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Abstract of thesis presented to the Senate of Universiti PutraMalaysia in fulfillment of
the requirement for the degree of Doctor of Philosophy

HYBRID METHODS FOR SOLVING HIGHER ORDER ORDINARY
DIFFERENTIAL EQUATIONS

By

YUSUF DAUDA JIKANTORO

April 2018

Chairman : Professor Fudziah Ismail, PhD
Faculty : Science

In this thesis, a class of numerical integrators for solving special higher order ordinary
differential equations (ODEs) is proposed. The methods are multistage and multistep
in nature. This class of integrators is called ”hybrid methods”, specifically, hybrid
methods for directly solving special third order ODEs denoted by HMTD and for
directly solving special fourth order ODEs denoted by HMFD are proposed. B-series
approach is developed and used in deriving their algebraic order conditions and
analyzing the order of convergence of the methods.

Using the algebraic order conditions, a class of explicit HMTD and HMFD are derived.
The methods are applied to some test problems alongside some existing integrators in
the literature for the purpose of validation. Results obtained show that the proposed
methods in this thesis are a better alternatives.

To analyze the methods further, convergence analysis is conducted via consistency and
zero stability, where the methods are found to be consistent and zero stable, hence,
they are convergent. Absolute stability of the methods is also investigated, where
stability polynomials of the methods are presented for obtaining intervals and regions
of absolute stability.

Finally, a set of embedded pairs of two-step hybrid methods for solving special second
order ODEs are proposed and investigated. The methods are tested on some model
problems using different error tolerances. Results obtained are compared with those of
existing embedded methods possessing similar properties. From the comparison, it is
found that the new embedded methods possess better accuracy and efficiency.
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Abstrak tesis yang dikemukakan kepada Senat Universiti PutraMalaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH HIBRID UNTUK MENYELESAIKAN PERSAMAAN
PEMBEZAAN BIASA PERINGKAT TINGGI

Oleh

YUSUF DAUDA JIKANTORO

April 2018

Pengerusi : Professor Fudziah Ismail, PhD
Fakulti : Sains

Dalam tesis ini, satu kelas kaedah pengamiran berangka untuk menyelesaikan per-
samaan pembezaan biasa (PPB) khas peringkat tinggi dicadangkan. Kaedah ini bersifat
multitahap dan multilangkah.Kaedah pengamiranini disebut ”kaedah hibrid”, khusus-
nya, kaedah hibrid untuk menyelesaikan secara langsung PPB khas peringkat ketiga
yang dilambangkan sebagai HMTD dan untuk menyelesaikan secara langsung PPB
khas peringkat keempat yang dilambangkan sebagai HMFD dicadangkan.Pendekatan
siri B dibangunkan dan digunakan untuk menerbitkan syarat peringkat aljabarkaedah
tersebut dan untuk menganalisis peringkat penumpuan kaedah yang terhasil.

Dengan menggunakan syarat peringkat aljabar tersebut, satu kelas HMTD dan HMFD
yang eksplisit diterbitkan. Kaedah ini digunakan untukmenyelesaikanbeberapa
masalah ujian di samping beberapa kaedah pengamiran yang ada dalam literatur untuk
tujuan pengesahan. Keputusan yang diperolehi menunjukkan bahawa kaedah yang
dicadangkan dalam tesis ini adalah alternatif yang lebih baik.

Untuk menganalisis kaedah tersebut selanjutnya, analisis penumpuan dijalankan
melalui kekonsistenan dan kestabilan sifar, di mana kaedah tersebut didapati konsisten
dan stabilsifar, oleh itu, ia adalah menumpu. Kestabilan mutlak kaedah juga diselidiki,
di mana polinomial kestabilan kaedah dibentangkan untuk mendapatkan selang dan
rantau kestabilan mutlaknya.

Akhir sekali, satu set pasangan kaedah hibrid terbenam dua langkah untuk menye-
lesaikan PPB khas peringkat kedua dicadangkan dan dikaji. Kaedah tersebut diuji
pada beberapa masalah model menggunakan toleransi ralat yang berbeza. Hasil yang
diperolehidibandingkan dengan kaedah terbenam sedia ada yang mempunyai sifat yang
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sama. Dari perbandingan tersebut, didapati kaedah terbenam ygbaru mempunyai
ketepatan dan kecekapan yang lebih baik.
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CHAPTER 1

INTRODUCTION

In science and engineering, differential equations are very important mathematical
models, as most physical systems whose state variables vary with time or space are
described using differential equations. An equation is said to be a differential equation
if it represents a relation between a functionf and its derivatives. Depending on the
number of variablesf depends on, differential equation is broadly divided in to two: or-
dinary differential equation and partial differential equation. It is ordinary iff depends
on only one variable,f = f (x), and partial if f depends on more than one variables,
f = f (x,y,z). The highest order of derivative off present in the expression of a differ-
ential equation defines order of the equation. That is, it is of first order if the highest
derivative order is one, of second order if the highest derivative order is two and so on.
Example of a differential equation is the model that governs the decay of a radioactive
substance or the one that governs the growth of a population. Throughout this thesis
y′, y′′, y′′′, yiv, ..., represent first, second, third, fourth,... derivatives ofy, respectively.

1.1 Initial Value Problem

Solution of ordinary differential equation (ODE), if it exists, can only be found in
its general form, which might not make a complete sense. To achieve more specific
solution to an ODE, there is a need for a prior knowledge of what the solution would
be at some points. If the solution is specified at some initial points of the solution, then
we say initial value conditions are imposed on the ODE. The ODE together with these
imposed conditions is called an initial value problem (IVP).

The general form of the IVPs considered in this study is

y(i) = f
(

x,y,y′,y′′, ...,y(i−1)
)
,

y(x0) = y0, y′(x0) = y′0, y′′(x0) = y′′0, ...,y
(i−1)(x0) = y(i−1)

0 , (1.1)

wherex ∈ IR, y(x) ∈ IRr , f ∈ IRr+1, i ≥ 2. They occur in many areas of applied
sciences such as biology, quantum mechanics, celestial mechanics and chemical engi-
neering, You and Chen (2013).

1.2 Existence and Uniqueness of a Solution

Given an IVP, the first thing that comes to mind is whether it has a solution. If it does,
then the next question that arises is how unique is the solution. To answer this question,
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certain conditions need to be fulfilled.

Definition 1.1 Refer to Dormand (1996)
A function f(x,y) : IR× IRr → IRr is said to satisfy a Lipschitz condition in the variable
y on a set D if there exist a constant L>0 such that

‖ f (x,y1)− f (x,y2)‖ ≤ L‖y1−y2‖ , (1.2)

whenever(x,y1), (x,y2) ∈ D. L is referred to Lipschitz constant.

For example, given thatf (x,y) = 2
xy+x2ex, it can be shown thatf (x,y) satisfies Lips-

chitz condition iny on a setD = {(x, t) : 1≤ x≤ 2and−2≤ y≤ 5} with L = 2. That
is

‖ f (x,y1)− f (x,y2)‖ =

∥∥∥∥
(

2
x

y1+x2ex
)
−
(

2
x

y2+x2ex
)∥∥∥∥ ,

=

∥∥∥∥
2
x

∥∥∥∥‖y1−y2‖ ,

≤ 2‖y1−y2‖ ,

whereL = 2.

Theorem 1.1 Refer to Butcher (2008b)
Suppose that D= {(x,y) : a≤ x≤ band−∞ ≤ y≤ ∞} and that f(x,y) is continuous
on D. If f(x,y) satisfies Lipschitz condition on D in its second variable y, then an IVP,
say

y′ = f (t,y),a≤ t ≤ b, y(α) = β ,

has a unique solution y(t) for a≤ t ≤ b.

1.2.1 Well-posedness of a Problem

Definition 1.2 The IVP

y′ = f (x,y),a≤ x≤ b, y(α) = β ,

is said to be a well-posed problem if:

1. a unique solution y(x) to the problem exists;

2. ∃ constantsε0>0 and k>0 such that for anyε with ε0>ε>0, wheneverδ (x)
is continuous with|δ (x)|<ε ∀ x ∈ [a,b], & when|δ0|<ε, the IVP (a perturbed
problem associated with the original IVP)

z′ = f (x,z)+δ (x), a≤ x≤ b, z(α) = β +δ0,
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has a unique solution z(x) that satisfies

|z(x)−y(x)|<kε , ∀x∈ [a,b].

1.2.2 Ill-posed problem

The IVP above is said to be an ill-posed problem if it fails any of the well-posed condi-
tions stated above.

1.3 Runge-Kutta Method

An s-stage Runge-Kutta (RK) method is given by

yn+1 = yn+h
(

bT ⊗ I
)

f (xn+ch,Y),

Y = yn+h(A⊗ I) f (xn+ch,Y), (1.3)

whereA =
[
ai, j

]
, b = [b1, ...,bs]

T , c= [c1, ...,cs]
T , Y = [Y1, ...,Ys]

T are all real andI
is a reals×s identity matrix. The table below summarizes the RK coefficients.

c A
b

Themethod was originally developed towards the end of nineteenth century by Runge
and generalized in the twentieth century by Kutta, see Dormand (1996). It is originally
a one-step method with multiple stages, that is, it requires only the initial value of a
solution to start numerical integration and depends only on one previously computed
solution point subsequently, but with multiple functions evaluation per step. It is easier
to implement than Taylor method, because there is no formation and evaluation of
higher derivatives at each step.

1.3.1 Order Conditions of RK Method

Like many numerical schemes, order conditions determine order of convergence of
RK method. It is a relation that exists between the coefficients of RK method that
causes annihilation of terms in Taylor series of local truncation error of the method.
Local truncation error here means difference between true solutiony(xn+1) at a point
n+1 and the approximate solutionyn+1 obtained by the RK method at the same point
n+1. This approach for order conditions of RK method remained famous despite its
limitations until in the 1960s when a major modern development hit the RK processes
by the work of Butcher (2008b), where a more theoretical approach of the famous B-
series was introduced to derive order conditions of the RK methods. Presented in Table
1.1 is a set of order conditions of RK methods up to order five.
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Table 1.1: Algebraic Order Conditions of RK Method

Order condition
1 ∑i bi = 1
2 ∑i bici =

1
2

3 ∑i bic2
i =

1
6

∑i, j biai, jc j =
1
6

4 ∑i bic3
i =

1
4

∑i, j biciai, jc j =
1
8

∑i, j biai, jc2
j =

1
12

∑i, j,k biai, ja j,kck =
1
24

5 ∑i bic4
i =

1
5

∑i, j bic2
i ai, jc j =

1
10

∑i, j,k biai, jc jai,kck =
1
20

∑i, j biciai, jc2
j =

1
15

∑i, j biai, jc3
j =

1
20

∑i, j,k biciai, ja j,kck =
1
30

∑i, j,k biai, jc ja j,kck =
1
40

∑i, j,k biai, ja j,kc2
k =

1
60

∑i, j,k,l biai, ja j,kak,l cl =
1

120

where
s

∑
j=1

ai, j = ci .

1.4 Hybrid Method for solving Special Second Order ODEs

An s-stage hybrid method for directly solving special second order IVP, denoted by
THM, is given by

yn+2 = yn+1−yn+h2
(

bT ⊗ I
)

f (xn+ch,Y),

Y = (c+e)yn+1−cyn+h2(A⊗ I) f (xn+ch,Y), (1.4)

whereA =
[
ai, j

]
, b = [b1, ...,bs]

T , c= [c1, ...,cs]
T , e= [1, ...,1]T , Y = [Y1, ...,Ys]

T are
real andI is a reals× s identity matrix. Table 1.2 is a modified Butcher tableau that
summarizes the scheme This scheme is a two-step method that directly approximate the
solution of special second order IVPs. Unlike Runge-Kutta-Nyström (RKN) method,
the integration is independent of approximation of derivative of the solution. It can be
seen as RKN method that forsakes its one-step property for improved accuracy and ef-
ficiency. The major development of this method is due to the work of Coleman (2003),
where he used B-series approach to study order of convergence of the method. Hence,
algebraic order conditions analogous to those of RK and RKN methods are presented.
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Table 1.2: Coefficients of Hybrid Method for Second Order ODEs

c A
−1 0 0 0 · · · 0
0 0 0 0 · · · 0
c3 a3,1 a3,2 a3,3 · · · a3,s
c4 a4,1 a4,2 a4,3 · · · a4,s
...

...
...

...
...

...
cs as,1 as,2 as,3 · · · as,s
b b1 b2 b3 · · · bs

This major development prepared the ground for Franco (2006) to derive a class of ex-
plicit methods, where the advantages of the methods over RK and RKN are brought to
limelight. He also presented analysis of dispersion and dissipation errors, which are the
two most important errors to be minimized for any method whose aim is to integrate
oscillatory problems.

1.4.1 Order Conditions of Hybrid Method for Second Order ODEs

As previously mentioned above in this section, B-series technique replaces the
traditional ad hoc Taylor series technique in the derivation of order conditions of this
method. The idea is rather a straightforward one where derivatives of solution of the
problem in question, that is,y′′ = f (x,y), are associated with rooted treest.

The following equations were developed and used by Coleman (2003) to generate order
conditions of the method:

bTψ ′′(t) = 1+(−1)ρ(t), (1.5)

ψ ′′
j = ρ(t)(ρ(t)−1)

m

∏
i=1

ψ j(ti), (1.6)

ψ(t) = (−1)ρ(t)+1c+ψ ′′(t)A, (1.7)

wheret andρ(t) are the trees and their orders respectively. Table 1.3 shows set of the
order conditions generated up to order at least five.

1.4.2 Simplifying Assumption

Simplifying assumptions, as the name connotes, are meant to induce certain relation-
ships between order conditions of a numerical method so that number of independent
conditions for a given order are reduced for simplicity of derivation. The simplifying
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Table 1.3: Order Conditions of Hybrid Method for Second Order ODEs

ρ(t) Order condition
2 ∑bi = 1
3 ∑bici = 0
4 ∑bic2

i =
1
6

∑biai, j =
1
12

5 ∑bic3
i = 0

∑biciai, j =
1
12

∑biai, jc j = 0
6 ∑bic4

i =
1
15

∑bic2
i ai, j =

1
30

∑biciai, jc j =− 1
60

∑biai, jai,k =
7

120
∑biai, jc2

j =
1

180

∑biai, ja j,k =
1

360
7 ∑bic5

i =
1
15

∑bic3
i ai, j =

1
30

∑bic2
i ai, jc j = 0

∑biciai, jai,k =
1
30

∑biciai, jc2
j =

1
72

∑biciai, ja j,k =− 1
720

∑biai, jai,kck =− 1
120

∑biai, jc3
j = 0

∑biai, jc ja j,k =− 1
360

∑biai, ja j,kck = 0

equations associated with the order conditions above are:

s

∑
j=1

ai, jc
λ
j =

cλ+2
i +(−1)λ ci

(λ +1)(λ +2)
. (1.8)

1.5 An Overview of B-series and Rooted Trees

The so called B-series approach to algebraic order conditions of numerical methods
is a theoretical formulation of the Taylor series approach where terms of the series
of local truncation error are analyzed to formulate theorems that lead to derivation of
order conditions of a method irrespective of the order of the method. That is, with this
approach, order conditions including those of higher order methods can be derived
without having to employ the services of computers and without any form of ambiguity
and difficulty.
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The terms of the series of the local truncation error contain a combinationof derivatives
of the true solution. This combination of derivatives are then associated to rooted tree
using the concept of graph theory. Hence, with the theorems on ground, only the trees
associated to the ODE in question are required to generate the order conditions of a
method that solves the ODE.

1.5.1 Rooted Trees

Rooted tree is a simple combinatorial graph with the property of being connected, hav-
ing no cycles and having a specific vertex designated as root, see Butcher (2008a).
Example, suppose thaty′′ = f (y) = f is differentiated continuously with respect tox
we get

y′′ = f ,

y′′′ = fy
(
y′
)
,

yiv = fyy
(
y′,y′

)
+ fy f ,

...

If and denotey′ and f respectively, the corresponding rooted trees of the derivatives

above are respectively given as, , , ,..., where the two dots are the vertices of
thetrees.

1.5.2 Order of a Tree

Order of a tree simply refers to the number of vertices possessed by the tree. For
instance, two, three, four are the orders of the trees depicted above respectively.

1.5.3 Concept of B-series

Definition 1.3 Refer to Coleman (2003)
Let β be a mapping from TN to set of real numbersIR, with β (θ) = 1. The BN-series
with coefficient functionβ is a formal series of the form

B(β ,y) = y+hα(τ1)β (τ1)y
′+ ...= ∑

t∈TN

hρ(t)

ρ(t)!
α(t)β (t)F(t)

(
y,y′, ...,yN−1

)
.

TN, θ and τ1 are set of trees associated with ODE of order N, null tree and a tree of
order one.

7
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1.6 Problem Statement

A classof RKN methods has proven so efficient for special second order ODEs due
to its multistage nature until the emergence of a class of hybrid method (THM) for
solving the special second order ODEs by Coleman (2003) and Franco (2006). This
class of methods possesses virtually all the properties of the class of RKN methods
that makes it more accurate and efficient except one-step property, which is forfeited
for more accuracy and efficiency. The idea of RKN was extended recently by You and
Chen (2013) and Kasim et al. (2016), where Runge-Kutta type methods, denoted by
RKT and RKF, are presented for solving special third and fourth order ODEs in the
same fashion as RKN methods. This development triggers the quest to come up with
similar hybrid methods like the THM methods for solving special third and fourth order
ODEs, which is now a topical research issue within the ranks of researchers in the area
of numerical methods for ODEs.

1.6.1 Motivation

The study is mainly motivated by relatively low efficiency of the RKT and RKF meth-
ods characterized by dependance of their stages (internal and external) on the deriva-
tives of the solution and excessive memory requirement for implementation of the
methods. B-series technique for their order conditions instead of the traditional Taylor
series approach is another motivating factor.

1.7 Objectives of the Study

The objectives set to be achieved in this study are:

1. to derive algebraic order conditions of a class of hybrid methods for special third
and fourth order ODEs directly (HMTD and HMFD) using B-series approach;

2. to derive and implement a class of explicit HMTD and HMFD using the algebraic
order conditions derived in 1;

3. to analyze absolute stability properties of the HMTD and HMFD, and their con-
vergence properties via consistency and zero-stability.

4. to derive and implement variable step size two-step hybrid methods for solving
special second order ODEs;

1.8 Scope and Limitation of the Study

The study covers only initial value problems that are based on special second, third
and fourth order ODEs. The specialty associated with these problems is nothing more
than the independence of the problems ony′,y′′ andy′′′ explicitly.

8
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The general form of the problems is out of scope of this study, becausethe proposed
methods possess the non-linear property of RK related methods, which would be com-
putationally inefficient when derived for general case of the ODEs. Boundary value
problems based on both general and special case of the ODEs are also not within the
scope of the thesis.

1.9 Organization of the Thesis

In Chapter 1, we present background of the study as it relates to the existing numerical
methods. Statement of the problem addressed in the study as well as the factors that
necessitated the study are presented. In addition, objectives and scope defined for the
study are presented.

In Chapter 2, the reviews on higher order ODEs, linear multistep and collocation
methods for solving third and fourth order ODEs, Runge-Kutta methods for solving
third and fourth order ODEs and hybrid methods for solving second order ODEs are
presented.

In Chapter 3, construction of a class of hybrid methods for special third order IVPs is
presented and analyzed. B-series technique for the derivation of their order conditions
is formulated and discussed. Convergence and absolute stability analysis of the
methods are also presented here.

In Chapter 4, derivation of explicit methods of the class above is presented. Application
of the methods on thin film flow problems is also presented. Numerical experiment is
presented to assess the validity and performance of the new methods.

In Chapter 5, construction of a class of hybrid methods for special fourth order IVPs is
presented and analyzed. B-series technique for the derivation of their order conditions
is formulated and discussed. Convergence and absolute stability analysis of the
methods are also presented here.

In Chapter 6, derivation of some explicit methods of the above class is presented.
Numerical experiment is conducted to evaluate the validity and performance of the
new fourth order IVPs integrators.

A class of embedded pairs of two-step hybrid methods for solving special second order
ODEs is presented in Chapter 7, where 5(3), 6(4) and a trigonometricaly fitted 6(4)
methods are derived for solving oscillatory or periodic problems.

9
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Finally, general conclusion of the thesis alongside future workis presented in Chapter
8.
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