

UNIVERSITI PUTRA MALAYSIA

MICROSTRUCTURAL, OPTICAL AND MAGNETIC PROPERTIES OF BARIUM HEXAFERRITE AND NICKEL ZINC FERRITE SYNTHESIZED VIA MECHANOCHEMICAL PROCEDURE

LOW ZHI HUANG

ITMA 2018 15

MICROSTRUCTURAL, OPTICAL AND MAGNETIC PROPERTIES OF BARIUM HEXAFERRITE AND NICKEL ZINC FERRITE SYNTHESIZED VIA MECHANOCHEMICAL PROCEDURE

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

May 2018

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

MICROSTRUCTURAL, OPTICAL AND MAGNETIC PROPERTIES OF BARIUM HEXAFERRITE AND NICKEL ZINC FERRITE SYNTHESIZED VIA MECHANOCHEMICAL PROCEDURE

By

LOW ZHI HUANG

May 2018

Chairman: Assoc. Prof. Chen Soo Kien, PhD Institute: Institute of Advanced Technology

Mechanochemical process is a powder processing technique that utilises mechanical energy to grind down bulk materials. Mechanochemical process has received a lot of interest for producing technologically important ferrites because it is a solvent-free technique and hence green process. Throughout the centuries, the applications of mechanochemical process are limited to diminution of particles because the lack of systematic studies on the process mechanisms of mechanochemical process. The immediate objective of this research is devoted to this subject by developing a systematic study on top-down approach mechanochemical process (referring to the production of nanoparticles by mechanochemical process) and mechanochemical activation-based synthesis (referring to mechanochemical process, used to activate the starting powders, before a sintering step to induce the formation of final product). For top-down approach mechanochemical process, starting bulk materials were mechanically treated for different milling time ranging from 1 to 20 hours at room temperature, for the preparation of nanoparticles. Evidence of the presence of single phase ferrites was identified by XRD. Rietveld refinement analysis suggested the deformation of a mechanically triggered polyhedral in the magnetoplumbite structure of BaFe₁₂O₁₉ and spinel structure Ni_{0.5}Zn_{0.5}Fe₂O₄. Three distinct stages of the mechanochemical mechanism were observed when the milling time was extended. The average crystallite size decreased at different rate during the first stage and the intermediate stage, and increased during the final stage of the mechanochemical process. FESEM micrographs showed the particle size decreased from 432.96 nm to 81.43 nm for BaFe₁₂O₁₉ and 371.68 nm to 158.49 nm for Ni_{0.5}Zn_{0.5}Fe₂O₄ during the first stage and the intermediate stage. In the final stage, particle size increased to 134.15 nm for BaFe₁₂O₁₉ and 193.60 nm for Ni_{0.5}Zn_{0.5}Fe₂O₄. HRTEM micrographs suggested the formation of a non-uniform nanostructure shell surrounding the ordered core materials. The thickness of the shell extended up to 12 nm during the first and intermediate stages, and diminished to approximately 3 nm during final stage. VSM results showed a mixture of ferromagnetic, superparamagnetic, and paramagnetic

behaviours attributed to the defects, distorted polyhedra, and non-equilibrium amorphous layers induced by the mechanical energy. The observed spectral shift from UV-Vis spectra was ascribed to the competition between quantum confinement effects and structural disorder bandgap narrowing effect. For mechanochemical activationbased synthesis, mechanochemical process on the starting powders and subsequent sintering was carried out to synthesize $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles. The XRD results indicated an improvement of crystallinity with increasing sintering temperature. Single phase ferrites were observed at 1100 °C for BaFe₁₂O₁₉ and 700 °C for Ni_{0.5}Zn_{0.5}Fe₂O₄. FESEM micrographs showed the particle size increased from 42.24 nm to 913.96 nm for BaFe₁₂O₁₉ and 66.39 nm to 1084.27 nm for Ni_{0.5}Zn_{0.5}Fe₂O₄ when sintering temperature were elevated from 600 °C to 1200 °C. Morphological studies showed three stages of sintering with distinct microstructure features. By sintering from 600 °C to 1200 °C, a dependence of magnetic properties on sintering temperature was found. Maximum magnetization at 10 kOe improved with elevating sintering temperature. The optical bandgap values decreased with increasing crystallite size, showing the dominancy of quantum confinement effects. It can be concluded top-down approach mechanochemical process is capable of producing single phase nanoparticles; and mechanochemical activation-based synthesis has significantly reduced the sintering temperature required for the formation of final product. The systematic studies on the process mechanisms of top-down approach mechanochemical process and mechanochemical activation-based synthesis developed a fundamental knowledge to tailor nanoparticles with specific properties according to its possible industrial applications.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

SIFAT-SIFAT MIKROSTRUKTURAL, OPTIKAL DAN MAGNETIK FERIT HEKSA BARIUM DAN FERIT NIKEL ZINK YANG DISINTESIS MENGGUNAKAN PROSEDUR MEKANOKIMIA

Oleh

LOW ZHI HUANG

Mei 2018

Pengerusi: Prof. Madya Dr. Chen Soo Kien, PhD Institut: Institut Teknologi Maju

Proses mekanokimia adalah teknik pemprosesan serbuk yang menggunakan tenaga mekanikal untuk menghaluskan bahan-bahan pukal. Proses mekanokimia telah menerima banyak sambutan bagi menghasilkan ferit-ferit penting berteknologi tinggi kerana proses ini bebas pelarut dan dengan itu proses ini adalah proses hijau. Sepanjang abad yang lalu, penggunaan proses mekanokimia terbatas kepada pengecilan saiz zarah kerana kurangnya kajian sistematik ke atas mekanisme proses mekanokimia. Objektif utama kajian ini adalah untuk menumpukan kepada perkara ini dengan membangunkan sebuah kajian sistematik ke atas pendekatan proses mekanokimia atas ke bawah (merujuk kepada penghasilan zarah nano melalui proses mekanokimia) dan proses sintesis berdasarkan pengaktifan mekanokimia (berdasarkan proses mekanokimia, digunakan untuk mengaktifkan serbuk-serbuk permulaan sebelum langkah pensinteran untuk mendorong pembentukan produk akhir). Bagi pendekatan proses mekanokimia atas ke bawah, bahan-bahan pukal permulaan telah dirawat secara mekanikal pada masa pengisaran berbeza dari 1 hingga 20 jam pada suhu bilik untuk penyediaan zarah nano. Bukti kehadiran fasa tunggal ferit-ferit telah dikenalpasti menggunakan XRD. Analisis perbaikan Rietveld mencadangkan bahawa ubah bentuk polihedral yang dicetuskan secara mekanikal dalam struktur magnetoplumbit BaFe₁₂O₁₉ dan struktur spinel Ni_{0.5}Zn_{0.5}Fe₂O₄. Tiga peringkat berbeza bagi mekanisme mekanokimia telah diperhatikan apabila masa pengisaran dipanjangkan. Purata saiz kristal berkurangan pada kadar yang berbeza semasa peringkat pertama dan peringkat pertengahan, dan meningkat pada peringkat akhir proses mekanokimia. Mikrograf-mikrograf FESEM menunjukkan saiz zarah berkurang dari 432.96 nm kepada 81.43 nm untuk BaFe₁₂O₁₉ dan dari 371.68 nm kepada 158.49 nm untuk $Ni_{0.5}Zn_{0.5}Fe_2O_4$ semasa peringkat pertama dan peringkat pertengahan. Dalam peringkat akhir, saiz zarah meningkat kepada 134.15 nm bagi BaFe₁₂O₁₉ dan 193.60 nm bagi Ni_{0.5}Zn_{0.5}Fe₂O₄. Mikrograf-mikrograf HRTEM mencadangkan pembentukan kerangka nanostruktur tidak seragam yang mengelilingi bahan-bahan teras yang tersusun. Ketebalan lapisan kerangka adalah sehingga 12 nm semasa peringkat pertama dan pertengahan, dan berkurang kepada sekurang-kurangnya

3 nm semasa peringkat akhir. Keputusan-keputusan VSM menunjukkan campuran sifat-sifat ferromagnetik, superparamagnetik dan paramagnetik yang disebabkan oleh kecacatan, polyhedra terherot, dan ketidakseimbangan lapisan-lapisan amorfus yang didorongkan oleh tenaga mekanikal. Anjakan spektrum dari spektra UV-Vis yang diperhatikan adalah disebabkan oleh persaingan diantara kesan-kesan kurungan kuantum dan kesan penyempitan jurang jalur struktur terganggu. Bagi sintesis berdasarkan pengaktifan mekanokimia, proses mekanokimia ke atas serbuk-serbuk permulaan dan seterusnya pensinteran telah dilakukan untuk mensintesis zarah nano BaFe₁₂O₁₉ dan Ni_{0.5}Zn_{0.5}Fe₂O₄. Keputusan XRD menunjukkan penambahbaikan penghabluran dengan peningkatan suhu pensinteran. Fasa tunggal ferit telah diperhatikan pada suhu pensinteran 1100 °C dan 700 °C masing-masing bagi BaFe₁₂O₁₉ dan Ni_{0.5}Zn_{0.5}Fe₂O₄. Mikrograf-mikrograf FESEM menunjukkan saiz zarah menambah dari 42.24 nm kepada 913.96 nm untuk BaFe₁₂O₁₉ dan dari 66.39 nm kepada 1084.27 nm untuk Ni_{0.5}Zn_{0.5}Fe₂O₄ apabila suhu persinteran meningkat dari 600 °C ke 1200 °C. Kajian-kajian morfologi menunjukkan tiga tahap pensinteran dengan ciri-ciri mikrostruktur yang berbeza. Dengan melakukan pensinteran dari 600 °C ke 1200 °C, suatu kebergantungan sifat-sifat magnetik ke atas suhu pensinteran telah dijumpai. Kemagnetan maksimum pada 10 kOe ditingkatkan dengan peningkatan suhu pensinteran. Nilai-nilai jalur tenaga optikal berkurang dengan peningkatan saiz kristal, menunjukkan dominasi kesan-kesan kurungan kuantum. Dapat disimpulkan bahawa pendekatan proses mekanokimia atas ke bawah mampu menghasilkan fasa tunggal zarah nano; dan sintesis berdasarkan pengaktifan mekanokimia telah merendahkan suhu pensinteran dengan ketara bagi menghasilkan produk akhir. Kajian-kajian sistematik ke atas mekanisme proses pendekatan mekanokimia atas ke bawah dan sintesis berdasarkan pengaktifan mekanokimia telah membangunkan pengetahuan asas untuk mengubahsuai zarah nano dengan sifat-sifat tertentu bergantung kepada aplikasiaplikasi industri yang berkemungkinan.

ACKNOWLEDGEMENTS

First of all, I would like express my sincere thanks and deep appreciation to my supervisor, Associate Prof. Dr. Chen Soo Kien for his guidance, encouragement, support, and patience throughout the course of my study. I'm always grateful to have Dr. Chen as my supervisor, supporting me during the hardest period, bringing the best out of me, and always run whole heartedly with me till the finishing line. We solve and get over problems together, and she always advise and encourage me to be a better researcher. It is my pleasure to be able to learn from Dr. Chen and good to work with him, always.

Also, I would like to extend my gratitude to my ex-supervisors, Associate Prof. Dr. Mansor Hashim. There are many things that I feels but unable to put into words, because the impact Dr. Mansor had on my life is one that is unable to be comprehended. Thank you for making me a passionate researcher, as an incredible educator, an honourable mentor, and a friend. May you rest in peace, and hope one day, I will live a life that will make you feel proud.

Not to forget my co-supervisors, Dr. Ismayadi Ismail, Dr. Josephine Liew Ying Chyi, Dr. Tan Kim Song, and Dr. Yap Wing Fen for their valuable ideas, encouragement and continuous support, making this research better. They are generous in sharing knowledge, spending their valuable time for discussion and guiding me the best that they could. I'm proud to have such energetic supervisory committee members.

Not forgetting to thank the entire staff of the Institute of Advanced Technology, UPM for their advices and assistances in my experimental and analyses work. In addition, I would like to thank my friends and colleagues Kak Idza, Kak Rod, Kak Faz, Kak Pisha, Kak Nora, Kak Dilah, Abang Shamsul, Farah, Diyah, Kriss Kumar, Wan, Misbah for sharing with me their friendships, knowledge and assistances throughout this project.

Moreover, I feel deeply grateful to MyBrainSc scholarship programme under the Ministry of Higher Education, Malaysia for the financial supports throughout my Ph.D.

Last but not least, I would like to give my heartfelt and special thanks to my family for their endless support, understanding, and love. They are always my best stories listeners no matter what, when and where.

I could not have completed this project without anyone of them. Thank you very much, all.

I certify that a Thesis Examination Committee has met on 31 May 2018 to conduct the final examination of Low Zhi Huang on his thesis entitled "Microstructural, Optical and Magnetic Properties of Barium Hexaferrite and Nickel Zinc Ferrite Synthesized via Mechanochemical Procedure" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Halimah binti Mohamed Kamari, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Abdul Halim bin Shaari, PhD Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Khamirul Amin bin Matori, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Xiaoding Qi, PhD

Professor National Cheng Kung University Taiwan (External Examiner)

RUSLI HAJI ABDULLAH, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 30 July 2018

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Chen Soo Kien, PhD Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Ismayadi Ismail, PhD Research Officer Institute of Advanced Technology Universiti Putra Malaysia (Member)

Josephine Liew Ying Chyi, PhD Senior Lecturer

Faculty of Science Universiti Putra Malaysia (Member)

Yap Wing Fen, PhD

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Member)

Tan Kim Song, PhD

Head of Programme Rubber Research Institute Malaysia Malaysia (Member)

ROBIAH BINTI YUNUS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _____ Date: _____

Name and Matric No.: Low Zhi Huang GS40429

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: Name of Chairman of Supervisory	
Committee:	Assoc. Prof. Dr. Chen Soo Kien
Signature: Name of Member of Supervisory Committee:	Dr. Ismayadi Ismail
Signature: Name of Member of Supervisory Committee:	Dr. Josephine Liew Ying Chyi
Signature: Name of Member of Supervisory Committee:	Dr. Yap Wing Fen
Signature: Name of Member of Supervisory Committee:	Dr. Tan Kim Song

TABLE OF CONTENTS

			Page
ABSTRACT			i
ABSTRAK			iii
ACKNOWLI	DGEMENTS		v
APPROVAL			vi
DECLARAT	[ON		vii
LIST OF TA	BLES		xv
LIST OF FIG	URES		xviii
LIST OF AB	REVIATIONS AND SYM	BOLS	XXV
2101 01 112			
CHAPTER			
1 INT	RODUCTION		1
1.1	Background of the study		1 1
1.2	Relationship between cha	racteristics and me	echanically 2
	induced microstructural re	sponse of ferrites	
1.3	Problem statement		3
1.4	Objectives and hypotheses	of the study	4
1.5	Scope of study		5
1.6	Thesis outline		5
2 LIT	ERATURE REVIEW		6
2.1	Introduction		6
2.2	Some aspects on the r	elationship betwee	en chosen 6
	ceramic synthesis techniqu	e and ferrite behavi	ours
2.3	Hard and soft ferrite na	anoparticles prepar	ration and 7
	processing		
2.4	Bottom-up (BU) approach	synthesis	8
	2.4.1 Sol-gel process		9
	2.4.2 Chemical copred	cipitation process	10
	2.4.3 Hydrothermal pr	ocess	11
	2.4.4 Mechanochemic	al activation-based	synthesis 12
2.5	Top-down (TD) approach	synthesis	13
	2.5.1 Mechanochemis	try	14
	2.5.2 Mechanochemic	al synthesis of	complex 14
	ceramic oxides		
	2.5.3 Process variab	oles or factors	affecting 16
	mechanochemic	al synthesis	
	2.5.3.1 Typ	es of ball mills	16
	2.5.3.2 Via	s or milling contain	ner 17
	2.5.3.3 Mil	ing medium	17
	2.5.3.4 Mill	ing speed and energ	gy 18
	2.5.3.5 Mill	ing time	19
	2.5.3.6 Exte	ent of filling the via	l and Ball- 20
	to-P	owder Ratio (BPR)	

			2.5.3.7	Milling environme	atmosphere ent	and	21
	2.6	Microst	ructural asp	ects of ferrite	S		22
		2.6.1	Size depe	ndant behavi	ours		22
		2.6.2	Defects a	nd porosity			23
		2.6.3	Boundary	region			24
3	THE	ORY					26
	3.1	Introdu	ction				26
	3.2	The orig	gin of magne	etism			26
	3.3	Magnet	ization				27
		3.3.1	Diamagn	etism and par	amagnetism		28
		3.3.2	Ferromag	netism and a	ntiferromagnetisr	n	29
		3.3.3	Ferrimag	netism			30
		3.3.4	Superpara	a <mark>m</mark> agnetism			30
	3.4	Classifi	cation of fer	rites			31
		3.4.1	Hexaferri	tes: BaFe ₁₂ O	19		32
		3.4.2	Spinel fer	rrites: Ni _{0.5} Zn	$h_{0.5}$ Fe ₂ O ₄		35
	3.5	Magnet	ic behaviour	s of ferrites			36
		3.5.1	Intrinsic p	properties			36
			2.5.1.1	Magnetic	moments		36
			2.5.1.2	Exchange	interaction		36
			2.5.3.3	Saturation	magnetization (<i>I</i>	(M_s)	37
			2.5.3.4	Magnetic	anisotropy		37
		3.5.2	Extrinsic	properties			38
			2.5.2.1	Domains a	and domain walls		38
			2.5.2.2	Magnetic	hysteresis		40
	3.6	Hard an	d soft magn	etic Materials	8		41
		3.6.1	Hard Mag	gnetic materia	als		42
		3.6.2	Soft mag	netic material	ls		42
	3.7	Sinterin	g				43
		3.7.1	Types of	sintering			43
		3.7.2	Driving f	orce of sinter	ing		44
		3.7.3	Three sta	ges of sintering	ng		44
		3.7.4	Mechanis	ms of sinteri	ng		45
		3.7.5	Grain gro	wth and coar	sening		46
	3.8	Mechan	ism of mech	nanochemical	process		47
4	MET	HODOL	OGY				49
	4.1	Introdu	ction				49
	4.2	Sample	selection				49
	4.3	Researc	h design				49

	· · · · · ·				
4.3	Researc	h design			49
4.4	Raw che	Raw chemical materials			
4.5	Sample	preparation and	d experimen	t procedure	50
	4.5.1	Top-down	approach	mechanochemical	51
		process of	BaFe ₁₂ O ₁₉	and Ni _{0.5} Zn _{0.5} Fe ₂ O ₄	

xi

systems

	4.5.2	Mechanocl of BaFe ₁₂ C	hemical activation-based synthesis D ₁₀ and Ni ₀ ₅ Zn ₀ ₅ Fe ₂ O ₄ systems	52
4.6	Characte	rizations	19	55
	4.6.1	Physical ar	nd structural properties	55
		4.6.1.1	X-ray Diffractometry (XRD)	55
		4.6.1.2	High Resolution Transmission Electron Microscopy (HRTEM)	58
		4.6.1.3	FieldEmissionScanningElectronMicroscopy(FESEM)	59
	4.6.2	Magnetic p 4.6.2.1	oroperties measurements Vibrating Sample Magnetometer	60 60
			(VSM)	
		4.6.2.2	Electron Spin Resonance (ESR)	61
	4.6.3	NIR-UV-V	vis spectrophotometer	61
	4.6.4	Vector Net	work Analyser (VNA)	63
	4.6.5	Error estin	nation	64
5 RESU	LTS ANI	DISCUSSI	ION	66
51	Introduc	tion		66
5.2	Top-dov	vn approach	synthesis of barium hexaferrite.	66
0.2	BaFe ₁₂ O	and nickel	zinc ferrite. Ni $_{0.5}$ Zn $_{0.5}$ Fe $_{2}$ O $_{4}$	00
	521	The bulk n	naterial	66
	5.2.2	Phase eva	luation of mechanically induced	69
	0.12.12	BaFe ₁₂ O ₁₀	and Ni _{0.5} Zn _{0.5} Fe ₂ O_4 nanoparticles	07
	5.2.3	Crystal str	ucture evaluation of mechanically	70
		induced	BaFe ₁₂ O ₁₀ and Ni _{0.5} Zn _{0.5} Fe ₂ O ₄	
		nanopartic	les	
	5.2.4	Morpholog	cical evaluation of mechanically	81
		induced nanopartic	$BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ les	
		5.2.4.1	Particle size evolution of BaFe ₁₂ O ₁₉ nanoparticles	82
		5.2.4.2	Particle size evolution of $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles	85
		5.2.4.3	Different stages of mechanochemical process based on particle size evolution	88
	5.2.5	Mechanica mechanoch	l induced defects during nemical process	90
		5.2.5.1	Defects during early stage of mechanochemical process	90
		5.2.5.2	Defects during intermediate stage of mechanochemical process	92
		5.2.5.3	Defects during final stage of mechanochemical Process	94

5.2.6	Three	proposed	mechan	nisms	of	96
5 7 7	mechanoch Magnotic	emical proc	ess r ovelu	untion	of	08
5.2.1	mechanical	ly induced	nanonarticl	les	01	90
	5 2 7 1	Magnetic	naram	neters	of	98
	5.2.7.1	mechanica	illy induce	d BaFe	Ω_{10}	90
		nanopartic	les	a bar o ₁	2019	
	5.2.7.2	Magnetic	param	ieters	of	102
		mechanica	ılly	indu	uced	
		$Ni_{0.5}Zn_{0.5}F$	e ₂ O ₄ nanop	particles		
5.2.8	Electron	Spin Re	sonance	(ESR)	of	105
	mechanical	ly induc	ed BaFe	$e_{12}O_{19}$	and	
520	$N1_{0.5}Zn_{0.5}Fe$	20_4 nanopa	armachility	t of Vk	and	100
5.2.9	froquoncios	nagnetic p		at A-C		109
	BaFeroOro	and Nio $-7n$	Echamican	y mut nonarticl	es	
5 2 10	Ontical bar	ndgan evali	$0.51 \circ 204$ flat	mechanic	ally	112
5.2.10	induced nat	oparticles	Junion of 1	meename	ally	112
	5 2 10 1	The offect	e of structu	ral disor	dore	112
	5.2.10.1	and size of	n ontical ha	andgan v	alue	112
		of BaFero	D_{10} nanonal	rticles	arue	
	5.2.10.2	The effect	s of structu	ral disor	ders	115
		and size of	n optical ba	andgap v	alue	-
		of Ni _{0.5} Zn ₀	$_{0.5}$ Fe ₂ O ₄ name	noparticl	es	
Mechano	chemical ac	tivation-bas	ed synthes	sis of bar	ium	117
hexaferri	te. BaFe ₁₂	D_{10} and	nickel zi	inc Fer	rite.	117
$Ni_{0.5}Zn_{0.4}$	Fe_2O_4	-1,			,	
531	Dhase and	crustal s	tructure	voluction	of	117
5.5.1	mechanoch	emical	acti	varianon-h	ased	11/
	synthesized	nanopartic	les	vation of	1500	
	5.3.1.1	Sintarad B				
		Sincred D	$aFe_{12}O_{19}p$	owder		117
	5.3.1.2	Sintered D Sintered N	$aFe_{12}O_{19} p_{10.5}Fe_{2}$	owder $_{2}O_{4}$ powd	ler	117 121
5.3.2	5.3.1.2 Morpholog	Sintered D Sintered N ical	$aFe_{12}O_{19} p$ $i_{0.5}Zn_{0.5}Fe_2$ evaluation	owder 2O4 powd n	ler of	117 121 126
5.3.2	5.3.1.2 Morpholog mechanoch	Sintered N Sintered N ical emical	aFe ₁₂ O ₁₉ p li _{0.5} Zn _{0.5} Fe ₂ evaluation activ	owder 2O4 powd n vation-ba	ler of 1sed	117 121 126
5.3.2	5.3.1.2 Morpholog mechanoch synthesized	Sintered D Sintered N ical emical nanopartic	$aFe_{12}O_{19} p_{10,5}Fe_{2}$ evaluation activities	owder ₂ O ₄ powd n vation-ba	ler of ased	117 121 126
5.3.2	5.3.1.2 Morpholog mechanoch synthesized 5.3.2.1	Sintered D Sintered N ical emical nanopartic Particle size	$aFe_{12}O_{19} p_{10,5}Zn_{0,5}Fe_{2}$ evaluation activities ze evolution	owder 2O4 powc n vation-ba n of sinte	ler of ased ered	117 121 126 126
5.3.2	5.3.1.2 Morpholog mechanoch synthesized 5.3.2.1	Sintered B Sintered N ical emical nanopartic Particle siz $BaFe_{12}O_{19}$	$aFe_{12}O_{19} p_{10,5}Zn_{0,5}Fe_{2}$ evaluation activities ze evolution nanopartic	owder 2O4 powc n vation-ba n of sinte tles	ler of ased ered	117 121 126 126
5.3.2	5.3.1.2 Morpholog mechanoch synthesized 5.3.2.1 5.3.2.2	Sintered B Sintered N ical emical nanopartic Particle siz BaFe ₁₂ O ₁₉ Particle siz	$aFe_{12}O_{19} p_{10,5}Fe_{2}$ evaluation activities ze evolution nanopartic ze evolution	owder ₂ O ₄ powc n vation-ba n of sinte n of sinte	ler of ased ered ered	117 121 126 126 131
5.3.2	5.3.1.2 Morpholog mechanoch synthesized 5.3.2.1 5.3.2.2 The Charge	Sintered B Sintered N ical emical nanopartic Particle siz BaFe ₁₂ O ₁₉ Particle siz Ni _{0.5} Zn _{0.5} F	$aFe_{12}O_{19} p_{10}$ $i_{10,5}Zn_{0,5}Fe_{2}$ evaluation activities les ze evolution nanopartic ze evolution $ie_{2}O_{4}$ nanop	owder ₂ O ₄ powc n vation-ba n of sinte cles n of sinte particles three st	ler of ased ered ered	117 121 126 126 131
5.3.2	5.3.1.2 Morpholog mechanoch synthesized 5.3.2.1 5.3.2.2 The Charac of sintering	Sintered B Sintered N ical emical nanopartic Particle siz BaFe ₁₂ O ₁₉ Particle siz Ni _{0.5} Zn _{0.5} F teristics of	$aFe_{12}O_{19} p_{10,5}Zn_{0,5}Fe_{2}$ evaluatio activites ze evolution nanopartic ze evolution $e_{2}O_{4}$ nanop particles at	owder ₂ O ₄ powc n vation-ba n of sinte les n of sinte particles t three sta	ler of ased ered ered ages	117 121 126 126 131 134
5.3.2	5.3.1.2 Morpholog mechanoch synthesized 5.3.2.1 5.3.2.2 The Charac of sintering 5.3.3.1	Sintered B Sintered N ical emical nanopartic Particle siz BaFe ₁₂ O ₁₉ Particle siz Ni _{0.5} Zn _{0.5} F teristics of Particles	$aFe_{12}O_{19} p_{10,5}Zn_{0,5}Fe_2$ evaluatio activites ze evolution nanopartic ze evolution $e_{2}O_4$ nanop particles at	owder 2O4 powc n vation-ba n of sinte eles n of sinte particles t three sta	ler of ased ered ered ages of	117 121 126 126 131 134 134
5.3.2	5.3.1.2 Morpholog mechanoch synthesized 5.3.2.1 5.3.2.2 The Charac of sintering 5.3.3.1	Sintered B Sintered N ical emical nanopartic Particle siz BaFe ₁₂ O ₁₉ Particle siz Ni _{0.5} Zn _{0.5} F teristics of Particles sintering	$aFe_{12}O_{19} p_{10,5}Zn_{0,5}Fe_2$ evaluatio activities ze evolution nanopartic ze evolution $^{3}e_2O_4$ nanop particles at at early	owder ₂ O ₄ powc n vation-ba n of sinte cles n of sinte particles t three sta stage	ler of ased ered ered ages of	117 121 126 126 131 134 134
5.3.2	5.3.1.2 Morpholog mechanoch synthesized 5.3.2.1 5.3.2.2 The Charac of sintering 5.3.3.1 5.3.3.2	Sintered B Sintered N ical emical nanopartic Particle siz BaFe ₁₂ O ₁₉ Particle siz Ni _{0.5} Zn _{0.5} F teristics of Particles sintering Particles a	$aFe_{12}O_{19} p_{10}$ $i_{10,5}Zn_{0,5}Fe_{2}$ evaluation activities ze evolution ranoparticize evolution $i^{2}e_{2}O_{4}$ nanop particles at at early at intermed	owder 2O4 powe n vation-ba n of sinte cles n of sinte particles t three sta stage iate stag	ler of ased ered ered ages of e of	117 121 126 126 131 134 134 134
5.3.2	5.3.1.2 Morpholog mechanoch synthesized 5.3.2.1 5.3.2.2 The Charac of sintering 5.3.3.1 5.3.3.2	Sintered B Sintered N ical emical nanopartic Particle siz BaFe ₁₂ O ₁₉ Particle siz Ni _{0.5} Zn _{0.5} F teristics of Particles sintering Particles a sintering	$aFe_{12}O_{19} p_{10,5}Zn_{0,5}Fe_{2}$ evaluatio active les ze evolution nanopartic ze evolution $Ge_{2}O_{4}$ nanop particles at at early at intermed	owder 2O4 powe n vation-ba n of sinte les n of sinte particles t three sta stage iate stag	ler of ased ered ered ages of e of	117 121 126 126 131 134 134 134
5.3.2	 5.3.1.2 Morpholog mechanoch synthesized 5.3.2.1 5.3.2.2 The Characo of sintering 5.3.3.1 5.3.3.2 5.3.3.3 	Sintered B Sintered N ical emical nanopartic Particle siz BaFe ₁₂ O ₁₉ Particle siz Ni _{0.5} Zn _{0.5} F teristics of Particles sintering Particles a sintering Particles	$aFe_{12}O_{19} p_{10,5}Zn_{0,5}Fe_2$ evaluatio acti- les ze evolution nanopartic ze evolution Fe_2O_4 nanop particles at at early it intermed at final	owder 2O4 powe n vation-ba n of sinte les n of sinte particles t three sta stage iate stag stage	ler of ased ered ages of e of of	117 121 126 126 131 134 134 134 136 138
5.3.2	5.3.1.2 Morpholog mechanoch synthesized 5.3.2.1 5.3.2.2 The Charac of sintering 5.3.3.1 5.3.3.2 5.3.3.2	Sintered B Sintered N ical emical nanopartic Particle siz BaFe ₁₂ O ₁₉ Particle siz Ni _{0.5} Zn _{0.5} F teristics of Particles sintering Particles a sintering Particles sintering	$aFe_{12}O_{19} p_{10,5}Zn_{0,5}Fe_2$ evaluatio activities ze evolution nanopartic ze evolution e_2O_4 nanop particles at at early it intermed at final	owder 2O4 powe n vation-ba n of sinte les n of sinte particles t three sta stage iate stag stage	ler of ased ered ages of e of of	117 121 126 131 134 134 136 138

5.3

5.3.	5 Magnetic behaviour evaluation of bottom-up approach synthesized nanoparticles	141
	5.3.5.1 Magnetic parameters of sintered BaFe ₁₂ O ₁₉ nanoparticles	141
	5.3.5.2 Magnetic parameters of sintered $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles	144
5.3.	6 Electron Spin Resonance (ESR) of mechanochemical activation-based synthesized BaFe ₁₂ O ₁₉ and Ni _{0.5} Zn _{0.5} Fe ₂ O ₄ nanoparticles	146
5.3.	7 Optical bandgap evaluation of mechanochemical activation-based synthesized $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles	148
CONCLUS	IONS AND SUGGESTIONS	151
6.1 Intr	oduction	151
6.2 Con	clusion	151
6.2.	1 Top-down approach mechanochemical process	151
6.2.	2 Mechanochemical activation-based synthesis	153
6.3 Sug	gestions	154
ERENCES		155
ENDICES		165
DATA OF ST	UDENT	168

169

REF APP BIODATA OF STUDENT LIST OF PUBLICATIONS

LIST OF TABLES

Table		Page
2.1	Table of summary of previous studies on the development from conventional solid state route to mechanochemical activation-based synthesis	12
2.2	Table of summary of previous studies on top-down approach mechanochemical process	14
3.1	Magnetic Quantities and Units	28
3.2	Classification of ferrites according to variation in molar ratio of Fe_2O_3 to modifier oxide. (Modified from Louh et al., 2004)	32
3.3	Cation sublattices in BaFe ₁₂ O ₁₉	33
3.4	Formula of anisotropy field for different easy axes	38
3.5	Summary of diffusion mechanisms for sintering (Rahaman, 2007)	46
4.1	Milling variables for top-down synthesis approach samples	51
4.2	Milling variables for the preparation of nanoparticles for mechanochemical activation-based synthesis	53
4.3	Error estimation for characterization measurements	65
5.1	Lattice constants, theoretical density, experimental density, and percentage of porosity of the starting material of top-down approach synthesis of $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles	68
5.2	Rietveld refinement factors, lattice constants, and unit cell volume of $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ at increasing milling times (Errors are shown in parentheses)	75
5.3	Site occupancies of the cations obtained by Rietveld refinement of $BaFe_{12}O_{19}$	77
5.4	Site occupancies of cations and anions of $Ni_{0.5}Zn_{0.5}Fe_2O_4$ as determined from Rietveld analysis	77
5.5	Bond angle information from Rietveld refinement of	78

	$BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles	
5.6	Bond length information from Rietveld refinement of $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles	79
5.7	Comparison of average crystallite size calculated using Scherrer's method and average particle size measured from FESEM images for $BaFe_{12}O_{19}$ nanoparticles	82
5.8	Comparison of average crystallite size calculated using Scherrer's method and average particle size measured from FESEM images for Ni _{0.5} Zn _{0.5} Fe ₂ O ₄ nanoparticles	85
5.9	Average crystallite size, magnetization at 10 kOe (M_{10} $_{kOe}$), coersive field (H_c), and remanent magnetization (M_r) derived from the hysteresis loops measured for BaFe ₁₂ O ₁₉ milled at different milling time (t_m)	101
5.10	Average crystallite size, magnetization at 10 kOe (M_{10} _{kOe}), coersive field (H_c), and remanent magnetization (M_r) derived from the hysteresis loops measured for Ni _{0.5} Zn _{0.5} Fe ₂ O ₄ milled at different milling time (t_m)	104
5.11	Parameters that extracted from ESR spectra for BaFe ₁₂ O ₁₉ Nanoparticles	106
5.12	Parameters that extracted from ESR spectra for $Ni_{0.5}Zn_{0.5}Fe_2O_4$ Nanoparticles	115
5.13	Variation of direct optical bandgap values of hard and soft ferrite at different milling time	120
5.14	Rietveld refinement factors, and lattice constants of $BaFe_{12}O_{19}$ at increasing sintering temperature (Errors are shown in parentheses)	179
5.15	Structural Information of $BaFe_{12}O_{19}$ extracted from Rietveld refinement at increasing sintering temperature (Errors are shown in parentheses)	120
5.16	Rietveld refinement factors, and lattice constants of $Ni_{0.5}Zn_{0.5}Fe_2O_4$ at increasing sintering temperature (Errors are shown in parentheses)	125
5.17	Structural Information of Ni _{0.5} Zn _{0.5} Fe ₂ O ₄ extracted from Rietveld refinement at increasing sintering	125
5.18	Average crystallite size calculated using Scherrer's method and average particle size measured by FESEM	126

	technique for mechanochemical activation-based synthesis of $BaFe_{12}O_{19}$ nanoparticles	
5.19	Average crystallite size calculated using Scherrer's method and average particle size measured by FESEM microscopy technique for mechanochemical activation-based synthesis of $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles	131
5.20	Average crystallite size, magnetization at 10 kOe (M_{10} $_{kOe}$), coersive field (H_c), and remanent magnetization (M_r) derived from the hysteresis loops measured for BaFe ₁₂ O ₁₉ sintered at different sintering temperature	142
5.21	Average crystallite size, magnetization at 10 kOe (M_{10} koe), coersive field (H_c), and remanent magnetization (M_r) derived from the hysteresis loops measured for Ni _{0.5} Zn _{0.5} Fe ₂ O ₄ sintered at different sintering temperature	145
5.22	Parameters that extracted from ESR spectra for $BaFe_{12}O_{19}$ nanoparticles sintered at different sintering temperature	146
5.23	Parameters that extracted from ESR spectra for $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles sintered at different sintering temperature	147

LIST OF FIGURES

Figure		Page
2.1.	Schematic representation of Bottom-up Approach Synthesis	9
2.2.	Schematic representation of top-down approach synthesis for the preparation of nanostructured materials	13
2.3	Nucleation and growth mechanisms of direct mechanochemical synthesis (Sopicka-Lizar, 2010)	15
2.4	Free Energy diagram for phases involved in mechanical alloying (MA) and mechanical disordering (MD) process (El-Eskandarany, 2015d)	22
3.1	Schematic of magnetic moment alignment for: (a) diamagnetic material, (b) paramagnetic material with and without an external applied field	29
3.2	Superparamagnetic particles with and without an external applied field	31
3.3	Unit cell of $BaFe_{12}O_{19}$ showing polyhedra coordination of Fe^{3+} ions (Valenzuela, 1994)	34
3.4	The spinel structure. A unit cell can be divided into octants; tetrahedral cations A and octahedral cations B, are shown in two octants with unit cell edge a (Valenzuela, 1994)	35
3.5	Schematic representations of reduction of magnetostatic energy by subdivision of magnetic domains. The dashed lines represent the domain walls	39
3.6	Schematic representation of typical hysteresis loop, the darken regions in the bubbles represent domains with parallel spin orientation. Initial magnetization curve showing parameters like initial permeability μ i, and critical field Hcr (adapted from Bertotti, 1998; Valenzuela, 1994)	41
3.7	Comparison of hard and soft hysteresis loops	42
3.8	Typical procedure of sintering process	43

 \bigcirc

2	3.9	The basic phenomena of sintering that involve changes of specific surface energy and interfacial surface area (Kang, 2005)	44
3	3.10	Six matter transport mechanisms of sintering (Rahaman, 2007)	46
2	3.11	Three stages of mechanochemical process in terms of dispersity; (a) Rittinger stage, (b) aggregation stage, and (c) agglomeration stage (Balaz, 2008)	48
2	4.1	Flow chart for the starting bulk material preparation, experiment, and characterization for top-down approach mechanochemical process synthesized samples	52
2	4.2	Flow chart for the starting material preparation, experiment, and characterization for mechanochemical activation-based synthesis	54
2	4.3	Sintering profile of mechanochemical activation- based synthesis	55
2	4.4	Schematic diagram of XRD (Cullity & Stock, 2001)	56
2	4.5	Schematic diagram of HRTEM (modified from Yang, 2008)	58
2	4.6	Schematic diagram of the structure of FESEM (Yang, 2008)	60
2	4.7	Schematic representation of model for the Kubelka- Munk analysis (Hecht, 1976)	62
2	4.8	The set-up of VNA measurements	64
	4.9	Scattering parameter (S parameters) description of two-pot device	64
	5.1	XRD pattern for the starting material of top-down approach synthesis of $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles	67

xix

5.2	(a) FESEM micrograph of the starting material of $BaFe_{12}O_{19}$; (b) Grain size distribution curve and histogram of the starting material top-down approach synthesis of $BaFe_{12}O_{19}$ nanoparticles; (c) FESEM micrograph of the starting material of $Ni_{0.5}Zn_{0.5}Fe_2O_4$; (d) Grain size distribution curve and histogram of the starting bulk material of top-down approach synthesis of $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles	69
5.3	X-ray Diffraction patterns of (a) $BaFe_{12}O_{19}$ and (b) $Ni_{0.5}Zn_{0.5}Fe_2O_4$ after different milling times: 1, 2, 4, 8, 12, 16, 20 hours	71
5.4	Rietveld refined XRD patterns for $BaFe_{12}O_{19}$ samples milled for (a) 1 hour, (b) 2 hours, (c) 4 hours, (d) 8 hours, (e) 12 hours, (f) 16 hours, (g) 20 hours. The bottom graphs show the difference in the plots between the experimental and refined data	73
5.5	Rietveld refined XRD patterns for $Ni_{0.5}Zn_{0.5}Fe_2O_4$ samples milled for (a) 1 hour, (b) 2 hours, (c) 4 hours, (d) 8 hours, (e) 12 hours, (f) 16 hours, (g) 20 hours. The bottom graphs show the difference in the plots between the experimental and refined data	74
5.6	Graphs of (a) lattice constants, a and c, against milling time, (b) unit cell volume against milling time for $BaFe_{12}O_{19}$, and (c) lattice parameter and unit cell volume against milling time for $Ni_{0.5}Zn_{0.5}Fe_2O_4$	76
5.7	$\begin{array}{c} Crystallite \ size \ and \ lattice \ strain \ as \ function \ of \\ milling \ time \ for \ (a) \ BaFe_{12}O_{19} \ and \ (b) \\ Ni_{0.5}Zn_{0.5}Fe_2O_4 \end{array}$	81
5.8	FESEM images for $BaFe_{12}O_{19}$ nanoparticles milled for (a) 1 hour, (b) 2 hours, (c) 4 hours, (d) 8 hours, (e) 12 hours, (f) 16 hours, and (g) 20 hours	83
5.9	Particle size distribution for $BaFe_{12}O_{19}$ nanoparticles milled for (a) 1 hour, (b) 2 hours, (c) 4 hours, (d) 8 hours, (e) 12 hours, (f) 16 hours, and (g) 20 hours	84
5.10	FESEM images for $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles milled for (a) 1 hours, (b) 2 hours, (c) 4 hours, (d) 8 hours, (e) 12 hours, (f) 16 hours, and (g) 20 hours	86
5.11	Particle size distribution for $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles milled for (a) 1 hour, (b) 2 hours, (c) 4 hours, (d) 8 hours, (e) 12 hours, (f) 16 hours, and (g) 20 hours	87

XX

5.12	Three stages during mechanochemical process for (a) $BaFe_{12}O_{19}$ and (b) $Ni_{0.5}Zn_{0.5}Fe_2O_4$	89
5.13	High Resolution TEM images for $BaFe_{12}O_{19}$ samples milled for 2 hours (early stage)	91
5.14	Schematic illustration of grain boundary orientation generating fringes in HRTEM images	92
5.15	High Resolution TEM images for Ni _{0.5} Zn _{0.5} Fe ₂ O ₄ samples during early stage of mechanochemical process	92
5.16	High Resolution TEM images for BaFe ₁₂ O ₁₉ samples milled for 12 hours (intermediate stage)	93
5.17	High Resolution TEM images for $Ni_{0.5}Zn_{0.5}Fe_2O_4$ samples milled for 8 hours (intermediate stage)	94
5.18	High Resolution TEM images for $BaFe_{12}O_{19}$ samples milled for 20 hours (final stage)	95
5.19	High Resolution TEM images for $Ni_{0.5}Zn_{0.5}Fe_2O_4$ samples milled for 16 hours (final stage)	96
5.20	Relative percentage of crystalline and amorphous content of (a) hard ferrite and (b) soft ferrite at different milling times	97
5.21	Schematic drawings of the evolutional stages of mechanochemical process	98
5.22	M-H hysteresis loops for three stages of mechanochemical mechanism for BaFe ₁₂ O ₁₉	100
5.23	The variation of magnetic parameters with particles size of $BaFe_{12}O_{19}$ nanoparticles	101
5.24	M-H hysteresis loops for Ni _{0.5} Zn _{0.5} Fe ₂ O ₄ nanoparticles at different milling time	103
5.25	The variation of magnetic parameters with particle size of $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles	104
5.26	Schematic representation of transition from single to multi domain particle (adapted from Hadjipanayis, 1999)	105

	5.27	The definition of $A+$, $A-$, and ΔHpp (From ESR spectrum of milled 2 hours $BaFe_{12}O_{19}$ nanoparticles)	105
	5.28	ESR spectra of (a) $BaFe_{12}O_{19}$ and (b) $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles milled at different milling time	108
	5.29	Plot of real part permeability against frequency for $BaFe_{12}O_{19}$	110
	5.30	Plot of imaginary part permeability against frequency of $BaFe_{12}O_{19}$	111
	5.31	Plot of real and imaginary part permeability against frequency for $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles	111
	5.32	Absorption spectra of $BaFe_{12}O_{19}$ nanoparticles milled at different milling time	113
	5.33	The plot of crystallite size and optical bandgap value against milling time of BaFe ₁₂ O ₁₉ nanoparticles	114
	5.34	Schematic diagram of band structure of a core-shell nanoparticle (Adapted from Naldoni et al., 2012)	114
	5.35	Absorption spectra of $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles milled at different milling time	116
	5.36	The plot of crystallite size and optical bandgap value against milling time of $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles	116
	5.37	X-ray Diffraction patterns of BaFe ₁₂ O ₁₉ sintered from 600 °C to 1200 °C	118
	5.38	Rietveld refined XRD patterns for $BaFe_{12}O_{19}$ samples sintered for (a) 600 °C, (b) 700 °C, (c) 800 °C, (d) 900 °C, (e) 1000 °C, (f) 1100 °C, (g) 1200 °C. The bottom graphs show the difference in the plots between the experimental and refined data	119
	5.39	Crystallite size and lattice strain of $BaFe_{12}O_{19}$ as function of sintering temperature	121
	5.40	X-ray Diffraction patterns of $Ni_{0.5}Zn_{0.5}Fe_2O_4$ sintered from 600 °C to 1200 °C	122
	5.41	Rietveld refined XRD patterns for $Ni_{0.5}Zn_{0.5}Fe_2O_4$ samples sintered for (a) 600 °C, (b) 700 °C, (c) 800 °C, (d) 900 °C, (e) 1000 °C, (f) 1100 °C, (g) 1200 °C. The bottom graphs show the difference in the plots between the experimental and refined data	124

5.42	Crystallite size and lattice strain of $Ni_{0.5}Zn_{0.5}Fe_2O_4$ as function of sintering temperature	126
5.43	FESEM micrographs for $BaFe_{12}O_{19}$ nanoparticles sintered for (a) 600 °C, (b) 700 °C, (c) 800 °C, (d) 900 °C, (e) 1000 °C, (f) 1100 °C, (g) 1200 °C	128
5.44	Particle size distribution of $BaFe_{12}O_{19}$ nanoparticles sintered for (a) 600 °C, (b) 700 °C, (c) 800 °C, (d) 900 °C, (e) 1000 °C, (f) 1100 °C, (g) 1200 °C	129
5.45	Plot of log D versus the reciprocal of absolute temperature $(1/T)$ of BaFe ₁₂ O ₁₉	131
5.46	FESEM images for $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles sintered for (a) 600 °C, (b) 700 °C, (c) 800 °C, (d) 900 °C, (e) 1000 °C, (f) 1100 °C, (g) 1200 °C	132
5.47	Particle size distribution of $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles sintered for (a) 600 °C, (b) 700 °C, (c) 800 °C, (d) 900 °C, (e) 1000 °C, (f) 1100 °C, (g) 1200 °C	133
5.48	Plot of log D versus the reciprocal of absolute temperature $(1/T)$ of Ni _{0.5} Zn _{0.5} Fe ₂ O ₄	134
5.49	High Resolution TEM images for $BaFe_{12}O_{19}$ nanoparticles sintered at (a) 600 °C, (b) 700 °C, and (c) 800 °C (Initial stage of sintering)	135
5.50	High Resolution TEM images for $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles sintered at (a) 600 °C, and (b) 800 °C (Initial stage of sintering)	136
5.51	High Resolution TEM images for $BaFe_{12}O_{19}$ nanoparticles sintered at (a) 900 °C, (b) 900 °C (another feature), (c) 1000 °C (Intermediate stage of sintering)	137
5.52	High Resolution TEM images for $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles sintered at (a) 900 °C, and (b) 1100 °C (Intermediate stage of sintering)	137
5.53	High Resolution TEM images for particles sintered at 1200 °C for (a) $BaFe_{12}O_{19}$, and (b) $Ni_{0.5}Zn_{0.5}Fe_2O_4$ (final stage of sintering)	138
5.54	Schematic representation of bulk and nanoparticles, and the definition of R, radius of a particle, and r, radius of the core of a particle	139

5.55	Relative percentage of crystalline and amorphous content of $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ at different sintering temperature	140
5.56	Three stages of sintering	141
5.57	Magnetic parameters of mechanochemical activation- based synthesis of $BaFe_{12}O_{19}$: (a) Hysteresis loops at different sintering temperature, (b) Plot of M_{10kOe} versus sintering temperature, (c) Plot of coercivity versus sintering temperature	142
5.58	Coercivity of $BaFe_{12}O_{19}$ samples as a function of average particle size	143
5.59	Magnetic parameters of mechanochemical activation- based synthesis of Ni _{0.5} Zn _{0.5} Fe ₂ O ₄ : (a) Hysteresis loops at different sintering temperature, (b) Plot of M_{10kG} versus sintering temperature, (c) Plot of coercivity versus sintering temperature	144
5.60	Coercivity of $Ni_{0.5}Zn_{0.5}Fe_2O_4$ samples as a function of average particle size	145
5.61	ESR spectra of (a) $BaFe_{12}O_{19}$, and (b) $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles sintered at different temperature	148
5.62	Absorption spectra of (a) $BaFe_{12}O_{19}$, and (b) $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles sintered at different sintering temperature	149
5.63	The plot of crystallite size and optical bandgap value against sintering temperature of (a) $BaFe_{12}O_{19}$, and (b) $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles sintered at different temperature	150
	-	

LIST OF ABBREVIATIONS AND SYMBOLS

Barium hexaferrite
Nickel zinc ferrite
Bottom-up approach
Top-down approach
Zinc ferrite
Cobalt ferrite
Barium carbonate
Nickel ferrite
Nickel zinc ferrite
Strontium ferrite
Figure
Zinc oxide
Iron oxide
Nickel oxide
Ball-to-powder weight ratio
Other similar things
Magnetocrystalline anisotropy energy
Saturation magnetization
Porosity
Bohr magneton
Density
Magnetic susceptibility
Magnetostriction
Anisotropy energy

E_m	Magnetostatic energy
H_c	Coercivity
k_B	Boltzmann constant
γ	Specific surface energy
XRD	X-ray Diffraction
HRTEM	High Resolution Transmission Electron Microscope
VSM	Vibrating sample magnetometer
VNA	Vector network analyser
ESR	Electron spin resonance
FESEM	Field Emission Scanning Electron Microscope
NIR-UV-vis	Near infrared-ultraviolet- visible
h k l	Miller indices
λ	Wavelength
~	Approximately
mins	Minutes
В	Magnetic flux density
DUT	Device under test
μ _r	Complex permeability
px-ray	X-ray density
D	Crystallite size
20	2 theta degree
a.u.	Arbitrary unit
	Goodness of fit
$M_{10 \ kOe}$	Magnetization at 10 kOe
t_m	Milling time

W	Volume fraction
V _{shell}	Volume of shell
V _{core}	Volume of core
ΔH_{pp}	Peak-to-peak line width
R	Asymmetry parameter
H_r	Resonance field
h	Plank constant
k _B	Boltzmann constant
μ'	Real part of the permeability
μ''	Loss factor
α	Absorbance
Eg	Energy bandgap
v	Frequency
E _a	Activation energy
D_c	Critical size

CHAPTER 1

INTRODUCTION

1.1 Background of the study

Concerns with regard to the hazardous effects of current technologies on the environment and climate change are forcing industrialized and developing countries to seek for solutions and green technologies for a sustainable future. A more efficient utilisation of resources and energy implies a reduction in both waste and the environmental impact of human activities (Holdren, 2008). Therefore, rethinking the known current methodologies while maintaining or even improving productivity has become the major role of advancing fundamental and applied sciences. Mechanochemical procedure or mechanochemistry technology has attracted considerable interest because: (1) it is easy and simple to apply, (2) it allows fast chemical reactions under controlled conditions, and (3) it is a highly productive and relatively efficient methodology for the production of nanoscale materials. Therefore, mechanochemical procedure can be used as either a top-down approach synthesis technique to convert used bulk materials into raw nanopowder, or as a mechanochemical activation-based synthesis, which referring to the utilisation of mechanochemical process to increase the reactivity of the starting powders before heat treatment.

Ceramic composite powders can be synthesized by two techniques, which are known as the bottom-up and top-down approaches. The bottom-up approach synthesis method involves the construction of nanostructures in the material from small to large sizes. Examples of bottom-up approach synthesis methods include the sol-gel, melt spinningmelt quenching (MQ), chemical vapour deposition (CVD), and physical vapour deposition (PVD) methods. Typically, researchers would investigate variations in the properties of materials with a specific bottom-up synthesis technique with controlled parameters to obtain a controlled microstructure and fully dense polycrystalline material. On the other hand, the top-down approach synthesis method utilizes mechanical, chemical, or other forms of energy to break down macro-structured materials into smaller components (Sopicka-Lizer, 2010). The emergence of "Green Technology" recently has highlighted the importance of top-down approach synthesis method studies, which have been neglected by researchers in the past as the issues of conservation and preservation were not as urgent as at present. Nanomagnetic materials have attracted considerable interest from many researchers due to their novel properties when particles size decreases to nanoscale regime. These properties are different from those in bulk form. The correlation between particle size (1-100 nm) and critical magnetic parameters has led to a new study field called nanomagnetism. Nanostructured materials possess a high surface area to volume ratio, which allows the dominance of quantum confinement effects and a larger influence of surface atoms compared to those in the interior (Kumar, 2013).

Ferrites are a family of materials, in which the main constituent of the material is mixed metal oxides, typically iron oxide which contains Fe³⁺ ions. Ferrites are categorized into two groups based on how ease these materials are to be magnetized or demagnetized. Materials that can be permanently magnetized and require strong applied magnetic field to demagnetize are known as hard ferrites. Hard ferrites are widely used in speakers, recording devices, magneto-optical sensors. On the other hand, materials that are easily and temporarily magnetised under magnetic field are known as soft ferrites. In contrast with hard ferrites, soft ferrites are used in communication and electronic devices like transformers and inductors, and recently, in the field of biomedicine. Ferrites can also be categorized according to their structures into three groups: (1) spinel ferrites, (2) garnet ferrites, and lastly (3) hexagonal ferrites, which are known as magnetoplumbite ferrites. In terms of magnetic characteristics, spinel ferrites and garnet ferrites are soft ferrites and hexagonal ferrites are hard ferrites. Both hard and soft ferrites play important roles in various current technologies. Hard ferrites, particularly BaFe12O19, barium hexaferrite, exhibits some salient properties. It has strong magnetocrystalline anisotropy and an easy magnetization at the *c*-axis. Besides, barium hexaferrite has a high coercivity, high saturation magnetization, excellent chemical stability, and is resistant to corrosion. Due to its unique characteristics, barium hexaferrite is one of the most important magnetic materials with great scientific and technological roles (Shafie et al., 2014). On the other hand, nickel zinc ferrite, which is the most popular composition of soft ferrites, is one of the most abundant magnetic materials found in electrical devices and telecommunication devices. Characteristics like high resistivity, low eddy current loses, low coercivity, low cost, and easily altered magnetic behaviours due to its compositional sensitive nature, has made nickel zinc ferrite an important material in high frequency applications such as microwave devices, transformers, antennas, and inductors (Ibrahim et al., 2014; Ismail et al., 2011). In this study, BaFe₁₂O₁₉ and a well-known composition $Ni_{0.5}Zn_{0.5}Fe_2O_4$ are chosen as the specimens.

1.2 Relationship between Characteristics and Mechanically Induced Microstructural Response of Ferrites

The response of the structure and size of hexaferrites and spinel ferrites to mechanical energy through high energy ball milling and its impacts on their optical, physical, and magnetic properties are interesting because mechanical energy makes them differ from their bulk counterparts. Investigations in the field of mechanically induced materials, especially iron-based ceramics, have been considerably developed recently (Rodziah et al., 2012; Shafie et al., 2014). Šepelák et al. (2014), and Waje et al. (2010) recognised mechanochemical process was capable of producing nano-sized powder, and the changes in the microstructural properties were the main factor responsible for the changes in the investigated properties. Ferrites exhibit complicated disordering phenomena under mechanical impacts. Šepelák et al. (2014) found several disordering phenomena such as redistribution of cations over non-equivalent cation sublattices, the formation of canted spin arrangements, the changes of polyhedra geometry, and formation of cation with unsaturated oxygen coordination. Heat treatment like sintering provides a recovery path or recrystallization process: to enable the excited unstable metastable state transforms to the low energy crystalline state (Idza et al., 2012). The reformation of crystalline phase in ferrites changed the behaviours or characteristics of

mechanical alloyed induced metastable materials in terms of microstructural properties, caused an increase in crystalline volume, thus had a direct relationship with the investigated physical, chemical, and magnetic properties (Low et al., 2015). On the other hand, for top-down approach, mechanically induced microstructural defects and disordering structures remained in ferrite specimens (Šepelák et al., 2014). Studies on the mechanically induced response of both hard and soft ferrites, are essential not only for fundamental understanding of science, but also due to the industrial and technological importance of these materials in telecommunication, microwave, memory storage, ferrofluids, and even biomedical applications. To strengthen the fundamental science knowledge on the evolutional relationship between characteristics and microstructural response of ferrites, this study undertakes the response of fine nanoparticles made up of mechanical alloyed Ba-hexaferrite and NiZn-spinel ferrite to vary in the sintering temperature (mechanochemical activation-based synthesis), and further investigate the correlations by comparing with the response of single phase Bahexaferrite and NiZn-spinel ferrite to mechanical action through mechanochemical process (top-down approach mechanochemical process). For both approaches, their physical, optical, and magnetic properties are investigated. Many researchers involving, but not restricted to the following (Rodziah et al., 2012; Šepelák et al., 2014; Shafie et al., 2014; Waje et al., 2010) have performed investigations on nano-sized ferrites. However, studies of systematic mechanochemical activation-based synthesis and the production of nanoparticles via mechanochemical process are very scarce in literature.

1.3 Problem statement

Mechanochemical process is one of the promising candidates of 'green processes' which can be used to develop methods which minimise damage to the environment. However, extensive research had been merely carried out on sample synthesized by mechanochemical procedure by neglecting the parallel evolution of microstructure and material properties at various intermediate controlling process factors. Therefore, much of the essential information of process mechanisms has been neglected, thus reducing the capability of attaining good fundamental scientific knowledge which lies behind the parallel evolution of the microstructural-material properties. Characteristics or behaviours of hard and soft ferrites are directly related to the microstructural properties, which are strongly dependant on the preparation route, therefore, the evolutional relationship between microstructural properties with controlling process factors has to be investigated. This study will carefully track the fundamental evolution of hard and soft ferrites are listed as:

- 1. What are the characteristics of materials synthesized by mechanochemical activation-based synthesis and top-down approach mechanochemical process?
- 2. What is the relationship of evolving microstructure properties with optical and magnetic properties of material?
- 3. What would be the structural properties of bulk materials after the top-down approach mechanochemical process?

4. What would be the unique characteristics possessed by materials synthesized by the top-down approach that would make the recycling of used materials possible?

1.4 Objectives and hypotheses of the study

The main objective of this study is to investigate and compare the parallel evolution of microstructural, optical bandgap, physical and magnetic properties of two different approaches of mechanochemical procedure: (1) top-down approach mechanochemical process (at different milling time) and (2) mechanochemical activation-based synthesis (at different sintering temperature). The achieved goals from this research work can be utilised to develop fundamental knowledge on mechanochemical procedure. Furthermore, the understanding on the parallel evolution of the microstructure and various properties of the materials will help to develop a general theoretical model for future studies. In this research, the work-step objectives are presented as below:

- 1. To prepare $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles using top-down approach by breaking bulk materials via mechanochemical process.
- 2. To study the microstructure-optical and magnetic properties of $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles as a consequence of milling time.
- 3. To prepare BaFe₁₂O₁₉ and Ni_{0.5}Zn_{0.5}Fe₂O₄ using mechanochemical activationbased synthesis by pre-treating the starting powders with mechanochemical process before sintering.
- 4. To study the microstructure-optical and magnetic properties of $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles as a consequence of sintering temperature.

Thus, according the above main objectives, this study is hypothesized as follows:

- 1. Top-down approach mechanochemical process would induce defects or amorphous phases in the $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$, while effectively decrease the size of the ferrites.
- 2. The existence of amorphous and crystalline mixture state with nanocrystalline microstructure would deteriorate the optical and magnetic properties.
- 3. Mechanochemical activation based synthesis would increase the reactivity of the starting powders, thus reduce the sintering temperature for the formation of single phase ferrites.
- 4. The parallel evolving of microstructural properties with elevating sintering temperature of polycrystalline BaFe₁₂O₁₉ and Ni_{0.5}Zn_{0.5}Fe₂O₄ would affect the optical and magnetic properties of the materials.

1.5 Scope of the Study

This study will focus on synthesizing barium hexaferrite ($BeFe_{12}O_{19}$) and nickel zinc ferrite ($Ni_{0.5}Zn_{0.5}Fe_2O_4$) powders via two different mechanochemical procedures in their nominal composition (Costa et al., 2003; Pullar, 2012). These ferrites with their nominal compositions have increasing degree of interest due to their importance in commercial and technology. Key mechanisms associated with both preparation routes have been studied. In particular, a considerable investigation has been carried out to understand the microstructural, magnetic, and optical properties of $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$.

1.6 Thesis outline

Chapter One comprehensively describes the general introduction of hard and soft ferrites, mechanochemistry, the difference between top-down and bottom-up approaches, correlation between microstructural properties and various properties, and some research questions. In Chapter Two, related literature reviews about previous studies on synthesis techniques, mechanochemical process or high energy ball milling with its optimization of variable parameters, and the effects of particle size and microstructural properties are summarised. Chapter Three describes hard and soft ferrites, mechanical alloying mechanisms, magnetism, particle size related properties in terms of fundamental theories. Chapter Four focuses on employed methodologies for sample preparation and equipment and measurement involved in the characterisation of the study. Chapter Five presents obtained data and results of current research work, followed by precise discussion. Chapter Six concludes the research findings. A research summary was made, followed by future research recommendations. At last, Chapter Six was attached with references, appendix, and a list of publications.

REFERENCES

- Abbas, S. I., John, H. T., & Fraih, A. J. (2017). Preparation of Nano Crystalline Zinc Ferrite as Material for Micro Waves Absorption by Sol-Gel Methods. *Indian Journal of Science and Technology*, 10(21), 1–6.
- Ashima, Sanghi, S., Agarwal, A., & Reetu. (2012). Rietveld refinement, electrical properties and magnetic characteristics of Ca-Sr substituted barium hexaferrites. *Journal of Alloys and Compounds*, *513*, 436–444.
- Balaz, P. (2008). *Mechanochemistry in Nanoscience and Minerals Engineering*. Berlin: Springer.
- Baláž, P., Achimovičová, M., Baláž, M., Billik, P., Cherkezova-Zheleva, Z., Criado, J. M., Delugo, D., Dutkova, E., Gaffet, E., Gotor, F. J., Kumar, R., Mitor, I., Rojac, T., Senna, M., Streletskii, A., & Wieczorek-Ciurowa, K. (2013). Hallmarks of mechanochemistry: from nanoparticles to technology. *Chemical Society Reviews*, 42(18), 7571.
- Baro, M. D., Kolobov, Y. R., Ovid'ko, I. A., Schaefer, H. E., Straumal, B. B., Valiev, R. Z., Alexandrov, I. V., Ivanov, M., Reimann, K., Reizis, A. B., Surinach, S., & Zhilyaev, A. P. (2001). Diffusion and Related Phenomena in Bulk Nanostructured Materials. *Reviews on Advanced Materials Science*, 2, 1–43.
- Baykal, A., Auwal, I. A., Güner, S., & Sözeri, H. (2017). Magnetic and optical properties of Zn²⁺ ion substituted barium hexaferrites. *Journal of Magnetism and Magnetic Materials*, 430, 29–35.
- Benito, G., Morales, M. P., Requena, J., Raposo, V., Vázquez, M., & Moya, J. S. (2001). Barium hexaferrite monodispersed nanoparticles prepared by the ceramic method. *Journal of Magnetism and Magnetic Materials*, 234(1), 65–72.
- Bera, J., & Roy, P. K. (2005). Effect of grain size on electromagnetic properties of Ni_{0.7}Zn_{0.3}Fe₂O₄ ferrite. *Physica B: Condensed Matter*, 363(1–4), 128–132.
- Bertotti, G. (1998). Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers. United Kingdom: Academic Press.
- Cividanes, L. S., Campos, T. M. B., Rodrigues, L. A., Brunelli, D. D., & Thim, G. P. (2010). Review of mullite synthesis routes by sol-gel method. *Journal of Sol-Gel Science and Technology*, 55(1), 111–125.
- Costa, A. C. F. M., Tortella, E., Morelli, M. R., & Kiminami, R. H. G. A. (2003). Synthesis, microstructure and magnetic properties of Ni – Zn ferrites, 256, 174– 182.

- Cullity, B. D., & Stock, S. R. (2001). *Elements of X-ray diffraction. Prentice Hall* (3rd ed.). United Kingdom: Pearson.
- Da Silva, K. L., Menzel, D., Feldhoff, A., Kübel, C., Bruns, M., Paesano, A., & Šepelák, V. (2011). Mechanosynthesized BiFeO₃ Nanoparticles with Highly Reactive Surface and Enhanced Magnetization. J. Phys. Chem. C, 115(15), 7209– 7217.
- Dho, J., Lee, E. K., Park, J. Y., & Hur, N. H. (2005). Effects of the grain boundary on the coercivity of barium ferrite BaFe₁₂O₁₉. *Journal of Magnetism and Magnetic Materials*, 285(1–2), 164–168.
- Díaz-Pardo, R., & Valenzuela, R. (2015). Characterization of Magnetic Phases in Nanostructured Ferrites by Electron Spin Resonance. In *Advanced Electromagnetic Waves* (pp. 210–237).
- Dippong, T., Cadar, O., Levei, E. A., Bibicu, I., Diamandescu, L., Leostean, C., Lazar, M., Borodi, G., & Barbu Tudoran, L. (2017). Structure and magnetic properties of CoFe₂O₄/SiO₂ nanocomposites obtained by sol-gel and post annealing pathways. *Ceramics International*, 43(2), 2113–2122.
- Dixit, G., Pal Singh, J., Srivastava, R. C., & Agrawal, H. M. (2012). Magnetic resonance study of Ce and Gd doped NiFe₂O₄ nanoparticles. *Journal of Magnetism and Magnetic Materials*, 324(4), 479–483.
- El-Eskandarany, M. S. (2015a). 1 Introduction. In *Mechanical Alloying* (pp. 1–12).
- El-Eskandarany, M. S. (2015b). 6 Mechanically induced solid state reduction. In *Mechanical Alloying* (pp. 132–151).
- El-Eskandarany, M. S. (2015c). 8 Reactive ball milling for fabrication of metal nitride nanocrystalline powders. In *Mechanical Alloying* (pp. 182–201).
- El-Eskandarany, M. S. (2015d). *Mechanical alloying: nanotechnology, materials science and powder metallurgy.*
- Fox, M. (2010). *Optical Properties of Solids* (2nd ed.). United States: Clarendon Press Oxford.
- Frenkel, J., & Doefman, J. (1930). Spontaneous and Induced Magnetisation in Ferromagnetic Bodies. *Nature*, 126(3173), 274–275.
- Fultz, B., & Howe, J. M. (2008). *Transmission Electron Microscopy and Diffractometry of Materials, 3rd Edition* (3rd ed.). New York: Springer.
- Gaikward, A., Navale, S., Samuel, V., Murugan, A., & Ravi, V. (2006). A coprecipitation technique to prepare $BiNbO_4$, $MgTiO_3$ and $Mg_4Ta_2O_9$ powders. *Materials Research Bulletin*, 41(2), 347–353.

- Gleiter, H. (1989). Nanocrystalline Materials. Progress in Materials Science, 33, 223– 315.
- Goldman, A. (2006). *Modern Ferrite Technology (2nd ed.)*. Pittsburgh, PA, USA: Springer.
- Gonzalez, G., D'Angelo, L., Ochoa, J., Lara, B., & Rodriguez, E. (2002). The Influence of Milling Intensity on Mechanical Alloying. *Material Science Forum*, 388, 159– 164.
- Gul, I. H., Ahmed, W., & Maqsood, A. (2008). Electrical and magnetic characterization of nanocrystalline Ni-Zn ferrite synthesis by co-precipitation route. *Journal of Magnetism and Magnetic Materials*, 320(3–4), 270–275.
- Hadjipanayis, G. C. (1999). Nanophase hard magnets. Journal of Magnetism and Magnetic Materials, 200(1-3), 373–391.
- Hajalilou, A., Hashim, M., Ebrahimi-kahrizsangi, H., Kamari, H., & Sarami, N. (2014). Synthesis and structural characterization of nano-sized nickel ferrite obtained by mechanochemical process. *Ceramics International*, 40(4), 5881–5887.
- Harringa, J. L., Cook, B. A., & Beaudry, B. J. (1992). Effects of vial shape on the rate of mechanical alloying in Si₈₀Ge₂₀. *Journal of Materials Science*, 27, 801–804.
- Hecht, H. G. (1976). The Interpretation of Diffuse Reflectance Spectra. J. Res. NBS A Phys. Ch., 80(4), 567–583.
- Hench, L. L. (1998). 2 Sol-Gel Kinetics. In Sol-Gel Silica (pp. 8-23).
- Holdren, J. P. (2008). Science and Technology for Sustainable Well-Being. Science, 319, 424–434.
- Huang, J. Y. (1999). HRTEM and EELS Studies of Defects Structure and Amorphouslike Graphite by Ball Milling, 47(6), 1801–1808.
- Ibrahim, I. R., Hashim, M., Nazlan, R., Ismail, I., Wan Ab Rahman, W. N., Abdullah, N. H., Idris, F. M., Shafie, M. S. E., & Muhamad Zulkimi, M. M. (2014). Grouping trends of magnetic permeability components in their parallel evolution with microstructure in Ni_{0.3}Zn_{0.7}Fe₂O₄. *Journal of Magnetism and Magnetic Materials*, 355, 265–275.
- Idza, I. R., Hashim, M., Rodziah, N., Ismayadi, I., & Norailiana, A. R. (2012). Influence of evolving microstructure on magnetic-hysteresis characteristics in polycrystalline nickel – zinc ferrite, Ni_{0.3}Zn_{0.7}Fe₂O₄. *Materials Research Bulletin*, 47(6), 1345–1352.

- Igarashi, H., & Okazaki, K. (1977). Effects of Porosity and Grain Size on the Magnetic Properties of NiZn Ferrite. *Journal of the American Ceramic Society*, 60(1–2), 51–54.
- Ismail, I., Hashim, M., Amin, K., Alias, R., & Hassan, J. (2011). Journal of Magnetism and Magnetic Materials Milling time and BPR dependence on permeability and losses of. *Journal of Magnetism and Magnetic Materials*, 323(11), 1470–1476.
- Ismail, I., Hashim, M., Matori, K. A., Alias, R., & Hassan, J. (2012). Dependence of magnetic properties and microstructure of mechanically alloyed Ni_{0.5}Zn_{0.5}Fe₂O₄ on soaking time. *Journal of Magnetism and Magnetic Materials*, 324(16), 1–8.
- Ismail, I., Hashim, M., Khamirul, A. M., & Alias, R. (2009). The Effect of Milling Time on Ni_{0.5}Zn_{0.5}Fe₂O₄ Compositional Evolution and Particle Size Distribution. *American Journal of Applied Sciences*, 6(8), 1553–1558.
- Ismail, I., Hashim, M., Matori, K. A., Alias, R., & Hassan, J. (2012). The transition from paramagnetic to ferromagnetic states as influenced by evolving microstructure of Ni_{0.5}Zn_{0.5}Fe₂O₄. *Journal of Superconductivity and Novel Magnetism*, 25(1), 71–77.
- Jacobo, S. E., Domingo-Pascual, C., Rodriguez-Clemnte, R., & Blesa, M. A. (1997). Synthesis of ultrafine particles of barium ferrite by chemical coprecipitation. *Journal of Materials Science*, 32(4), 1025–1028.
- Jarcho, M., Bolen, C. H., Thomas, M. B., Bobick, J., Kay, J. F., & Doremus, R. H. (1976). Hydroxylapatite Synthesis and Characterization in Sense Polycristalline Forms. *J. Mater. Sci.*, *11*, 2027–2035.
- Job, A., Siqueira, A. De, Danna, C. S., Bellucci, F., Cabrera, F. C., & Silva, L. E. K. (2014). Utilization of Composites and Nanocomposites Based on Natural Rubber and Ceramic Nanoparticles as Control Agents for Leishmania braziliensis. In D. Claborn (Ed.), *Leishmaniasis*. Rijeka: InTech.
- Jović, N. G., Masadeh, A. S., Kremenović, A. S., Antić, B. V, Blanuša, J L Cvjetičanin, N. D., & Božin, E. S. (2009). Effects of Thermal Annealing on Structural and Magnetic Properties of Lithium Ferrite Nanoparticles. J. Phys. Chem. C, 113(48), 20559–20567.
- Jović, N., Prekajski, M., Kremenović, A., Jančar, B., Kahlenberg, V., & Antić, B. (2012). Influence of size/crystallinity effects on the cation ordering and magnetism of α-lithium ferrite nanoparticles. *Journal of Applied Physics*, 111(3).
- Kabezya, K. M., & Motjotji, H. (2015). Material Science & Engineering The Effect of Ball Size Diameter on Milling Performance. *Journal of Material Science and Engineering*, 4(1), 4–6.

- Kang, S. J. L. (2005). Sintering Densification, Grain Growth, and Microstructure. Elsevier Butterworth-Heinemann Linacre House. London, United Kingdom: Elsevier.
- Karmakar, M., Mondal, B., Pal, M., & Mukherjee, K. (2014). Acetone and ethanol sensing of barium hexaferrite particles: A case study considering the possibilities of non-conventional hexaferrite sensor. *Sensors and Actuators, B: Chemical*, 190, 627–633.
- Kaur, M., Yadav, K. L., & Uniyal, P. (2015a). Investigations on multiferroic, optical and photocatalytic properties of lanthanum doped bismuth ferrite nanoparticles. *Advanced Materials Letters*, 6(10), 895–901.
- Kaur, T., Kumar, S., Bhat, B. H., Want, B., & Srivastava, A. K. (2015b). Effect on dielectric, magnetic, optical and structural properties of Nd–Co substituted barium hexaferrite nanoparticles. *Applied Physics A*, 119(4), 1531–1540.
- Khadar, M., Biju, V., & Inoue, A. (2003). Effect of finite size on the magnetization behavior of nanostructured nickel oxide. *Materials Research Bulletin*, *38*, 1341–1349.
- Kingery, W. D. (1974). Plausible Concepts Necessary and Sufficient for Interpretation of Ceramic Grain-Boundary Phenomena: I, Grain -Boundary characteristics, Structure, and Electrostatic Potential. *Journal of the American Ceramic Society*, 57(1), 1–8.
- Klassen, T., Herr, U., & Averback, R. S. (1997). Ball milling of systems with positive heat of mixing: Effect of temperature in Ag-Cu. *Acta Materialia*, 45(7), 2921–2930.
- Klein, L. C. (1996). *Processing of Nanostructured Sol-gel Materials. In Nanomaterials : Synthesis , Properties and Applications* (pp. 145-161). New York: Taylor and Francis.
- Klug, H. P., & Alexander, L. E. (1974). X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials. New York: John Wiley & Sons.
- Koch, C. C., Cavin, O. B., Mckamey, C. G., & Scarbrough, J. O. (1983). Preparation of "amorphous" Ni₆₀Nb₄₀ by mechanical alloying Preparation of "amorphous" Ni₆₀Nb₄₀ by mechanical alloying. *Applied Physics Letters*, *1017*, 1–4.
- Komarneni, S., Arrigo, M. C. D., Leonelli, C., Pellacani, G. C., & Katsuki, H. (1998). Microwave-Hydrothermal Synthesis of Nanophase Ferrites. *Journal of the American Ceramic Society*, 81(11), 3041–3043.
- Kumar, C. S. S. R. (2013). Transmission Electron Microscopy Characterization of Nanomaterials. (C. S. S. R. Kumar, Ed.) (1st ed.). New York: Springer.

- Kwon, Y., Gerasimov, K., Lomovsky, O., & Pavlov, S. (2003). Steady state products in the Fe–Ge system produced by mechanical alloying. *Journal of Alloys and Compounds*, *353*(1–2), 194–199.
- Lee, W. D., & Rainforth, W. M. (1994). *Ceramic Microstructures: Property control by processing*. London, United Kingdom: Chapman & Hall.
- Li, X., & Wang, G. (2009). Low-temperature synthesis and growth of superparamagnetic Zn_{0.5}Ni_{0.5}Fe₂O₄ nanosized particles. *Journal of Magnetism* and Magnetic Materials, 321(9), 1276–1279.
- Liang, Y. Y., Bao, S. J., & Li, H. L. (2006). A series of spinel phase cathode materials prepared by a simple hydrothermal process for rechargeable lithium batteries. *Journal of Solid State Chemistry*, *179*(7), 2133–2140.
- Louh, R., Reynolds III, T. G., & Buchanan, R. C. (2004). "Ferrite Ceramics" in Ceramic Materials for Electronics (3rd ed.). New York: Marcel Dekker.
- Low, Z. H., Chen, S. K., Ismail, I., Tan, K. S., & Liew, J. Y. C. (2017). Structural transformations of mechanically induced top-down approach BaFe₁₂O₁₉ nanoparticles synthesized from high crystallinity bulk materials. *Journal of Magnetism and Magnetic Materials*, 429(2016), 192–202.
- Low, Z. H., Hashim, M., Ismail, I., Kanagesan, S., Ezzad Shafie, M. S., Idris, F. M., & Ibrahim, I. R. (2015). Development of Magnetic B-H Hysteresis Loops Through Stages of Microstructure Evolution of Bulk BaFe₁₂O₁₉. Journal of Superconductivity and Novel Magnetism, 28(10), 3075–3086.
- Lutterotti, L., Campostrini, R., Gialanella, S., & Di Maggio, R. (2000). Microstructural Characterisation of Amorphous and Nanocrystalline Structures Through Diffraction Methods. *Materials Science Forum*, 343–346.
- Mahmud, S. T., Akther Hossain, A. K. M., Abdul Hakim, A. K. M., Seki, M., Kawai, T., & Tabata, H. (2006). Influence of microstructure on the complex permeability of spinel type Ni-Zn ferrite. *Journal of Magnetism and Magnetic Materials*, 305(1), 269–274.
- Mastryukov, V. S., Palafox, M. A., & Boggs, J. E. (1994). Inverse bond length/bond angle relationships. Part 6. An ab initio survey of behavioral types. *Journal of Molecular Structure: THEOCHEM*, 300(3), 261–267.

Moulson, A. J., & Herbert, J. M. (2003). Electroceramics (2nd ed.). Wiley.

Najafabadi, A. H., Ghasemi, A., & Mozaffarinia, R. (2016). Development of novel magnetic-dielectric ceramics for enhancement of reflection loss in X band. *Ceramics International*, 42(12), 13625–13634.

- Naldoni, A., Allieta, M., Santangelo, S., Marelli, M., Fabbri, F., Cappelli, S., Bianchi, C. L., Psaro, R., & Dal Santo, V. (2012). Effect of nature and location of defects on bandgap narrowing in black TiO2nanoparticles. *Journal of the American Chemical Society*, 134(18), 7600–7603.
- Nasipuri, D. (1991). Molecular geometry and chemical bonding. In Stereochemistry of organic compounds: Principles, and applications. New Delhi, India: New Delhi: New Age International Limited.
- Novák, P., & Rusz, J. (2005). Exchange interactions in barium hexaferrite. *Physical Review B Condensed Matter and Materials Physics*, 71(18), 1–6.
- Phuoc, T. X., & Chen, R.-H. (2012). Modeling the effect of particle size on the activation energy and ignition temperature of metallic nanoparticles. *Combustion and Flame*, 159(1), 416–419.
- Pullar, R. C. (2012). Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. *Progress in Materials Science*, 57(7), 1191– 1334.
- Rahaman, M. N. (2007). Sintering of Ceramics. CRC Press. Boca Raton: CRC Press.
- Rikukawa, H. (1982). Relationship Between Mlcrostructures and Magnetic Properties of Ferrites Containing Closed Pores. *IEEE Transactions on Magnetics*, 18(6), 1535–1537.
- Ring, T. A. (1996). Fundamentals of Ceramic Powder Processing and Synthesis. Academic Press.
- Roca, A. G., Marco, J. F., Morales, P., & Serna, C. J. (2007). Effect of Nature and Particle Size on Properties of Uniform Magnetite and Maghemite Nanoparticles. *Journal of Physical Chemistry C*, 111(50), 18577–18584.
- Rodziah, N., Hashim, M., Idza, I. R., Ismayadi, I., Hapishah, A. N., & Khamirul, M. A. (2012). Applied surface science dependence of developing magnetic hysteresis characteristics on stages of evolving microstructure in polycrystalline yttrium iron garnet. *Applied Surface Science*, 258(7), 2679–2685.
- Ross, R. B. (2013). Materials Specification Handbook Metallic Materials Specification Handbook Fourth Edition. United Kingdom: Springer Science & Business Media.
- Sadhana, K., Praveena, K., Matteppanavar, S., & Angadi, B. (2012). Structural and magnetic properties of nanocrystalline BaFe₁₂O₁₉ synthesized by microwave-hydrothermal method. *Applied Nanoscience*, *2*(3), 247–252.

- Saravanan, R., Kannan, Y. B., Srinivasan, N., & Ismail, I. (2017). Study of Various Site Interactions Using Maximum Entropy Method on Mechanically Alloyed Ni_{0.5}Zn_{0.5}Fe₂O₄ Nanoferrite Particles Sintered from 1100 to 1400 °C. *Journal of Superconductivity and Novel Magnetism*, 30(2).
- Šepelák, V., Bergmann, I., Feldhoff, A., Heitjans, P., Krumeich, F., Menzel, D., Litterst, F.J., Campbell, S. J. & Becker, K. D. (2007). Nanocrystalline nickel ferrite, NiFe₂O₄: Mechanosynthesis, nonequilibrium cation distribution, canted spin arrangement, and magnetic behavior. *Journal of Physical Chemistry C*, 111(13), 5026–5033.
- Šepelák, V., Myndyk, M., Witte, R., Röder, J., Menzel, D., Schuster, R. H., hahn, H., Heitjans, P., & Becker, K.D. (2014). The mechanically induced structural disorder in barium hexaferrite, BaFe₁₂O₁₉, and its impact on magnetism. *Faraday Discuss.*, 170, 121–135.
- Sepelak, V., Tkacova, K., & Boldyrev, V. V. (1996). Crystal structure refinement of the mechanically activated spinel-ferrite. *Materials Science Forum*, 783, 228–231.
- Šepelák, V., Wißmann, S., & Becker, K. (1999). Magnetism of nanostructured mechanically activated and mechanosynthesized spinel ferrites. *Journal of Magnetism and Magnetic Materials*, 203(1–3), 135–137.
- Shafie, M. S. E., Hashim, M., Ismail, I., Kanagesan, S., Fadzidah, M. I., Idza, I. R., Hajalilou, A., & Sabbaghizadeh, R. (2014). Magnetic M–H loops family characteristics in the microstructure evolution of BaFe₁₂O₁₉. *Journal of Materials Science: Materilas in Electronics*, 25(9), 3787–3794.
- Shirley, W. A., Hoffmann, R., & Mastryukov, V. S. (1995). An Approach to Understanding Bond Length/Bond Angle Relationships. *The Journal of Physical Chemistry*, 99(12), 4025–4033.
- Siegel, R. W. (1993). Synthesis and Prosessing of Nanostructured Materials. In M. Nastasi, D. M. Parkin, & H. Gleiter, *Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures* (pp. 509–538). Dordrecht: Springer.
- Singh, J. P., Dixit, G., Srivastava, R. C., Kumar, H., Agrawal, H. M., & Chand, P. (2013). Magnetic resonance in superparamagnetic zinc ferrite. *Bulletin of Materials Science*, 36(4), 751–754.
- Singh, J. P., Srivastava, R. C., Agrawal, H. M., Chand, P., & Kumar, R. (2011). Observation of size dependent attributes on the magnetic resonance of irradiated zinc ferrite nanoparticles. *Current Applied Physics*, 11(3), 532–537.
- Singh, R. K., Upadhyay, C., Layek, S., & Yadav, A. (2010). Cation distribution of Ni_{0.5}Zn_{0.5}Fe₂O₄ nanoparticles. *MultiCraft International Journal of Engineering*, *Science and Technology*, 2(8), 104–109.

- Singh, S., Singh, M., Kotnala, R. K., & Verma, K. C. (2014). Nanostructure, Magnetic and Dielectric Properties. *Indian Journal of Pure & Applied Physics*, 52(August), 550–555.
- Sivakumar, N., Narayanasamy, A., Ponpandian, N., Greneche, J.-M., Shinoda, K., Jeyadevan, B., & Tohji, K. (2006). Effect of mechanical milling on the electrical and magnetic properties of nanostructured Ni_{0.5}Zn_{0.5}Fe₂O₄. *Journal of Physics D: Applied Physics*, 39(21), 4688–4694.
- Skomski, R., & Sellmyer, D. J. (2006). Intrinsic and Extrinsic Properties of Advanced Magnetic Materials. *ChemInform*, 37(47), 1.
- Soni, P. R. (2001). *Mechanical alloying*. Cambridge: Cambridge International Science Publishing.
- Sopicka-Lizer, M. (2010). *High-energy ball milling Mechanochemical processing of nanopowders*. Boca Raton, Florida: CRC Press.
- Suryanarayana, C. (2004). *Mechanical Alloying and Milling*. New York: Marcel Dekker.
- Suryanarayana, C., Chen, G. H., & Froes, F. H. (1992). Milling Maps for Phase Identification During Mechanical Alloying. *Scripta Metallurgica et Materialia*, 26(c), 1727–1732.
- Vaezi, M. R., Ghassemi, S. H. M. S., & Shokuhfar, A. (2012). Effect of different sizes of balls on crystalline size, strain, and atomic diffusion on Cu-Fe nanocrystals produced by mechanical alloying. *Journal of Theorrtical and Apllied Physics*, 6(29), 1–7.

Valenzuela, R. (1994). Magnetic Ceramics. New York: Cambridge University Press.

- Viezbicke, B. D., Patel, S., Davis, B. E., & Birnie, D. P. (2015). Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. *Physica Status Solidi* (B), 252(8), 1700–1710.
- Waje, S. B., Hashim, M., Yusoff, W. D. W., & Abbas, Z. (2010). Applied Surface Science X-ray diffraction studies on crystallite size evolution of CoFe₂O₄ nanoparticles prepared using mechanical alloying and sintering. *Applied Surface Science*, 256, 3122–3127.
- Wang, J., Xue, J. M., Wan, D. M., & Gan, B. K. (2000). Mechanically activating nucleation and growth of complex perovskites. J. Solid State Chem, 154(2), 321– 328.
- Wang, K. Y., Shen, T. D., Wang, J. T., & Quan, M. X. (1993). Characteristics of the mechanically-alloyed Ni₆₀Ti₄₀ amorphous powders during mechanical milling in different atmospheres. *Journal of Materials Science*, 28, 6474–6478.

- Winterer, M. (2002). Nanocrystalline Ceramics Synthesis and Structure. Berlin: Springer.
- Yang, L. (2008). Materials Characterisation: Introduction to Microscopic and Spectroscopic Methods. Materials Characterization. Singapore: John Wiley & Sons(Asia) Pte Ltd.
- Zahi, S., Daud, A. R., & Hashim, M. (2007). A comparative study of nickel-zinc ferrites by sol-gel route and solid-state reaction. *Materials Chemistry and Physics*, 106(2–3), 452–456.
- Zhong, W., Ding, W., Zhang, N., Hong, J., Yan, Q., & Du, Y. (1997). Key step in synthesis of ultrafine BaFe₁₂O₁₉ by sol-gel technique Wei. *Journal of Magnetism and Magnetic Materials*, 168, 196–202.