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Mechanochemical process is a powder processing technique that utilises mechanical 

energy to grind down bulk materials. Mechanochemical process has received a lot of 

interest for producing technologically important ferrites because it is a solvent-free 

technique and hence green process. Throughout the centuries, the applications of 

mechanochemical process are limited to diminution of particles because the lack of 

systematic studies on the process mechanisms of mechanochemical process. The 

immediate objective of this research is devoted to this subject by developing a 

systematic study on top-down approach mechanochemical process (referring to the 

production of nanoparticles by mechanochemical process) and mechanochemical 

activation-based synthesis (referring to mechanochemical process, used to activate the 

starting powders, before a sintering step to induce the formation of final product). For 

top-down approach mechanochemical process, starting bulk materials were 

mechanically treated for different milling time ranging from 1 to 20 hours at room 

temperature, for the preparation of nanoparticles. Evidence of the presence of single 

phase ferrites was identified by XRD. Rietveld refinement analysis suggested the 

deformation of a mechanically triggered polyhedral in the magnetoplumbite structure of 

BaFe12O19 and spinel structure Ni0.5Zn0.5Fe2O4. Three distinct stages of the 

mechanochemical mechanism were observed when the milling time was extended. The 

average crystallite size decreased at different rate during the first stage and the 

intermediate stage, and increased during the final stage of the mechanochemical 

process. FESEM micrographs showed the particle size decreased from 432.96 nm to 

81.43 nm for BaFe12O19 and 371.68 nm to 158.49 nm for Ni0.5Zn0.5Fe2O4 during the 

first stage and the intermediate stage. In the final stage, particle size increased to 134.15 

nm for BaFe12O19 and 193.60 nm for Ni0.5Zn0.5Fe2O4. HRTEM micrographs suggested 

the formation of a non-uniform nanostructure shell surrounding the ordered core 

materials. The thickness of the shell extended up to 12 nm during the first and 

intermediate stages, and diminished to approximately 3 nm during final stage. VSM 

results showed a mixture of ferromagnetic, superparamagnetic, and paramagnetic 
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behaviours attributed to the defects, distorted polyhedra, and non-equilibrium 

amorphous layers induced by the mechanical energy. The observed spectral shift from 

UV-Vis spectra was ascribed tothe competition between quantum confinement effects 

and structural disorder bandgap narrowing effect. For mechanochemical activation-

based synthesis, mechanochemical process on the starting powders and subsequent 

sintering was carried out to synthesize BaFe12O19 and Ni0.5Zn0.5Fe2O4 nanoparticles. 

The XRD results indicated an improvement of crystallinity with increasing sintering 

temperature. Single phase ferrites were observed at 1100 C for BaFe12O19 and 700 C 

for Ni0.5Zn0.5Fe2O4. FESEM micrographs showed the particle size increased from 42.24 

nm to 913.96 nm for BaFe12O19 and 66.39 nm to 1084.27 nm for Ni0.5Zn0.5Fe2O4 when 

sintering temperature were elevated from 600 ℃ to 1200 ℃. Morphological studies 

showed three stages of sintering with distinct microstructure features. By sintering from 

600 C to 1200 C, a dependence of magnetic properties on sintering temperature was 

found. Maximum magnetization at 10 kOe improved with elevating sintering 

temperature. The optical bandgap values decreased with increasing crystallite size, 

showing the dominancy of quantum confinement effects. It can be concluded top-down 

approach mechanochemical process is capable of producing single phase nanoparticles; 

and mechanochemical activation-based synthesis has significantly reduced the sintering 

temperature required for the formation of final product. The systematic studies on the 

process mechanisms of top-down approach mechanochemical process and 

mechanochemical activation-based synthesis developed a fundamental knowledge to 

tailor nanoparticles with specific properties according to its possible industrial 

applications. 
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Proses mekanokimia adalah teknik pemprosesan serbuk yang menggunakan tenaga 

mekanikal untuk menghaluskan bahan-bahan pukal. Proses mekanokimia telah 

menerima banyak sambutan bagi menghasilkan ferit-ferit penting berteknologi tinggi 

kerana proses ini bebas pelarut dan dengan itu proses ini adalah proses hijau. Sepanjang 

abad yang lalu, penggunaan proses mekanokimia terbatas kepada pengecilan saiz zarah 

kerana kurangnya kajian sistematik ke atas mekanisme proses mekanokimia. Objektif 

utama kajian ini adalah untuk menumpukan kepada perkara ini dengan membangunkan 

sebuah kajian sistematik ke atas pendekatan proses mekanokimia atas ke bawah 

(merujuk kepada penghasilan zarah nano melalui proses mekanokimia) dan proses 

sintesis berdasarkan pengaktifan mekanokimia (berdasarkan proses mekanokimia, 

digunakan untuk mengaktifkan serbuk-serbuk permulaan sebelum langkah pensinteran 

untuk mendorong pembentukan produk akhir). Bagi pendekatan proses mekanokimia 

atas ke bawah, bahan-bahan pukal permulaan telah dirawat secara mekanikal pada masa 

pengisaran berbeza dari 1 hingga 20 jam pada suhu bilik untuk penyediaan zarah nano. 

Bukti kehadiran fasa tunggal ferit-ferit telah dikenalpasti menggunakan XRD. Analisis 

perbaikan Rietveld mencadangkan bahawa ubah bentuk polihedral yang dicetuskan 

secara mekanikal dalam struktur magnetoplumbit BaFe12O19 dan struktur spinel 

Ni0.5Zn0.5Fe2O4. Tiga peringkat berbeza bagi mekanisme mekanokimia telah 

diperhatikan apabila masa pengisaran dipanjangkan. Purata saiz kristal berkurangan 

pada kadar yang berbeza semasa peringkat pertama dan peringkat pertengahan, dan 

meningkat pada peringkat akhir proses mekanokimia. Mikrograf-mikrograf FESEM 

menunjukkan saiz zarah berkurang dari 432.96 nm kepada 81.43 nm untuk BaFe12O19 

dan dari 371.68 nm kepada 158.49 nm untuk Ni0.5Zn0.5Fe2O4 semasa peringkat pertama 

dan peringkat pertengahan. Dalam peringkat akhir, saiz zarah meningkat kepada 134.15 

nm bagi BaFe12O19 dan 193.60 nm bagi Ni0.5Zn0.5Fe2O4. Mikrograf-mikrograf HRTEM 

mencadangkan pembentukan kerangka nanostruktur tidak seragam yang mengelilingi 

bahan-bahan teras yang tersusun. Ketebalan lapisan kerangka adalah sehingga 12 nm 

semasa peringkat pertama dan pertengahan, dan berkurang kepada sekurang-kurangnya 
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3 nm semasa peringkat akhir. Keputusan-keputusan VSM menunjukkan campuran 

sifat-sifat ferromagnetik, superparamagnetik dan paramagnetik yang disebabkan oleh 

kecacatan, polyhedra terherot, dan ketidakseimbangan lapisan-lapisan amorfus yang 

didorongkan oleh tenaga mekanikal. Anjakan spektrum dari spektra UV-Vis yang 

diperhatikan adalah disebabkan oleh persaingan diantara kesan-kesan kurungan 

kuantum dan kesan penyempitan jurang jalur struktur terganggu. Bagi sintesis 

berdasarkan pengaktifan mekanokimia, proses mekanokimia ke atas serbuk-serbuk 

permulaan dan seterusnya pensinteran telah dilakukan untuk mensintesis zarah nano 

BaFe12O19 dan Ni0.5Zn0.5Fe2O4. Keputusan XRD menunjukkan penambahbaikan 

penghabluran dengan peningkatan suhu pensinteran. Fasa tunggal ferit telah 

diperhatikan pada suhu pensinteran 1100 C dan 700 C masing-masing bagi BaFe12O19 

dan Ni0.5Zn0.5Fe2O4. Mikrograf-mikrograf FESEM menunjukkan saiz zarah menambah 

dari 42.24 nm kepada 913.96 nm untuk BaFe12O19 dan dari 66.39 nm kepada 1084.27 

nm untuk Ni0.5Zn0.5Fe2O4 apabila suhu persinteran meningkat dari 600 C ke 1200 C. 

Kajian-kajian morfologi menunjukkan tiga tahap pensinteran dengan ciri-ciri 

mikrostruktur yang berbeza. Dengan melakukan pensinteran dari 600 C ke 1200 C, 

suatu kebergantungan sifat-sifat magnetik ke atas suhu pensinteran telah dijumpai. 

Kemagnetan maksimum pada 10 kOe ditingkatkan dengan peningkatan suhu 

pensinteran. Nilai-nilai jalur tenaga optikal berkurang dengan peningkatan saiz kristal, 

menunjukkan dominasi kesan-kesan kurungan kuantum. Dapat disimpulkan bahawa 

pendekatan proses mekanokimia atas ke bawah mampu menghasilkan fasa tunggal 

zarah nano; dan sintesis berdasarkan pengaktifan mekanokimia telah merendahkan 

suhu pensinteran dengan ketara bagi menghasilkan produk akhir. Kajian-kajian 

sistematik ke atas mekanisme proses pendekatan mekanokimia atas ke bawah dan 

sintesis berdasarkan pengaktifan mekanokimia telah membangunkan pengetahuan asas 

untuk mengubahsuai zarah nano dengan sifat-sifat tertentu bergantung kepada aplikasi-

aplikasi industri yang berkemungkinan. 
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1 

CHAPTER 1 

1 INTRODUCTION 

1.1 Background of the study 

Concerns with regard to the hazardous effects of current technologies on the 

environment and climate change are forcing industrialized and developing countries to 

seek for solutions and green technologies for a sustainable future. A more efficient 

utilisation of resources and energy implies a reduction in both waste and the 

environmental impact of human activities (Holdren, 2008). Therefore, rethinking the 

known current methodologies while maintaining or even improving productivity has 

become the major role of advancing fundamental and applied sciences. 

Mechanochemical procedure or mechanochemistry technology has attracted 

considerable interest because: (1) it is easy and simple to apply, (2) it allows fast 

chemical reactions under controlled conditions, and (3) it is a highly productive and 

relatively efficient methodology for the production of nanoscale materials. Therefore, 

mechanochemical procedure can be used as either a top-down approach synthesis 

technique to convert used bulk materials into raw nanopowder, or as a 

mechanochemical activation-based synthesis, which referring to the utilisation of 

mechanochemical process to increase the reactivity of the starting powders before heat 

treatment. 

Ceramic composite powders can be synthesized by two techniques, which are known as 

the bottom-up and top-down approaches. The bottom-up approach synthesis method 

involves the construction of nanostructures in the material from small to large sizes. 

Examples of bottom-up approach synthesis methods include the sol–gel, melt spinning–

melt quenching (MQ), chemical vapour deposition (CVD), and physical vapour 

deposition (PVD) methods. Typically, researchers would investigate variations in the 

properties of materials with a specific bottom-up synthesis technique with controlled 

parameters to obtain a controlled microstructure and fully dense polycrystalline 

material. On the other hand, the top-down approach synthesis method utilizes 

mechanical, chemical, or other forms of energy to break down macro-structured 

materials into smaller components (Sopicka-Lizer, 2010). The emergence of “Green 

Technology” recently has highlighted the importance of top-down approach synthesis 

method studies, which have been neglected by researchers in the past as the issues of 

conservation and preservation were not as urgent as at present. Nanomagnetic materials 

have attracted considerable interest from many researchers due to their novel properties 

when particles size decreases to nanoscale regime. These properties are different from 

those in bulk form. The correlation between particle size (1-100 nm) and critical 

magnetic parameters has led to a new study field called nanomagnetism. 

Nanostructured materials possess a high surface area to volume ratio, which allows the 

dominance of quantum confinement effects and a larger influence of surface atoms 

compared to those in the interior (Kumar, 2013). 
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Ferrites are a family of materials, in which the main constituent of the material is mixed 

metal oxides, typically iron oxide which contains Fe
3+ 

ions.  Ferrites are categorized 

into two groups based on how ease these materials are to be magnetized or 

demagnetized.  Materials that can be permanently magnetized and require strong 

applied magnetic field to demagnetize are known as hard ferrites. Hard ferrites are 

widely used in speakers, recording devices, magneto-optical sensors. On the other 

hand, materials that are easily and temporarily magnetised under magnetic field are 

known as soft ferrites. In contrast with hard ferrites, soft ferrites are used in 

communication and electronic devices like transformers and inductors, and recently, in 

the field of biomedicine. Ferrites can also be categorized according to their structures 

into three groups: (1) spinel ferrites, (2) garnet ferrites, and lastly (3) hexagonal ferrites, 

which are known as magnetoplumbite ferrites. In terms of magnetic characteristics, 

spinel ferrites and garnet ferrites are soft ferrites and hexagonal ferrites are hard 

ferrites. Both hard and soft ferrites play important roles in various current technologies. 

Hard ferrites, particularly BaFe12O19, barium hexaferrite, exhibits some salient 

properties. It has strong magnetocrystalline anisotropy and an easy magnetization at the 

c-axis. Besides, barium hexaferrite has a high coercivity, high saturation magnetization, 

excellent chemical stability, and is resistant to corrosion. Due to its unique 

characteristics, barium hexaferrite is one of the most important magnetic materials with 

great scientific and technological roles (Shafie et al., 2014). On the other hand, nickel 

zinc ferrite, which is the most popular composition of soft ferrites, is one of the most 

abundant magnetic materials found in electrical devices and telecommunication 

devices. Characteristics like high resistivity, low eddy current loses, low coercivity, low 

cost, and easily altered magnetic behaviours due to its compositional sensitive nature, 

has made nickel zinc ferrite an important material in high frequency applications such 

as microwave devices, transformers, antennas, and inductors (Ibrahim et al., 2014; 

Ismail et al., 2011). In this study, BaFe12O19 and a well-known composition 

Ni0.5Zn0.5Fe2O4 are chosen as the specimens.  

1.2 Relationship between Characteristics and Mechanically Induced 

Microstructural Response of Ferrites 

The response of the structure and size of hexaferrites and spinel ferrites to mechanical 

energy through high energy ball milling and its impacts on their optical, physical, and 

magnetic properties are interesting because mechanical energy makes them differ from 

their bulk counterparts. Investigations in the field of mechanically induced materials, 

especially iron-based ceramics, have been considerably developed recently (Rodziah et 

al., 2012; Shafie et al., 2014). Šepelák et al. (2014), and Waje et al. (2010) recognised 

mechanochemical process was capable of producing nano-sized powder, and the 

changes in the microstructural properties were the main factor responsible for the 

changes in the investigated properties. Ferrites exhibit complicated disordering 

phenomena under mechanical impacts. Šepelák et al. (2014) found several disordering 

phenomena such as redistribution of cations over non-equivalent cation sublattices, the 

formation of canted spin arrangements, the changes of polyhedra geometry, and 

formation of cation with unsaturated oxygen coordination. Heat treatment like sintering 

provides a recovery path or recrystallization process: to enable the excited unstable 

metastable state transforms to the low energy crystalline state (Idza et al., 2012). The 

reformation of crystalline phase in ferrites changed the behaviours or characteristics of 
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mechanical alloyed induced metastable materials in terms of microstructural properties, 

caused an increase in crystalline volume, thus had a direct relationship with the 

investigated physical, chemical, and magnetic properties (Low et al., 2015). On the 

other hand, for top-down approach, mechanically induced microstructural defects and 

disordering structures remained in ferrite specimens (Šepelák et al., 2014). Studies on 

the mechanically induced response of both hard and soft ferrites, are essential not only 

for fundamental understanding of science, but also due to the industrial and 

technological importance of these materials in telecommunication, microwave, memory 

storage, ferrofluids, and even biomedical applications. To strengthen the fundamental 

science knowledge on the evolutional relationship between characteristics and 

microstructural response of ferrites, this study undertakes the response of fine 

nanoparticles made up of mechanical alloyed Ba-hexaferrite and NiZn-spinel ferrite to 

vary in the sintering temperature (mechanochemical activation-based synthesis), and 

further investigate the correlations by comparing with the response of single phase Ba-

hexaferrite and NiZn-spinel ferrite to mechanical action through mechanochemical 

process (top-down approach mechanochemical process). For both approaches, their 

physical, optical, and magnetic properties are investigated. Many researchers involving, 

but not restricted to the following (Rodziah et al., 2012; Šepelák et al., 2014; Shafie et 

al., 2014; Waje et al., 2010) have performed investigations on nano-sized ferrites. 

However, studies of systematic mechanochemical activation-based synthesis and the 

production of nanoparticles via mechanochemical process are very scarce in literature.   

1.3 Problem statement 

Mechanochemical process is one of the promising candidates of „green processes‟ 

which can be used to develop methods which minimise damage to the environment. 

However, extensive research had been merely carried out on sample synthesized by 

mechanochemical procedure by neglecting the parallel evolution of microstructure and 

material properties at various intermediate controlling process factors. Therefore, much 

of the essential information of process mechanisms has been neglected, thus reducing 

the capability of attaining good fundamental scientific knowledge which lies behind the 

parallel evolution of the microstructural-material properties. Characteristics or 

behaviours of hard and soft ferrites are directly related to the microstructural properties, 

which are strongly dependant on the preparation route, therefore, the evolutional 

relationship between microstructural properties with controlling process factors has to 

be investigated. This study will carefully track the fundamental evolution of hard and 

soft ferrites synthesized from mechanochemical procedure. The research questions are 

listed as: 

1. What are the characteristics of materials synthesized by mechanochemical

activation-based synthesis and top-down approach mechanochemical process?

2. What is the relationship of evolving microstructure properties with optical and

magnetic properties of material?

3. What would be the structural properties of bulk materials after the top-down

approach mechanochemical process?
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4. What would be the unique characteristics possessed by materials synthesized 

by the top-down approach that would make the recycling of used materials 

possible? 

 

 

1.4 Objectives and hypotheses of the study 

 

 
The main objective of this study is to investigate and compare the parallel evolution of 

microstructural, optical bandgap, physical and magnetic properties of two different 

approaches of mechanochemical procedure: (1) top-down approach mechanochemical 

process (at different milling time) and (2) mechanochemical activation-based synthesis 

(at different sintering temperature). The achieved goals from this research work can be 

utilised to develop fundamental knowledge on mechanochemical procedure. 

Furthermore, the understanding on the parallel evolution of the microstructure and 

various properties of the materials will help to develop a general theoretical model for 

future studies. In this research, the work-step objectives are presented as below: 

 

 
1. To prepare BaFe12O19 and Ni0.5Zn0.5Fe2O4 nanoparticles using top-down 

approach by breaking bulk materials via mechanochemical process.  

2. To study the microstructure-optical and magnetic properties of BaFe12O19 and 

Ni0.5Zn0.5Fe2O4 nanoparticles as a consequence of milling time. 

3. To prepare BaFe12O19 and Ni0.5Zn0.5Fe2O4 using mechanochemical activation-

based synthesis by pre-treating the starting powders with mechanochemical 

process before sintering.  

4. To study the microstructure-optical and magnetic properties of BaFe12O19 and 

Ni0.5Zn0.5Fe2O4 nanoparticles as a consequence of sintering temperature. 

 

 
Thus, according the above main objectives, this study is hypothesized as follows: 

 

 

1. Top-down approach mechanochemical process would induce defects or 

amorphous phases in the BaFe12O19 and Ni0.5Zn0.5Fe2O4, while effectively 

decrease the size of the ferrites.  

2. The existence of amorphous and crystalline mixture state with nanocrystalline 

microstructure would deteriorate the optical and magnetic properties. 

3. Mechanochemical activation based synthesis would increase the reactivity of 

the starting powders, thus reduce the sintering temperature for the formation of 

single phase ferrites.  

4. The parallel evolving of microstructural properties with elevating sintering 

temperature of polycrystalline BaFe12O19 and Ni0.5Zn0.5Fe2O4 would affect the 

optical and magnetic properties of the materials. 
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1.5 Scope of the Study 

 

 
This study will focus on synthesizing barium hexaferrite (BeFe12O19) and nickel zinc 

ferrite (Ni0.5Zn0.5Fe2O4) powders via two different mechanochemical procedures in 

their nominal composition (Costa et al., 2003; Pullar, 2012). These ferrites with their 

nominal compositions have increasing degree of interest due to their importance in 

commercial and technology. Key mechanisms associated with both preparation routes 

have been studied. In particular, a considerable investigation has been carried out to 

understand the microstructural, magnetic, and optical properties of BaFe12O19 and 

Ni0.5Zn0.5Fe2O4.  

 

 

1.6 Thesis outline 

 

 
Chapter One comprehensively describes the general introduction of hard and soft 

ferrites, mechanochemistry, the difference between top-down and bottom-up 

approaches, correlation between microstructural properties and various properties, and 

some research questions. In Chapter Two, related literature reviews about previous 

studies on synthesis techniques, mechanochemical process or high energy ball milling 

with its optimization of variable parameters, and the effects of particle size and 

microstructural properties are summarised. Chapter Three describes hard and soft 

ferrites, mechanical alloying mechanisms, magnetism, particle size related properties in 

terms of fundamental theories. Chapter Four focuses on employed methodologies for 

sample preparation and equipment and measurement involved in the characterisation of 

the study. Chapter Five presents obtained data and results of current research work, 

followed by precise discussion. Chapter Six concludes the research findings. A research 

summary was made, followed by future research recommendations. At last, Chapter 

Six was attached with references, appendix, and a list of publications. 
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