IDENTIFICATION OF REGULATORY MOTIF FOR ENHANCING EXPRESSION OF OIL PALM (Elaeis guineensis Jacq.) STEAROYL-ACP DESATURASE 1

FARAH HANAN BINTI ABU HANIFIAH

IPTSM 2018 8
IDENTIFICATION OF REGULATORY MOTIF FOR ENHANCING EXPRESSION OF OIL PALM (Elaeis guineensis Jacq.) STEAROYL-ACP DESATURASE 1

By

FARAH HANAN BINTI ABU HANIFIAH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

January 2018
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
This thesis is dedicated to my love ones who always beside me through good and bad times during my study which are my husband and my daughter and also the blessings from my parents and all.
IDENTIFICATION OF REGULATORY MOTIF FOR ENHANCING EXPRESSION OF OIL PALM (*Elaeis guineensis* Jacq.) STEAROYL-ACP DESATURASE 1

By

FARAH HANAN BINTI ABU HANIFIAH

January 2018

Chair: Professor Datin Siti Nor Akmar Abdullah, PhD
Faculty: Institute of Tropical Agriculture and Food Security

Understanding the regulation of fatty acid biosynthesis is important for genetic improvement of oil traits especially palm oil yield and composition. Stearoyl-ACP desaturase (*SAD*) plays a central role in regulating the levels of unsaturated fatty acids in plant storage lipid as the fatty acid composition is known to change during fruit maturity. The sequence of the oil palm *SAD* promoter contains an array of *cis*-acting regulatory elements such as phytohormone and light responsive regulatory elements and tissue-responsive regulatory elements that interact with transcription factors to regulate or modify the expression of this gene. This study was undertaken to identify or prove the specific regulatory motif that can enhance or suppress the activity of the oil palm *SAD1* promoter and its potential role in regulating fatty acid biosynthesis. The *SAD1* promoter of 1111 bp in size was isolated using polymerase chain reaction (PCR). A total of six 5’ deletion fragments of the *SAD* promoter which are 698 bp (D1), 643 bp (D2), 594 bp (D3), 516 bp (D4), 444 bp (D5) and 413 bp (D6) were isolated by PCR and all the deletion fragments including the full promoter sequence were cloned into a pBGWFS7.0 vector containing both the β-glucuronidase (GUS) and green fluorescent protein (GFP) reporter genes. The recombinant plasmids were bombarded into 12 week after anthesis (WAA) oil palm mesocarp tissues and the gene expression in GFP positive tissues were analyzed by transient GUS assay. The results of the quantitative fluorometric GUS assay showed that GUS activity in the D3 deletion construct (-486 to +108) was significantly increased and was higher than that of the full length promoter. In addition, the D2 (-535 to +108) deletion construct was found to direct the least expression of the GUS reporter gene. This observation suggests the presence of negative *cis*-acting regulatory element(s) in the deleted -535 to -486 (49 bp).
Electrophoretic mobility shift assay (EMSA) was done to identify the specific regulatory element responsible for the altered gene expression in the mesocarp tissues. It was found that the 49 bp region bind to the nuclear protein extract from mesocarp and did not bind to the extract from leaves. Further fine-tuned analysis of this 49 bp region by EMSA using truncated DNA and nucleotide mutations led to the identification of GCTTCA as a novel motif in the SAD promoter. The presence of another known motif LECPLEACS2 (TAAAT) are required for effective competition by GCTTCA in binding to mesocarp nuclear protein extract. GCTTCA with one variant nucleotide is also found in another oil palm fatty acid biosynthetic gene, acyl-carrier protein (ACP3) suggesting its potential role in regulating expression in the mesocarp tissues.
Pengetahuan mengenai pengawalan biosintesis asid lemak adalah penting untuk penambahbaikan genetik pada ciri-ciri minyak terutamanya hasil dan komposisi. Stearoyl-ACP desaturase (SAD) memainkan peranan penting dalam mengawal selia tahap asid lemak tak tepu dalam lemak simpanan tumbuhan kerana komposisi asid lemak difahamkan berubah semasa kematangan buah. Jujukan promoter SAD kelapa sawit mengandungi pelbagai cis-elemen pengawalseliaan seperti pengawalseliaan tindak balas fitohormon dan cahaya dan pengawalseliaan tisu-responsif yang berinteraksi dengan faktor transkripsi untuk mengawal selia atau mengubah pengekspresan gen ini. Kajian ini telah dijalankan untuk mengenalpasti atau membuktikan motif pengawalseliaan yang khusus yang dapat meningkatkan atau mengurangkan aktiviti promoter SADI kelapa sawit dan potensinya dalam mengawal seliaan biosintesis asid lemak. Promoter SADI ini yang bersaiz 1111 bp telah diasingkan menggunakan tindak balas rantai polimerase (PCR). Sejumlah enam keratan fragmen 5’ dari promoter SAD iaitu 698 bp (D1), 643 bp (D2), 594 bp (D3), 516 bp (D4), 444 bp (D5) dan 413 bp (D6) telah diasingkan dengan PCR dan semua potongan fragmen termasuk jujukan promoter yang penuh telah dikeluarkan ke vektor pBGWFS7.0 yang mengandungi gen pelapor β-glucuronidase (GUS) dan protein fluoresen hijau (GFP). Plasmid rekombinan telah doped ke dalam tisu mesokarp kelapa sawit 12 minggu selepas pendebungaan (WAA) dan ekspresi gen GUS telah di analisa dalam tisu yang positif GFP. Hasil daripada ujian esei GUS fluorometrik kuantitatif menunjukkan aktiviti GUS dalam konstrak potongan D3 (-486 hingga +108) telah meningkat dengan ketara dan lebih tinggi daripada jujukan promoter penuh. Di samping itu, konstrak potongan D2 (-535 hingga +108) telah didapati mengarahkan ekspresi terendah gen pelapor GUS. Pemantauan ini mencadangkan kehadiran beberapa...
cis-elemen pengawalseliaan negatif pada pemotongan di -535 ke -486 (49 bp). Penganjakan pergerakan elektroforetik (EMSA) telah dilakukan untuk mengenal pasti elemen pengawalseliaan khusus yang bertanggungjawab kepada perubahan ekspresi gen dalam tisu mesokarpa. Telah didapati bahawa bahagian 49 bp mengikat ekstrak protein nuklear daripada mesokarpa dan tidak mengikat ekstrak dari daun. Analisis terperinci bahagian 49 bp ini dengan EMSA menggunakan DNA yang dipotong dan nukleotida yang dimutasikan menghasilkan penemuan GCTTCA sebagai motif yang baharu dalam promoter SAD. Kehadiran motif lain yang telah diketahui iaitu LECPLEACS2 (TAAAT) diperlukan untuk persaingan yang berkesan oleh GCTTCA untuk mengikat ekstrak protein nuklear mesokarpa. GCTTCA dengan satu varian nukleotida juga dijumpai dalam biosintetik asid lemak kelapa sawit yang lain, acyl-carrier protein (ACP3) yang mencadangkan peranan potensinya dalam mengawalseliaan ekspresi dalam tisu mesokarpa.
ACKNOWLEDGEMENTS

Subhanallah and Alhamdulillah, first of all, I would like to thank my supervisor, Prof Datin Dr. Siti Nor Akmar Abdullah for her advice, valuable idea and constant support throughout my study and the preparation of this Master thesis. Her enthusiasm of research influences me to be a better researcher. Her suggestion has been most constructive and is highly appreciated.

Special thanks to Dr. Noor Azmi bin Shaharuddin for his valuable support and contribution at the research work. I would like also to thank the Gene Technology Laboratory members for their countless help and friendship.

The last not the least, I would like to express my sincere gratitude to my beloved husband (Muhamad Hafiz bin Baharuddin), my little angel (Nur Hannani binti Muhamad Hafiz), parents, friends, and siblings for their sincere encouragements, uncountable supports and endless love throughout my entire life.
I certify that a Thesis Examination Committee has met on 11 January 2018 to conduct the final examination of Farah Hanan binti Abu Hanifiah on her thesis entitled "Identification of Regulatory Motif for Enhancing Expression of Oil Palm (Elaeis guineensis Jacq.) Stearoyl-ACP Desaturase 1" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Ho Chai Ling, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Parameswari a/p Namasivayam, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Ismanizan Ismail, PhD
Professor
Universiti Kebangsaan Malaysia
Malaysia
(External Examiner)

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 26 April 2018
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Datin Siti Nor Akmar Abdullah, PhD
Professor
Institute Plantation Studies
Universiti Putra Malaysia
(Chairman)

Noor Azmi Shaharuddin, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecule Sciences
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: Farah Hanan binti Abu Hanifiah, GS38155
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman of Supervisory Committee: Siti Nor Akmar Abdullah, PhD

Signature:
Name of Member of Supervisory Committee: Noor Azmi Shaharuddin, PhD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
</tr>
<tr>
<td>ABSTRAK</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
</tr>
<tr>
<td>APPROVAL</td>
</tr>
<tr>
<td>DECLARATION</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Oil Palm

2.2 Oil Palm Biology and Fruit Development

2.3 Challenges in Oil Palm Industry

2.4 De Novo Fatty Acid Synthesis

2.5 Structure and Occurrence of Fatty Acids

2.6 Fatty Acid in Palm Oil

2.7 Functions of Fatty Acids in Plants

2.8 Stearoyl-ACP Desaturase Gene

2.9 Promoter Sequences

2.9.1 Function of Promoter

2.9.2 The Core and Proximal Promoter

2.9.3 The Distal Promoter Region and Regulatory Elements

2.10 Transcription Factors

2.11 Transient Expression Assays for Analysis of Promoter Functions

2.12 Electrophoretic Mobility Shift Assay

3 MATERIALS AND METHODS

3.1 Plant Materials

3.2 DNA Extraction

3.2.1 Genomic DNA Extraction

3.2.2 Integrity and Quantification of Genomic DNA

3.2.3 Analysis of SAD1 Promoter Sequences

3.3 Isolation of Target Fragments by Polymerase Chain Reaction

3.3.1 SAD1 Promoter and its 5’ Deletion Constructs

3.3.2 Electrophoresis of the DNA Fragments

3.3.3 PCR Product Purification

3.4 Construction of Full Length and 5’ Deletion Constructs of the SAD1 Promoter
3.4.1 Plasmid Constructs
3.4.2 Preparation of Competent Cells for Transformation
3.4.3 BP and LR Recombination Reaction via Gateway® Technology
3.4.4 Transforming Competent Cells
3.4.5 Plasmid Purification
3.4.6 Sequencing Analysis of 5' Deletion Fragments

3.5 Transient Transformation of Oil Palm
3.5.1 Preparation of Target Materials for Bombardment
3.5.2 Preparation of DNA-Coated Microcarriers
3.5.3 Particle Bombardment
3.5.4 Bombarded Tissues Selection

3.6 DNA Extraction of Bombarded Tissues
3.7 Absolute Quantification for Normalization
3.8 GUS Fluorometric Assay
3.9 Electrophoretic Mobility Shift Assay (EMSA)
3.9.1 Extraction of Nuclear Protein Extracts (NPE)
3.9.2 The DNA Probes Labelling
3.9.3 Binding Reaction of the DNA Probe and Nuclear Extract
3.9.4 Polyacrylamide Gel
3.9.5 Electrophoretic Transfer of Binding Reaction to Nylon Membrane
3.9.6 UV Crosslinking of Transferred DNA to Membrane
3.9.7 Biotin-labeled DNA Detection by Chemiluminescence
3.10 Experimental Design and Data Analysis

4 RESULTS AND DISCUSSION
4.1 Sequence Characterization of the Oil Palm SAD1 Promoter
4.2 Isolation of SAD1 and Constitutive CaMV 35S Gene Promoters
4.3 Isolation of 5' Deletion Series of SAD1 Promoter
4.4 Determination of the Amount of Recombinant Plasmids Bombarded into Oil Palm Tissue Slices
4.5 Analysis of the Full Length SAD1 Promoter and the Constitutive Promoter and Assessment of Promoter Strength
4.6 Analysis of 5' Deletion Series of SAD1 Promoter in Mesocarp Tissues
4.7 Sequence-specific Interaction of the 49-bp Negative Regulatory Region with the Mesocarp Nuclear Protein Extract
4.8 Identification of the Core-sequence Responsible for the Specific DNA-Protein Interaction in the Mesocarp
4.9 Discussion
SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

5.1 Summary and Conclusion 54
5.2 Recommendation for Future Research 55

REFERENCES 56
APPENDICES 68
BIODATA OF STUDENT 96
LIST OF PUBLICATIONS 97
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>List of forward (Full Length, D1 to D6) primers with attB1 site from Gateway® which have been used for amplification of promoter and deletions fragments</td>
<td>17</td>
</tr>
<tr>
<td>3.2</td>
<td>The protocol of touchdown PCR amplification</td>
<td>17</td>
</tr>
<tr>
<td>4.1</td>
<td>Putative cis-regulatory elements enriched in SAD1 promoter</td>
<td>30</td>
</tr>
<tr>
<td>4.2</td>
<td>The means of copy number for all promoter fragments</td>
<td>40</td>
</tr>
<tr>
<td>4.3</td>
<td>List of cis-regulatory elements found in 49 bp deleted region using accessible software PLACE and Plantcare</td>
<td>45</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Cross section of oil palm Elaeis guineensis fruit</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Overview of fatty acid synthesis in plants</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>The schematic diagram showing examples of saturated, unsaturated and polyunsaturated straight chain fatty acids</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic diagram of pBGWFS7 plasmid vector</td>
<td>19</td>
</tr>
<tr>
<td>4.1</td>
<td>Agarose gel electrophoresis analysis of the genomic DNA extracted from oil palm Elaeis guineensis Jacq. spear leaves</td>
<td>32</td>
</tr>
<tr>
<td>4.2</td>
<td>Agarose gel electrophoresis analysis of SAD1 promoter which was isolated from oil palm genomic DNA using PCR</td>
<td>33</td>
</tr>
<tr>
<td>4.3</td>
<td>Alignment of the isolated full length SAD1 promoter with the GenBank sequence (JQ34891 using ALIGN tool from Biology Workbench accessible software (http://workbench.sdsc.edu/))</td>
<td>34</td>
</tr>
<tr>
<td>4.4.</td>
<td>Agarose gel electrophoresis analysis of the constitutive CaMV 35S promoter isolated from the pCAMBIA 1305.1 vector by PCR</td>
<td>36</td>
</tr>
<tr>
<td>4.5</td>
<td>Alignment of the isolated CaMV 35S promoter and the vector pCAMBIA 1305.1 sequence</td>
<td>37</td>
</tr>
<tr>
<td>4.6</td>
<td>Isolation of 5’ deletion series from SAD1 full length promoter</td>
<td>39</td>
</tr>
<tr>
<td>4.7</td>
<td>The schematic figure represents the constructs containing the full length SAD1 promoter with 5’-UTR labeled as Full Length (-1003/+108), and a series of 5’ SAD1 promoter deletion fragments labeled as D1 (-590/+108), D2 (-535/+108), D3 (-486/+108), D4 (-408/+108), D5 (-336/+108), and D6 (-305/+108)</td>
<td>39</td>
</tr>
<tr>
<td>4.8</td>
<td>The standard curve for absolute RT qPCR of 5’ deletion series</td>
<td>41</td>
</tr>
<tr>
<td>4.9</td>
<td>The fluorometric GUS assay of oil palm full length SAD1 promoter and constitutive promoter (CaMV 35S) in mesocarp tissues</td>
<td>43</td>
</tr>
</tbody>
</table>
4.10 Visualization of the fluorescent GFP signals in oil palm mesocarp tissues bombarded with vector constructs, each harboring a different fragment from the 5’ deletion series of oil palm SAD1 promoter

4.11 Transient expression of GUS driven by SAD1 promoter and its 5’ deletion fragments in oil palm mesocarp tissues

4.12 The EMSA for determining the interaction of the 49 bp regulatory region (NR) with nuclear protein extracts from mesocarp and leaf tissues

4.13 The competition EMSAs showing the interaction of 49 bp regulatory region (NR) and its truncated derivatives with nuclear protein extract from mesocarp

4.14 The competition EMSAs showing the interaction between 49 bp regulatory region (NR) with its mutated derivatives with mesocarp nuclear protein extract
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-MU</td>
<td>4-methylumbelliferone</td>
</tr>
<tr>
<td>4-MUG</td>
<td>4-methylumbelliferyl-β-d-glucuronide</td>
</tr>
<tr>
<td>ACCase</td>
<td>acetyl-coa carboxylase</td>
</tr>
<tr>
<td>CH₃</td>
<td>methyl group</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>calcium chloride</td>
</tr>
<tr>
<td>CaMV</td>
<td>cauliflower mosaic virus</td>
</tr>
<tr>
<td>COOH</td>
<td>carboxyl group</td>
</tr>
<tr>
<td>DIECA</td>
<td>diethylcarbamic acid</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNMRT</td>
<td>duncan new multiple range test</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetra acetic acid</td>
</tr>
<tr>
<td>EMSA</td>
<td>electrophoretic mobility shift assay</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmic reticulum</td>
</tr>
<tr>
<td>FAS</td>
<td>fatty acid synthase</td>
</tr>
<tr>
<td>FFA</td>
<td>free fatty acids</td>
</tr>
<tr>
<td>G3P</td>
<td>glycerol-3-phosphate</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>GTF</td>
<td>general transcription factor</td>
</tr>
<tr>
<td>GUS</td>
<td>β-glucuronidase</td>
</tr>
<tr>
<td>KAS</td>
<td>β-ketoacyl-acp synthases</td>
</tr>
<tr>
<td>LB</td>
<td>luria bertani</td>
</tr>
<tr>
<td>LACS</td>
<td>long-chain acyl-CoA synthetases</td>
</tr>
<tr>
<td>MAS</td>
<td>marker assisted selection</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>magnesium chloride</td>
</tr>
<tr>
<td>NaCl</td>
<td>sodium chloride</td>
</tr>
<tr>
<td>NR</td>
<td>nuclear probe</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate-buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PVP</td>
<td>Polyvinylpyrrolidone</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RT qPCR</td>
<td>real-time quantitative pcr</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>TAE</td>
<td>tris-acetate edta</td>
</tr>
<tr>
<td>TAGs</td>
<td>Triacylglycerols</td>
</tr>
<tr>
<td>TdT</td>
<td>terminal deoxynucleotidyl transferase</td>
</tr>
<tr>
<td>TE</td>
<td>tris-edta</td>
</tr>
<tr>
<td>TFIID</td>
<td>transcription binding site</td>
</tr>
<tr>
<td>TFs</td>
<td>transcription factors</td>
</tr>
<tr>
<td>Tris-HCl</td>
<td>tris (hydroxymethyl) aminomethane hydrochloride</td>
</tr>
<tr>
<td>TSS</td>
<td>transcription start site</td>
</tr>
<tr>
<td>WAA</td>
<td>week after anthesis</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Oil palm (*Elaeis guineensis*) which is from the Arecaceae family is an important plantation crop in Malaysia since 1917, the year commercial planting started in the country. It has been extensively cultivated for the production of palm oil which is important in the economy of many developing countries in Southeast Asia, particularly Malaysia and Indonesia (Hayati et al., 2004). Now, Malaysia ranked second for world production of palm oil and the Malaysian palm oil industry is well established. Oils extracted from oil palm are classified into two classes which are palm oil from the mesocarp and palm kernel oil from the seeds. Palm oil is widely used for both edible and non-edible purposes while palm kernel oil is mainly used as feedstock for the oleochemical industry.

Improvement of the yield and quality of palm oil are priority areas for oil palm research in Malaysia. Due to limited land resources, we need to increase palm oil production in Malaysia through biotechnology approaches either through genetic engineering or marker assisted selection. However, there is limited study on the regulation of genes involved in palm oil production (Dussert et al., 2013). Researchers have discovered that the specific physical performance and nutritional attributes of edible oils like palm oil can be determined by their fatty acid composition (Guerin et al., 2016). Marker assisted selection could potentially be a reliable method in sustaining the production of palm oil based on association between DNA-based markers and specific oil traits (composition and content). It is crucial to understand the regulation of expression of key enzymes that are involved in palm oil fatty acid biosynthesis in order to improve the oil yield.

Fatty acid biosynthetic pathway in oil palm that occurs in the plastid involves a cascade of enzymatic reactions. The key enzymes of the pathway include acyl-carrier protein, β-ketoacyl-ACP synthase II, palmitoyl-ACP thioesterase and stearoyl-ACP desaturase. The genes encoding these enzymes were used in previous studies in oil palm genetic engineering programme to modify the composition of palm oil (Parveez et al., 2004). Stearoyl-ACP desaturase gene expression pattern was shown to correlate with oil synthesis in oil palm mesocarp tissue (Siti Nor Akmar et al., 1999).

Stearoyl-ACP desaturase (SAD) gene plays important role in plant by regulating the levels of unsaturated fatty acid through conversion of the main substrate stearoyl-ACP to oleoyl-ACP. It is an important enzyme that can determine the ratio of total saturated to unsaturated fatty acids in plant membranes and oil accumulating tissues (Shanklin and Somerville, 1991). SAD promoter may have an influence on the regulated process of storage lipid biosynthesis. Functional study of an oil palm *SAD1* was performed
using tomato as a model plant system. It was found that it drives fruit-specific gene expression in tomato fruit tissues (Leong et al., 2013).

Understanding the promoter function relates to the presence and positions of specific promoter regulatory motifs and expression profiles of the specific gene (John and Stewart, 2010). Previous efforts in oil palm genetic engineering have resulted in the isolation of SAD1 promoter from oil palm and analysis of the promoter 5’ deletion fragments in transgenic tomato tissues (Saed Taha et al., 2012). Based on their expression profiles, it can be suggested that SAD1 can serve as a suitable tissue-specific promoter for modifying storage oil composition in oil palm. Alternatively, the regulatory motifs in this promoter can also provide the information on the mechanism of regulation of oil synthesis in oil palm.

Cis-regulatory elements play important role in controlling the development and physiology of a plant by regulating gene expression (Wittkoop and Kalay, 2012). The findings on regulatory elements have become a major challenge in genetic engineering these days. Many different approaches have been developed to detect cis-regulatory elements in various plant gene promoters. Researchers have found the core sequence which is functionally important in several promoters and respond to several stimuli such as light, jasmonic acid and hormones (Mehrotra et al., 2015). Unfortunately, there is ambiguous classification on the different roles of cis-regulatory elements such as tissue-specificity and inducibility which is not straight forward (Rombauts et al., 2003). Thus, the study aimed to identify the cis-regulatory elements involved in enhancing expression of oil palm fatty acid biosynthetic genes.

The specific objectives of the study were:

1. To prepare 5’ deletion constructs of stearoyl-ACP desaturase (SAD1) gene promoter from oil palm

2. To identify regulatory region from promoter deletion analysis using reporter gene of bombarded mesocarp tissues slices

3. To identify a specific regulatory motif involved in regulating SAD1 expression using Electrophoretic Mobility Shift Assay (EMSA) method
REFERENCES

