIST OF PUBLICATIONS 118 
 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

 

 
xii 
 

LIST OF TABLES 
 
 

Table  Page 
 

4.1 The representatives of vertices of 𝐴𝐶𝑛
𝑅𝑖 with their degrees, 

eccentricities and frequencies. 51 

4.2 The edge partition of 𝐴𝐶𝑛
𝑅𝑖 with respect to the representatives of 

pairs of end vertices and their frequencies when 𝑛 is even. The 
eccentricities are taken from Table 4.1. 53 

4.3 The edge partition of 𝐴𝐶𝑛
𝑅𝑖 with respect to the representatives of 

pairs of end vertices and their frequencies when 𝑛 is odd. The 
eccentricities are taken from Table 4.1. 53 

4.4 The representatives of vertices of 𝐸𝐶𝑛
𝑅𝑖 with their degrees, 

eccentricities and frequencies. 55 

4.5 The edge partition of 𝐸𝐶𝑛
𝑅𝑖 with respect to the representatives of 

pairs of end vertices and their frequency when 𝑛 is even. The 
eccentricities are taken from Table 4.4. 57 

4.6 The edge partition of 𝐸𝐶𝑛
𝑅𝑖 with respect to the representatives of 

pairs of end vertices and their frequency 𝑛 is odd. The    
eccentricities are taken from Table 4.4. 57 

4.7 The representatives of vertices of 𝑌𝐶𝑛
𝑅𝑖 with their degrees, 

eccentricities and frequencies. 60 

4.8 The representatives of vertices of 𝑌𝐶𝑛
𝑅𝑖 with their degrees, 

eccentricities and frequencies. 60 

4.9 The edge partition of 𝑌𝐶𝑛
𝑅𝑖 with respect to the representatives of  

pairs of end vertices and their frequencies when 𝑛 is even. The 
eccentricities are taken from Table 4.7. 62 

4.10 The edge partition of 𝑌𝐶𝑛
𝑅𝑖 with respect to the representatives of  

pairs of end vertices and their frequencies when 𝑛 is odd. The 
eccentricities are taken from Table 4.8. 63 

6.1 The number of repetitions of hexagons in G2[n] for 1 ≤ i ≤ n 98 
6.2 The number of repetitiosn of cut-edges in G2[n] for 1 ≤ i ≤ n 98 
 

 

 

 

 



© C
OPYRIG

HT U
PM

 

 
xiii 

 

LIST OF FIGURES 
 
 

Figure  Page 
 
2.1 The broom 𝐵11,6  9 

2.2 Graphs: 𝐵9,4, 𝐿9,4, 𝑉11,6 9 

2.3 Graphs 𝐺(𝑚) and  𝐺1(𝑚)𝐺2 respectively 10 
2.4 Dendrimers 𝑇𝑘,𝑑  for 𝑘 =  2, 𝑑 =  4 and 𝑘 =  3, 𝑑 =  4 12 

2.5 The molecular graph of 𝑁𝑆𝐵[2] 13 
2.6 Molecular graphs of dendrimers 𝑇𝑘,𝑑 17 

2.7 The dendrimer nanostar 𝐺[𝑛] 18 
2.8 The Nanostar Dendrimer 𝑁𝑆[1] 18 
2.9 The core of 𝑁𝑆𝐺[𝑛] 19 
2.10 The molecular graph of 𝑁𝑆𝐺[1] 19 
2.11 Structure of the 𝑇𝑃𝑀 dendrimer 20 

3.1 Graph 𝑊𝑛
𝑃𝑟   22 

3.2 Graph 𝐹𝑛
𝑃𝑟   22 

3.3 Graph  𝐾𝑛,𝑚
𝑃𝑟  23 

3.4 Graph (𝐾𝑛𝐾𝑚)𝑃𝑟 24 
3.5 Graph (𝑊𝑛𝑊𝑚)𝑃𝑟 25 
3.6 Graph (𝐹𝑛𝐹𝑚)𝑃𝑟 25 

3.7 Graph (𝐾𝑛,𝑚𝐾𝑎,𝑏)𝑃𝑟 26 

4.1 Molecular graphs representing the chemical compound of      
𝐶𝑛𝐻2𝑛+2 35 

4.2 Molecular graphs representing the chemical compound of          
𝐶𝑛𝐻2𝑛 35 

4.3 Molecular graphs representing the chemical compound of       
𝐶𝑛𝐻2𝑛−2 35 

4.4 Unicyclic graph 𝐶𝑛
𝑟𝑖 41 

4.5 Molecular graphs representing the chemical compound of 
𝐶𝑛
2𝑛, 𝐶𝑛

2𝑛−2𝑎𝑛𝑑 𝐶𝑛
2𝑛−4 41 

4.6 Group of Alkyl 43 
4.7 Molecular graphs representing the chemical compound of           

𝐴𝐶𝑛
𝑅𝑖 44 



© C
OPYRIG

HT U
PM

 

 
xiv 

 

4.8 Molecular graphs representing the chemical compound of           
𝐸𝐶𝑛

𝑅𝑖 44 
4.9 Molecular graphs representing the chemical compound of            

𝑌𝐶𝑛
𝑅𝑖 45 

5.1 Core of polyther dendrimer,  𝑃𝐷[0] 66 
5.2 Added graph in each branch of 𝑃𝐷[𝑛] 66 
5.3 Polyther dendrimer of generations  𝐺𝑛 with three growth 

stages, 𝑃𝐷[3] 67 
5.4 Core of Polymer Dendrimer 𝑃𝑁𝑆[0] 69 
5.5 Added graph in each branch of Polymer Dendrimer 𝑃𝑁𝑆[𝑛] 69 
5.6 Polymer Dendrimer of generations 𝐺𝑛 with two growth 

stages, 𝑃𝑁𝑆[2] 69 
5.7 Core of PAMAM dendrimer 𝑃𝑀𝐷[0] 71 
5.8 Added graph in each branch of PAMAM dendrimer 𝑃𝑀𝐷[𝑛] 71 
5.9 PAMAM dendrimer of generations 𝐺𝑛 with two growth stages 

 𝑃𝑀𝐷[2] 72 
5.10 Core of 𝑃𝑃𝐷[𝑛] dendrimer, 𝑃𝑃𝐷[0] 73 
5.11 Added graph in each branch of 𝑃𝑃𝐷[𝑛] 74 
5.12 Added graph in each last branch of 𝑃𝑃𝐷[𝑛] 74 
5.13 Glutaroyl-AMINAP functionalised hyper branched dendrimer         

PPI of generations 𝐺𝑛 with three growth stages, 𝑃𝑃𝐷[3] 75 
5.14 The Sub graph of 𝑃𝑃𝐷[𝑛] Constructed in the First Generation 75 
5.15 Core of Nanostar dendrimer 𝑁𝑆𝐷[0] 77 
5.16 Added graph in each branch of 𝑁𝑆𝐷[𝑛] 77 
5.17 Nanostar dendrimer of generations 𝐺𝑛 with two growth 

stages, 𝑁𝑆𝐷[𝑛] 78 
5.18 The sub graph of 𝑁𝑆𝐷[𝑛]Constructed in the Second Generation 78 
6.1 𝐺1[𝑛], with 𝑛 =  1, 2, 3 94 
6.2 Core of polyphenelene dendrimer 𝐺2[0] 94 
6.3 Graph added to in each branch of polyphenelene dendrimer        

𝐺2[𝑛] 94 
6.4 A branch 𝐵𝑟(𝐺2[𝑛]) of  𝐺2[𝑛] 97 
6.5 A planar bipartite graph G and its vertical cuts 100 

 
 
 



© C
OPYRIG

HT U
PM

 

 
xv 
 

LIST OF ABBREVIATIONS 
 
 
𝐺 The graph 𝐺 
𝑁 {0, 1, 2, 3, … } 
|𝑉| The number of elements in the finite set V 
𝑉(𝐺) The vertex set of 𝐺 
𝐸(𝐺) The edge set of 𝐺   
𝑑𝑒𝑔(𝑣) The number of edges incident on 𝑣 
𝑁(𝑣) Neighborhood of vertex 𝑣 
𝑇𝑛 The tree graph of order 𝑛 
𝐶𝑛 The cycle graph of order 𝑛 
𝑊𝑛 The wheel graph of order 𝑛 
𝐾𝑛 The complete graph of order 𝑛 
𝐾𝑚,𝑛 The complete bipartite graph which one partite set has 

cardinality m and other partite set has cardinality 𝑛 
𝐸𝐶𝑃(𝐺) The eccentric connectivity polynomial of 𝐺 
𝑆𝑛+1 The star graph of order 𝑛 + 1 
𝑑(𝑥, 𝑦) The shortest distance between two vertices x and y in 𝐺 
𝜉(𝐺) The eccentric connectivity index of graph 𝐺 

𝑒𝑐(𝑣) The length of a maximal path connecting v to another 
vertex of 𝐺 

𝑊(𝐺) The Wiener index of a graph 𝐺 
𝐵𝑛,𝑑 The broom graph 

𝐿𝑛,𝑑 The lollipop graph 

𝑉𝑛,𝑑 The volcano graph 

𝐺(𝑚) The graph obtained from 𝐺 by identifying the vertex 𝑉0 of 
𝐺 with an end vertex 𝑦0 of the path 𝑃𝑚+1 

𝐺1(𝑚)𝐺2 The graph obtained from adding a path 𝑃𝑚 from a vertex 
in 𝐺1 to a vertex of  𝐺2 

𝐻𝑘 The molecular graph circumcoronene series of 
benzenoid 

𝑇𝑘,𝑑 Some families of nanostar dendrimers 

𝑁𝑆𝐵[𝑛] An infinite family of nanostar dendrimer 
𝑍1(𝐺) The first Zagreb-eccentricity index of a graph 𝐺 



© C
OPYRIG

HT U
PM

 

 
xvi 

 

𝑍2(𝐺) The second Zagreb-eccentricity index of a graph 𝐺 
𝑁𝑆𝐺[𝑛] Type of nanostar dendrimers 
𝑇𝑃𝑀[𝑛] Type of nanostar dendrimer 

𝑊𝑛
𝑃𝑟 The graph is constructed by joining the end- vertex of 

                                 a path 𝑃𝑟 to any vertex on the circumference of a wheel 
                                 graph 𝑊𝑛 

𝐹𝑛
𝑃𝑟 The graph is constructed by joining the end-vertex of a  

                                 path to center vertex in the Fan graph 

𝐾𝑛,𝑚
𝑃𝑟  The graph is constructed by joining the end-vertex of a  

                                 path to any terminal vertex of set vertices 𝑛 in the 
                                 complete bipartite graph 
(𝐾𝑛𝐾𝑚)

𝑃𝑟 The graph is constructed by joining each end-vertex of 
                                 the path to any vertex of complete graph 
(𝑊𝑛𝑊𝑚)

𝑃𝑟 The graph is constructed by joining each end-vertex of a 
                                 path to any vertex on the circumference of a wheel 
                                 graph 
(𝐹𝑛𝐹𝑚)

𝑃𝑟 The graph is constructed by joining each end-vertex of 
                                 the path to center vertex of Fan graph 
(𝐾𝑛,𝑚𝐾𝑎,𝑏)

𝑃𝑟 The graph is constructed by joining each end-vertex of a 
                                 path to any terminal vertex of sets vertices 𝑛 and 𝑎 in  
                                 the two complete bipartite graphs 
𝐶𝑛𝐻2𝑛+2 Molecular graphs representing the chemical compound 

of Alkanes 
𝐶𝑛𝐻2𝑛 Molecular graphs representing the chemical compound  
                                 of Alkenes 
𝐶𝑛𝐻2𝑛−2 Molecular graphs representing the chemical compound 

of Alkynes 

𝐶𝑛
𝑟𝑖 Unicyclic graph  

𝐶𝑛
2𝑛 Molecular graphs representing the chemical compound 

of cycloalkanes 
𝐶𝑛
2𝑛−2 Molecular graphs representing the chemical compound 

of cycloalkenes 
𝐶𝑛
2𝑛−2 Molecular graphs representing the chemical compound 

of cycloalkynes 

𝐴𝐶𝑛
𝑅𝑖 Molecular graphs representing new classes of 

cycloalkanes 

𝐸𝐶𝑛
𝑅𝑖 Molecular graphs representing new classes of 

cycloalkenes 



© C
OPYRIG

HT U
PM

 

 
xvii 

 

𝑌𝐶𝑛
𝑅𝑖 Molecular graphs representing new classes of 

cycloalkynes 
𝑃𝐷[𝑛] Polyther dendrimer 
𝑃𝑁𝑆[𝑛] Polymer Dendrimer 
𝑃𝑀𝐷[𝑛] PAMAM dendrimer  
𝑃𝑃𝐷[𝑛] Glutaroyl-AMINAP functionalised hyper branched 

dendrimer  
𝑁𝑆𝐷[𝑛] Type of Nanostar dendrimers 
𝐺1[𝑛] Class of nanostar dendrimer 
𝐺2[𝑛] Polyphenelene dendrimes 
𝐵𝑟(𝐺2[𝑛]) A branch polyphenelene dendrimes  
 



© C
OPYRIG

HT U
PM

1 

CHAPTER 1 

1 INTRODUCTION 

1.1 Motivation and Scope of the Study 

Mathematical chemistry is a branch of theoretical chemistry using 
mathematical methods to discuss and predict molecular properties without 
necessarily referring to quantum mechanics. Chemical graph theory is a 
branch of mathematical chemistry which applies graph theory in 
mathematical modelling of chemical phenomena. This theory has an 
important effect on the development of the chemical sciences. One of the 
most active fields of research in chemical graph theory is the study of 
topological indices that can be used for describing and predicting 
physicochemical and pharmacological properties of organic compounds. 
Also, the topological indices have many applications in quantitative structure-
property relationship (QSPR) and quantitative structure-activity relationship 
(QSAR) to predict physico-chemical properties of chemical compounds 
(Kubiniy et al., 1999). 

Topological indices are the numerical values associated with chemical 
constitution purporting for correlation of chemical structures with various 
physical properties, chemical reactivity or biological activity. The topological 
index of a molecule is a non-empirical numerical quantity that quantifies the 
structure and the branching pattern of the molecule. Therefore, the 
topological analysis of a molecule involves translating its molecular structure 
into a characteristic unique number (or index) that may be considered a 
descriptor of the molecule under examination. Such indices are widely used 
for establishing relationships between the structures of molecular graph and 
their physicochemical properties. The first use of a topological index for the 
correlation of the measured properties of molecules was made in 1947 by 
chemist Harry Wiener (Wiener, 1947). 

Nowadays, there exists a legion of topological indices that found some 
applications in chemistry (Ritter & Wilson, 2000). They can be classified by 
the structural properties of graphs used for their calculation. Hence, The 
eccentric connectivity index (Sharma et al., 1997) and The Zagreb-
eccentricity indices (Ghorbani & Hosseinzade, 2012) are based on the 
spectrum of the graph and the  Wiener index (Wiener, 1947) are calculated 
using the distances of vertices, etc. 

Topological indices, such as the Eccentric connectivity, Zagreb-eccentricity 
and Wiener indices are graph-theoretical invariants designed to find 
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relationships between the structure of chemical molecules and their physical 
properties. These indices have been used for isomer discrimination, 
chemical documentation, drug design, quantitative structure versus activity 
(or property) relationships (QSAR/QSPR’s), combinatorial library design, and 
toxicology hazard assessments (Basak et al., 2000; Dureja et al., 2008; 
Lather & Madan, 2005c). This indices which have recently been employed 
successfully for the development of numerous mathematical models for the 
prediction of biological activities of diverse nature, have been reformed to 
overcome its limitations caused by degeneracy and insensitivity towards 
heteroatoms. Recently, a lot of results on the eccentric connectivity index 
has been obtained and some of them have been applied as means for 
modelling chemical, pharmaceutical and other properties of molecules, for 
details see (Gupta et al., 2002b; Gutman & Furtula, 2010; Sardana & Madan, 
2001). 

Nanotechnology refers to the engineering of functional systems at the 
nanoscale (Bhushan, 2010). A nanostructure is an object of bottom size of 
microscopic and molecular structures (Regan et al., 2005). A dendrimer is 
part of a new group of macromolecules that serve as photon funnels, similar 
to artificial antennas. This molecule is significantly resistant to photo 
bleaching. A dendrimer is an artificially manufactured or synthesized 
molecule built from branched units called monomers (Alikhani & Iranmanesh, 
2010). Dendrimers have received considerable scientific interest because of 
their unique molecular architecture (Vögtle et al., 2009). 

Through the above, the mathematical formulas above can be generalized to 
all special, molecular graphs and nanostar dendrimers in the same class. 
The results obtained in our research as presented will replace all above 
previous indices found by earlier researchers because these indices are 
difficult to calculate for more complicated structures. These mathematical 
formulas which give the numerical values associated with chemical 
constitution will give information on the correlation of chemical structures with 
various physical properties and chemical reactivity or biological activity. That 
is, the numerical values of these topological indices will help chemists to 
obtain description and prediction and further information on the physical and 
chemical properties for so many classes of chemical compounds and 
nanostar dendrimers. 

Finally, in this thesis we introduce novelty general formulas for three 
topological indices such as the Eccentric connectivity, Zagreb-eccentricity 
and Wiener indices to certain special graphs, chemical compounds and 
families of dendrimers. 
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1.2 Basic Definitions and Notations  

A graph 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) or simply 𝐺 = (𝑉, 𝐸) is a collection of non- empty 
finite vertex set 𝑉(𝐺) and edge set 𝐸(𝐺) (𝐸(𝐺) can be an empty set). Each 
element of 𝑉(𝐺) is called a vertex of 𝐺 and each element of {𝑢, 𝑣} 𝜖 𝐸(𝐺) is 
an unordered pair called an edge of 𝐺 where 𝑢, 𝑣 ∈ 𝑉(𝐺). Let 𝑒 = 𝑢𝑣 is edge 
of 𝐺, then the vertices 𝑢 and 𝑣 are adjacent to each other. Graph 𝐺 is said to 
be of order 𝑛 if |𝑉(𝐺)| = 𝑛 and size 𝑚 if |𝐸(𝐺)| = 𝑚. A sub graph 𝐻 of graph 
𝐺 is a graph 𝐻 where 𝑉(𝐻) ⊆  𝑉(𝐺) and 𝐸(𝐻) ⊆  𝐸(𝐺). A graph 𝐺 = (𝑉, 𝐸) is 
directed if the edge set is composed of ordered vertex pairs. A loop is an 
edge whose endpoints are equal, that is, an edge joining a vertex to its self. 
A graph G has multiple edges if more than one edge is connected to the 
same pair of vertices. A simple graph has no loop and no a multiple edge. 

A walk in a graph 𝐺 is a sequence of vertices in a graph (𝑣0, 𝑣1, … , 𝑣𝑖) such 
that each adjacent pair (𝑣0, 𝑣1), (𝑣1, 𝑣2)… , (𝑣𝑖−1, 𝑣𝑖) serves as edges in 𝐺. A 
path is a walk with no repeated vertices. A path with 𝑛 vertices is denoted 
by 𝑃𝑛. The distance 𝑑(𝑥, 𝑦) of two vertices 𝑥 and 𝑦 in 𝐺 is the length of the 
shortest (𝑥, 𝑦) path in  𝐺 . The eccentricity of a vertex 𝑢  in 𝐺  is the largest 
distance between 𝑢  and any other vertex of  𝐺 . The maximum distance 
between any two vertices in 𝐺 is the diameter of 𝐺. The minimum distance 
between any two vertices in 𝐺 is the radius of 𝐺. 

A graph 𝐺 is connected if each pair of its vertices is connected by a path. A 
graph 𝐺  is disconnected if it is not connected. A cycle graph is a graph 
consisting of a single cycle or a nontrivial closed path called a cycle. A cycle 
graph with 𝑛 vertices is denoted by 𝐶𝑛. A tree graph is a connected graph 
without cycles. A tree with 𝑛 vertices is denoted by 𝑇𝑛. The complete graph 
𝐾𝑛  of order 𝑛  is a simple graph with 𝑛  vertices in which every vertex is 
adjacent to all other vertices. A bipartite graph 𝐺 is a graph with independent 
sets 𝑉1 and 𝑉2, where 𝑉1 and  𝑉2 are partitions of 𝑉(𝐺). A complete bipartite 

graph is a bipartite graph with partite (disjoint) sets 𝑉1and 𝑉2 possessing the 
added property in which every vertex of 𝑉1 is adjacent to every vertex of  𝑉2. 
Complete bipartite graphs are denoted by 𝐾𝑚,𝑛, where | 𝑉1| = 𝑚 and | 𝑉2| =
𝑛. The bipartite graph  𝐾1,𝑛 is called a star graph, also denoted by 𝑆1+𝑚, and 
this star is a special of tree graph. A wheel is a graph with n vertices (𝑛 ≥ 4), 
denoted by 𝑊𝑛  and formed by connecting a single vertex to all vertices 
of 𝐶𝑛−1. 

In chemical graphs, each vertex represents an atom of the molecule, and 
covalent bonds between atoms are represented by the edge between the 
corresponding vertices. A connected graph with maximum vertex degree at 
most 4 is said to be a molecular graph. It is a simple graph such that its 
vertices correspond to the atoms and the edges to the bonds. This shape 
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derived from a chemical compound is often called its molecular graph, and 
can be 𝐺 path, a tree, or in general a graph. Its graphical representation may 
resemble a structural formula of some (usually organic) molecule (Trinajstic´, 
1983). A tree in which the maximum vertex degree does not exceed 4 is said 
to be a chemical tree. A vertex of a graph is said to be pendant if its 
neighbourhood contains exactly one vertex. An edge of a graph is said to be 
pendant if one of its vertices is a pendant vertex. A unicyclic graph is a 
connected graph in which the number of edges equals the number of 
vertices. A unicyclic chemical graphs is the unicyclic graph that has no vertex 
with degree greater 4. 

Dendrimers are a new class of polymeric materials. They are highly 
branched, mono-disperse macromolecules (Ashrafi & Mirzargar, 2008; 
Karbasioun & Ashrafi, 2009). The structure of these materials has a great 
impact on their physical and chemical properties. They are being 
investigated for possible uses in nanotechnology, gene therapy, and other 
fields. Carbon nanotubes are one of the most promising materials for use as 
an electron emission source owing to their substantial emission current at 
relatively low applied voltage in addition to their excellent mechanical and 
chemical stability (Ruying, 1987; Sharma et al., 1997). 

The principal concept is to formulate and prove the theorems that are 
presented in this thesis, have been discussed in the standard book of graph 
theory  (Gross & Yellen, 2005). Therefore, only important definitions and 
fundamental notations that are related to graph and nanostructures will be 
introduced in our discussion. Proofs of the theorems of the study will be 
presented in detail. References for detailed and substantive analyses of the 
proofs of related theorems will also be provided. 

Quantitative structure−property relationship (QSPR) and quantitative 
structure−activity relationship (QSAR) studies use statistical models to 
compute physical, chemical, or biological properties of a chemical substance 
from its molecular structure, encoded in a numerical form with the aid of 
various descriptors.  

In this thesis, all graphs considered are non-trivial connected simple graphs. 
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1.3 Objectives of Study 

1.     To establish the general formulas for the eccentric connectivity 
index of certain special graphs. 

2.     To obtain formulas for the eccentric connectivity and the Zagreb-
eccentricity indices of molecular graphs such as trees and 
unicyclic chemical graphs. 

3.     To consider formulas for the eccentric connectivity and Zagreb-
eccentricity indices of infinite families of polyther, polymer, 
PAMAM, Glutaroyl-AMINAP functionalized hyper branched PPI 
and 𝑁𝑆[𝑛] dendrimers. 

4.     To study the Wiener index and establish formulas for new 
classes of nanostar dendrimers as polyphenelene dendrimers 
and G1[n]. 

 
 
1.4 Organization of Thesis 

This thesis is organized into seven chapters.  

Chapter 2 presents a detailed review on the studies of topological indices, 
especially the eccentric connectivity, Zagreb-eccentricity and Wiener indices 
that supports this work. 

Chapter 3 provides the general formulas for the eccentric connectivity index 
of certain special graphs. 

Chapter 4 presents the general formulas for the eccentric connectivity and 
the Zagreb-eccentricity indices of molecular graphs such as trees and 
unicyclic chemical graphs. 

In Chapter 5, we obtain the formulas for the eccentric connectivity and 
Zagreb-eccentricity indices of infinite families of polyther, polymer, PAMAM, 
Glutaroyl-AMINAP functionalized hyper branched PPI and 𝑁𝑆[𝑛] dendrimers. 

Chapter 6 gives the general formulas for the Wiener indices of two infinite 
families of nanostar dendrimers by using cut-method. 

Chapter 7 provides summary of the work done in the determination of 
eccentric connectivity indices, Zagreb-eccentricity indices and Wiener index 
for the families of dendrimers and molecular graphs. The conclusion and 
some open problems are also given for further study. 
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All the results, mentioned in this thesis, are closely related. More specifically, 
these findings include major objectives. The first one is finding the general 
formulas of the topological indices which are related to some special graphs 
that have never been examined in the previous studies. In addition, this 
includes finding new graphs that have certain properties and the topological 
indices that can be applied in some sciences such as chemistry. In addition 
to the early works that have been mentioned in this chapter, we will find the 
general formulas for some topological indices of nanotechnology that are of 
more complicated structure that have not been studied so far. 
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