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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of 

the requirement for the degree of Doctor of Philosophy 
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GENOTYPES THROUGH MARKER-ASSISTED BACKCROSSING 

By 

USMAN MAGAJI

April 2018 

Supervisor: Professor Mohd Rafii Yusop, PhD 

Institute: Institute of Tropical Agriculture and Food Security 

Domestic production of chilli is insufficient (52% self-sufficiency level) and can hardly 

meet 70% of local demand due to some factors including the poor performance of local 

varieties under high temperatures above 42 ºC. The optimum growing temperature for 

chilli ranged from 20 to 30 ºC. Climate change especially high temperature is projected 

to negatively impact future agricultural production worldwide. According to reports, 

Malaysia will lose about 10% of major staples food by 2030 due to climate change, 

which is projected to rise average temperature by 0.3 ºC to 4.5
 
ºC and this warmer 

climate will cause a rise in sea level, and this will reduce crop yield. Development of 

improved heat-tolerant chilli varieties will contribute to self-sufficiency in chilli in 

Malaysia. Backcrossing together with simple sequence repeat marker strategy was 

adopted to improve popular Malaysian Kulai 907 (Capsicum annuum L.) for heat 

tolerance. The use of molecular markers in backcross breeding and selection 

contributes significantly to overcome the main drawbacks such as increase linkage drag 

and time consumption, in the conventional breeding approach and to speed up the 

genome recovery of the recurrent parent. The approach was adopted to introgress heat 

shock protein gene(s) from AVPP0702, a heat-tolerant variety, into the genetic profile 

of Kulai 907, a high-yielding chilli but heat sensitive. Introgression of heat shock 

proteins (Hsps) genes has shown considerable success in improvement of crop plants 

such as maize and rice against heat stress. However, no study has been reported on the 

introgression of Hsps genes in chilli for the improvement of chilli heat tolerance. The 

main objective of this study was to develop heat tolerant variety of chilli with high 

yielding potential and while the specific objectives were; to introgress Hsp genes from 

heat tolerant (AVPP0702) to high yielding Kulai 907 variety, to identify polymorphic 

molecular markers for heat tolerant characteristics and recipient parent genome 

recoveries (RPG) and to validate the backcross progenies for heat tolerance (Hsp loci). 

Local Kulai 907 variety was used as the recurrent parent and AVPP0702 was used as 

the donor parent. The parents were grown on seed trays and parental screening was 

carried out with 252 simple sequence repeat markers (SSR). DNA of young fresh 

leaves was extracted using CTAB method. Out of the 252 SSR markers, 27% showed 

clear polymorphism between heat sensitive and tolerant parent. Sixty-eight markers 
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appeared to be polymorphic and used to estimate the recovery of the recurrent parent in 

the backcross generations; BC1F1, BC2F1, BC3F1 and BC3F2. The average RPG of the 

selected four BC1F1 plants was 80.75% which were used to produce the BC2F1 

generation. BC1-P7 plant was the best in BC1F1 generation having the highest recovery 

83.40% and positive to Hsp-linked markers (Hsp70-u2 and AGi42). After three 

successive generations of backcrossing, the average genome recovery (RPG) of the 

recurrent parent in the selected plants in BC3F1 population was 95.37% and BC3F2 

population was 97.90%. Hsp gene expression analysis was carried out on BC1F1, 

BC2F1, BC3F1 and BC3F2 selected genotypes with high recovery of the recurrent parent. 

The Hsp genes are found to be up-regulated with more than 10.9-, 18.4-, 8.8- and 22.2-

fold increase when exposed to heat treatment. The pattern of Hsp expression in the 

backcross generations was similar with the donor parent (up-regulated). This confirms 

the successful introgression of stress responsive gene (Hsp) into Kulai 907 variety. 

Twelve improved heat-tolerant chilli genotypes, namely; BC1-P7-P10-P1-P2, BC1-P7-P10-

P1-P9, BC1-P7-P10-P1-P11, BC1-P7-P10-P3-P5, BC1-P7-P10-P1-P13, BC1-P7-P10-P3-P4, BC1-

P7-P10-P4-P7, BC1-P7-P10-P4-P9, BC1-P7-P10-P4-P14, BC1-P7-P10-P3-P16, BC1-P7-P10-P4-

P15, BC1-P7-P10-P4-P18 were selected from the BC3F2 population that had homozygous 

Hsp alleles from AVPP0702 and recurrent genome recovery of Kulai 907 (average 

RPG 97.9%). Most of the morphological and agronomical traits were recovered in the 

selected improved-heat tolerant genotypes from Kulai 907 such as plant height (75.94 

cm), number of days to 50% flowering (56.5%), number of fruits (91.6), stem length 

(22.3 cm), stem diameter (6 cm), fruit length (13.3 cm) and weight (17.5 cm) and total 

fruit yield per plant (862.3 g).  
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INTROGRESI GEN PROTEIN RENJATAN HABA UNTUK PEMBANGUNAN 

VARIETI CILI (Capsicum annuum L.) KETAHANAN HABA MELALUI 

KACUKBALIK BANTUAN PENANDA 

Oleh 

USMAN MAGAJI  

April 2018 

Penyelia: Profesor Mohd Rafii Yusop, PhD 

Institut:  Institut Pertanian Tropika dan Sekuriti Makanan 

Pengeluaran domestik cili adalah tidak mencukupi (tahap kecukupan 52%) dan ianya 

sangat sukar untuk memenuhi 70% permintaan tempatan disebabkan beberapa faktor 

termasuk prestasi varieti tempatan yang rendah  di bawah suhu tinggi di atas 42 ºC. 

Suhu pertumbuhan yang optima untuk cili adalah dari 20 hingga 30 ºC. Perubahan 

iklim terutama suhu tinggi dijangka memberikan impak negatif terhadap pengeluaran 

pertanian masa depan di seluruh dunia. Menurut laporan, Malaysia akan kehilangan 

kira-kira 10% daripada makanan ruji menjelang 2030 ekoran perubahan iklim, yang 

dijangkakan berlaku peningkatan suhu purata sebanyak 0.3 ºC hingga 4.5 ºC dan iklim 

panas ini akan menyebabkan kenaikan paras laut, dan ini akan mengurangkan hasil 

pengeluaran tanaman. Pembangunan varieti maju cili toleran haba akan menyumbang 

kepada tahap kecukupan cili di Malaysia. Kacukbalik bersama dengan strategi penanda 

jujukan berulang mudah telah digunakan untuk pembiakbakaan ketahanan terhadap 

haba ke atas varieti cili popular di Malaysia, varieti Kulai 907 (Capsicum annuum L). 

Penggunaan penanda molekul dalam pembiakbakaan kacukbalik dan pemilihan telah 

memberi sumbangan untuk mengatasi kekangan utama seperti hambatan pautan dan 

tempuh masa yang diperlukan dalam kaedah pembiakbakaan konvensional, dan untuk 

mempercepatkan pemulihan genom induk penerima.  Kaedah ini digunakan dengan 

mengintrogresi gen protein renjatan haba dari AVPP0702, satu varieti yang toleran 

haba ke dalam profil genetik Kulai 907 yang berhasil tinggi tetapi sensitif kepada haba. 

Introgresi gen protein renjatan haba (Hsps) telah menunjukkan hasil yang 

memberasangkan dalam pembiakbakaan tanaman seperti jagung dan padi terhadap 

tekanan haba. Walau bagaimanapun, tiada kajian yang telah dilaporkan berkaitan 

penggabungan gen Hsps  ke cili untuk penambahbaikan toleransi ketahan haba. 

Objektif utama kajian ini adalah untuk membangunkan genotip toleran haba serta 

mempunyai potensi hasil tinggi, dan objektif spesifik adalah; untuk mengintrogresi 

gen-gen Hsp dari varieti toleran haba (AVPP0702) kepada varieti Kulai 907 yang 

memberikan penghasilan tinggi, untuk mengenalpasti penanda molekul polimorfik bagi 

ciri toleran haba dan pemulihan genom induk penerima (RPG), untuk mengesahkan 

progeni kacukbalik yang toleransi haba (lokus Hsp). Varieti tempatan Kulai 907 telah 

digunakan sebagai induk penerima  dan AVPP0702 sebagai induk penderma. Induk-
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induk tersebut telah ditanam dalam bekas percambahan biji benih dan induk tersebut 

disaring menggunakan  252 penanda berulang jujukan mudah (SSR). DNA dari daun 

muda yang segar diekstrak menggunakan kaedah CTAB. Dari 252 penanda SSR, 27% 

telah menunjukkan polimorfik yang jelas antara induk sensitif dan toleran haba. Enam 

puluh lapan penanda memberikan polimorfik dan telah digunakan untuk 

menganggarkan pemulihan induk penerima dalam generasi kacukbalik BC1F1, BC2F1, 

BC3F1 dan BC3F2. Purata RPG untuk empat pokok BC1F1 terpilih adalah 80.75% yang 

telah digunakan untuk menghasilkan generasi BC2F1. BC1-P7 adalah pokok generasi 

BC1F1 terbaik yang mempunyai pemulihan tertinggi iaitu 83.40% dan positif kepada 

penanda-pautan Hsp (Hsp70-u2 dan AGi42). Selepas tiga generasi kacukbalik, purata 

RPG bagi pokok terpilih populasi BC3F1 adalah 95.37% dan BC3F2 adalah 97.90%. 

Analisis pengekspresan gen Hsp telah dijalankan ke atas genotip terpilih BC1F1, BC2F1, 

BC3F1 dan BC3F2 yang mempunyai pemulihan induk berulang yang tinggi. Gen Hsp 

didapati menunjukkan regulasi-keatas yang melebihi 10.9-, 18.4-, 8.8-, dan 22.2-ganda 

peningkatan apabila didedah kepada rawatan haba. Corak ekspresi Hsp dalam generasi-

generasi kacukbalik tersebut adalah sama dengan induk penderma (regulasi-keatas). Ini 

mengesahkan kejayaan introgresi gen ketahanan haba (Hsp) ke varieti cili Kulai 907. 

Dua belas genotip maju cili toleran haba iaitu BC1-P7-P10-P1-P2, BC1-P7-P10-P1-P9, BC1-

P7-P10-P1-P11, BC1-P7-P10-P3-P5, BC1-P7-P10-P1-P13, BC1-P7-P10-P3-P4, BC1-P7-P10-P4-P7, 

BC1-P7-P10-P4-P9, BC1-P7-P10-P4-P14, BC1-P7-P10-P3-P16, BC1-P7-P10-P4-P15, BC1-P7-P10-

P4-P18 telah dipilih daripada populasi BC3F2 yang mempunyai alel homozaigus Hsp 

dari AVPP0702 serta mempunyai pemulihan ciri morfologi dan agronomi cili Kulai 

907 (purata RPG 97.9%). Kebanyakan ciri-ciri morfologi dan agronomi telah pulih 

dalam genotip  toleran haba terpilih dari Kulai 907 seperti ketinggian pokok (75.94 

cm), bilangan hari hingga 50% berbunga (56.5%), bilangan buah (91.6), panjang 

batang pokok (22.3 cm), diameter batang (6 cm), panjang (13.3 cm) dan berat buah 

(17.5 cm), dan jumlah hasil buah per pokok (862.3 g). 
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CHAPTER 1  

 
 

GENERAL INTRODUCTION 

 

 
1.1 Introduction 

 
Chilli (Capsicum annuum L.) varieties are among the high-valued important vegetable 

widely cultivated mostly as a spice crop (Naik et al., 2017). Capsicum belongs to the 

family Solanaceae together with other vegetable such as tomato, potato, eggplant, 

tobacco and petunia. Chilli has multiple uses and functions due to its large variability 

and great geographical distribution worldwide. It can be consumed fresh, cooked or 

dried. Its production is seasonal due to lack of appropriate varieties and techniques. 

Optimum day temperatures for chili pepper growth range from 20-30 ºC (Naik et al., 

2017) and day time temperatures rise above 30ºC year round in Malaysia (Sabiha et al., 

2015). Such conditions are the important factors limiting the production of chili. 

Though chili is an important spice crop, still Malaysian domestic production cannot 

meet the 70% demand due to the poor performance of local varieties under high 

temperatures (DOSM, 2014). According to DOSM (2014), the self-sufficiency level in 

chilli is 52% and import dependency ratio is 52.9% (45, 000 metric tonnes per year).  

 

 

Plant growth and development is the product of the interaction between the genotype 

(genetic potential) and the environment in which the plant grows (Blum, 2018). Plant 

growth and development depends on biochemical processes (e.g. photosynthesis) that 

in turn depends on factors in the environment in order to proceed optimally (Blum, 

2018). When the environmental condition is less than the optimum requirement (20-30 

ºC) chilli plant experiences stress which adversely affects its growth and development 

and ultimately, its productivity and economic value (Pessarakli, 2016). The common 

abiotic stresses that plants may be exposed to include; heat, drought, salinity, and 

mineral toxicity (Zinn et al., 2010; Hall, 2011). Among the abiotic stresses, 

temperature increment (transient 10 – 15 ºC above ambient) due to changing climatic 

conditions is a serious threat which affects crop production (Jones et al., 1999). Heat 

stress occurs when temperatures are high enough (above 40 ºC) to cause irreversible 

damage to plant function (Hall, 2011). Heat stress affects various physiological and 

metabolic processes in plants such as uptake of water and ions, translocation of solutes, 

photosynthesis and respiration, and produce inactivation of enzymes, accumulation of 

unprocessed peptides, and is detrimental in terms of growth and productivity 

(Larkindale and Vierling, 2008; Frank et al., 2009; Snider et al., 2009; Saha et al., 

2010; Ahmed and Hassan, 2011). A single hot day (above 38 ºC) can be fatal to 

reproductive success for many plant species including chilli (Kelly et al., 2010). Most 

physiological processes of plants remain normal at temperatures ranging from 

approximately 0 to 40 ºC. Well-known responses of plants to extreme temperatures are 

cold acclimatization and vernalization (Sheldon et al., 2000). The molecular 

mechanisms of these responses have recently been determined through intensive 

studies (Sharma et al., 2005; Kuwabara and Imai, 2009). Under increased temperature 

(above 30 ºC) flowering asynchrony, decreased pollen fertility and, abscission of 

flower buds, flowers and fruits are more common in chilli (Barnabas et al., 2008; 

Hedhly et al., 2009; Craufurd and Wheeler, 2009; Thakur et al., 2010). The 
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commercial vegetable growers are quite aware about the importance of new varieties 

due to having high yield potential with uniformity in maturity, having tolerance to 

abiotic and biotic stresses, and better quality as compared to the standard open 

pollinated varieties (Wilson et al., 2012). Suhana et al (2014) reported that hybrid chilli 

'Ch5' exhibited better performance, with heaviest mean yield per plot (13317 kg) and 

fruit weight (15.86 g) compared with the MC12 indicating good prospect for 

commercial cultivation. A hybrid tomato resistant to Helicoverpa armigera damage 

recorded higher yield per plant compared with the local variety (Degri and Sani, 2015). 

 

 

Stress resistance is an inherent part of all cultivar development programs. Typical 

response to environmental stress conditions is established by the induction of a set of 

stress proteins that protects the organism from cellular damage. A basic response of 

plants to heat stress that is very common is the heat shock proteins (Hsps) expression, 

which is known as a mechanism in plant tolerance to heat stress (Feder and Hoffman, 

1999). Incorporation of heat shock proteins has shown considerable success in 

improvement of crop plants against heat stress. In breeding heat-tolerant maize, a 45 

kDa Hsp was found in F2 population produced from a cross between ZPBL 1304 

(tolerant to heat) that produced a 45 kDa Hsp and ZPL 389 line that was not tolerant to 

heat and does not produce this protein. These F2 plants become more resistant to heat 

stress (Ristic et al., 1998, Ristic et al., 1991). In whatever way, screening genetic 

materials against high temperature depends on field and whole-plant techniques, which 

as a result of environmental interaction effect their efficiency is less and sensitive 

(Hall, 2011). Over expression of a rice chloroplast sHsp (Oshsp26) gene showed more 

tolerance to high temperature and oxidative stresses in E. coli (Lee et al., 2000). 

Research have been intensified in determining efficient, suitable and accurate strategies 

that allow screening large number of genetic materials at the same time so as to breed 

chilli for heat tolerance in hot and humid areas (Gajanayake et al., 2011). However, no 

work has yet been reported on the incorporation of Hsps in chilli for the improvement 

of chilli tolerance to heat. 

 

 

Ancient manual breeding approach contributed substantially to the hereditary change of 

chilli germplasm in the most recent century (Reddy et al., 2014). Ancient manual 

breeding has additionally been utilized to purposefully grow new heat tolerant 

genotypes (Driedonks et al., 2016). For instance, an assortment of broccoli has an 

enhanced head quality on account of early development, since this attribute counteracts 

hot days after the fact in season to influence the warmth touchy blossom start formative 

stage (Farnham and Bjorkman 2011). In potato breeding a hereditary pick up was 

gotten after three cycles of intermittent determination for warm resilience prompting 

solid increment in yield up to 37.8 % (Benites and Pinto, 2011). Albeit regular ''yield'' 

breeding has prevailed with regards to creating heat-tolerant lines, a definitive 

hereditary and physiological base of the changes stay hazy. This keeps the 

advancement of molecular or different biomarkers, which would help germplasm 

screening for enhanced heat resistance and take into account productive breeding of the 

intricate characteristic. Another disadvantage of ancient manual breeding is that the 

projects are frequently in view of crossing moderately propelled starting material, 

which has just been utilized as a part of the specific breeding zones particularly 

identified with the market segment that is focused on. This suggests the potential pick 

up in heat tolerance level is constrained by the low genetic diversity (Paran and Van 
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Der Knaap, 2007). Backcross breeding approach can be employed to introduce a 

specific trait, such as heat tolerance, from one line, often an unimproved line, to 

another line that is typically an elite breeding line (Hain and Lee, 2005). The 

backcrossing process can often be accelerated using marker-assisted backcrossing, also 

known as background selection using molecular markers (Byrne and Richardson, 

2005). 

 

 

Molecular markers are effective in cultivar identification for protecting proprietary 

rights as well as authenticating plant cultivars. Molecular markers of necessity are 

applied based on two basic chemical procedures - protein and DNA markers. There are 

many DNA markers used which include Restriction Fragment Length Polymorphism 

(RFLP), Simple Sequence Repeats (SSRs), Amplified Fragment Length Polymorphism 

(AFLP), and Single Nucleotide Polymorphism (SNPs) (Dhaliwal et al., 2013). In 

general, improved varieties have better yield characteristics and suffer less from 

different stresses than the traditional ones. Therefore, no research have been reported 

so far for the incorporation of Hsps in chilli to improve or develop heat tolerant 

genotypes. 

 

 

1.2 Justification 

 

Malaysian average temperature is projected to increase from 0.3 to 4.5 °C due to 

greenhouse emission (Alam et al., 2011) and the warmer temperature will cause a rise 

in sea level and thus will reduce crop yield (Alam et al., 2011). With a population of 

about 31.19 Million, Malaysia is ranked 26
th

 largest greenhouse gas emitter in the 

world (Alam et al., 2011; Hosseini et al., 2013) and its likely to increase due to the 

growth rate of the emission. This will lead to fluctuation in rainfall and ultimately 

reduce crop yield and increase the risk of drought (Chong and Mathews, 2001). In 

Malaysia, the estimated annual production of chilli for 2016 was 43,738 metric tonnes 

(Mt) planted over 4,020 ha cultivated land area (DOA, 2016). While the estimated total 

chilli consumption is 62,380 Mt (DOSM, 2014), indicating that domestic supplies is 

insufficient and can hardly meet 70% of the raising demand, thus Malaysia imports 

approximately 45, 000 metric tonnes per year. Moreover, recently chilli output in 

Malaysia dropped drastically from 47, 015 Mt in 2015 to 43, 738 Mt in 2016 (DoA, 

2016) due to El Nino, leading to the shortage of supply. El Nino is a complex series of 

climatic changes that occurs irregularly and affects sea surface temperature in most 

tropics and subtropics. To increase production there is the need to improve/produce 

varieties having high yielding potential as well as tolerance against high temperature 

that will be suitable for lowland cultivation. Under this context, it is imperative to 

identify and incorporate Hsps in chilli for the development of heat tolerant as well as 

high yielding chilli variety. The experience on the possibility of exploiting the hybrid 

vigor in chilli has shown considerable promise and as such manoeuvres to control Hsp 

genes production help in breeding chilli genotypes tolerance to high temperature. 
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1.3 Objectives 

 

 

The main objective of this study was: 

 

To develop heat tolerant variety of chilli with high yielding potential 

 

 

The Specific objectives were: 

 

i. To introgress heat shock protein genes from AVPP0702 variety, donor to 

Kulai 907, recipient parent 

ii. To identify polymorphic molecular markers for chilli heat tolerant 

characteristics and recipient genome 

iii. To validate the backcross progenies for heat tolerance with the polymorphic 

molecular markers (Hsp loci) and to determine the percentage recovery of 

Kulai 907 genome in BC3F2 population. 

iv. To determine the homozygous lines that are positive to Hsp genes and 

phenotypic performance of the BC3F2 improved heat-tolerant chilli lines 

similar with Kulai 907. 
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