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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Doctor of Philosophy
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LONGITUDINAL AND TIME-TO-EVENT OUTCOMES IN DEMENTIA AND

SUBTYPES

By

CHRIS BAMBEY GUURE

August 2018

Chairman : Professor Noor Akma Ibrahim, PhD
Faculty : Faculty of Science

Meta-analysis is a statistical approach that combines results from published
literature in order to obtain an overall grand mean effect estimate. The main
problem that affects meta-analysis is publication bias; the first part of this
thesis thus seeks to address this problem. This work goes further to address
heterogeneity which affects the mean effect being evaluated due to the
combination of different studies. Meta-analyses of cognitive decline,
Alzheimers disease, vascular dementia and all causes of dementia are
undertaken to evaluate the effect of physical activity on these diseases.
Dementia is an organic disorder, related to the physical deterioration of the
human brain tissue that is detected after a number of medical examinations.
The relationship between exercise and the risk of developing cognitive
decline is further evaluated using data from the Osteoporotic Fracture
Study in the United States. Meta-analytic data is obtained and used as a
prior information to the secondary data. The final part of this thesis looks at
a study in dementia where measurements are collected on death of
participants in addition to other covariates over a period of time. These
types of repeated measurements collected from each individual over time
violate a number of statistical models assumptions, especially when the
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interest is to determine the risk factors that affect the study outcome. The
aim of this approach is to examine and use these measurements to predict
dementia patients probability of survival in the future.

Copas selection model which was developed to assess and account for
publication bias is implemented in this research. One major disadvantage of
this model is that, it relies on a number of sensitivity analysis which results
in many effect size estimates with even a single meta-analytic data. In order
to overcome the problems of the Copas selection model, a new Bayesian
prior known as triangular prior has been developed and used to fit the
parameters of the Copas model via a probability distribution. The
developed prior is assessed through sensitivity analysis with comparison to
other priors. It is also applied to antidepressant meta-analytic dataset. The
newly developed prior is further applied to a meta-analyses of dementia
and its subtypes. In order to control for the heterogeneity (between-study
variation), a proposed Bayesian non-parametric modelling is implemented
via a Dirichlet Process. A power prior is also proposed and applied to the
meta-analytic (historical) data that is used as a prior to determine whether
exercise has any effect on cognitive decline. The power prior is transformed
into probabilistic values out of which posterior estimates are obtained. To
analyse the repeated measurements and the time to event data in order to
assess their effect on dementia, we propose to use a joint modelling
approach. The proposed modelling framework involves the standard and
extended relative risk models as well as linear mixed effects sub-models on
the repeated measures of the longitudinal covariate.

The results from the simulations indicate that the triangular prior should be
used. The estimated number of studies was similar to that of the frequentist
trim and fill method. Our analysis reveal a protective effect of 21% for high
physical activity on all cause dementia with an odds ratio of 0.79, 95%
Credible Interval (CI) (0.69,0.88), a higher and better protective effect of 38%
for Alzheimer’s disease with an odds ratio of 0.62, 95% CI (0.49,0.75), a 33%
for cognitive decline with odds ratio of 0.67, 95% CI (0.55, 0.78) and a
non-protective effect for vascular dementia of 0.92, 95% CI (0.62, 1.30).
Statistically significant results were obtained when the informative prior
formulated from the meta-analytic data was used at face value for higher
against lowest with odds of 0.69 95% CI (0.58, 0.80) and moderate against
lowest 0.63 95% CI (0.50, 0.79) physical activity. The joint modelling
approach found a strong relationship between the 3MS scores and the risk
of mortality, where every unit decrease in 3MS scores results in a 1.135
(13%) increased risk of death via cognitive impairment with a 95% CI of
(1.056, 1.215).

The triangular prior is a better alternative prior to use. The prior gives an
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overall or grand mean effect that is far better than conducting several
sensitivity analysis. The implementation of the Dirichlet process in the
meta-analyses overcomes the problem of heterogeneity. In evaluating the
effect of exercise on cognitive decline with the power prior, it becomes clear
that elderly women who engage in moderate exercise will have a reduced
risk of developing cognitive decline. In the joint modelling of the
longitudinal measurements, the results show that a decrease in 3MS scores
has a significant increase risk of mortality due to cognitive impairment
when implemented via the joint model but insignificant under the standard
relative risk model.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENDEKATAN BAYES BAGI ANALISIS-META DENGAN PEMODELAN
TERCANTUM BAGI KESUDAHAN LONGITUD DAN PERISTIWA MASA

DIMENSIA DAN SUBJENISNYA

Oleh

CHRIS BAMBEY GUURE

Ogos 2018

Pengerusi : Professor Noor Akma Ibrahim, PhD
Fakulti : Fakulti Sains

Analisis-meta adalah pendekatan berstatistik yang menggabungkan hasil
daripada literatur yang diterbitkan untuk memperoleh anggaran kesan min
keseluruhan. Masalah utama yang mempengaruhi analisis-meta ialah
kepincangan penerbitan; bahagian pertama tesis ini bertujuan untuk
mengatasi masalah ini. Kajian ini dilanjutkan untuk menangani
keheterogenan yang menjejaskan kesan min dinilai kerana gabungan
pengajian berbeza. Analisis-Meta bagi kemorosotan kognitif, penyakit
Alzheimer, demensia vaskular dan semua penyebab demensia dijalankan
untuk menilai kesan aktiviti fizikal terhadap penyakit ini. Demensia adalah
gangguan berorganik, yang berkaitan dengan kemerosotan fizikal tisu otak
manusia yang dikesan selepas beberapa ujian perubatan. Hubungan antara
senaman dan risiko menyebab kemorosotan kognitif akan dinilai
selanjutnya menggunakan data dari Kajian Retakan Osteoporotik di
Amerika Syarikat. Data Analitik-Meta diperoleh dan digunakan sebagai
maklumat prior untuk data sekunder. Bahagian akhir tesis ini melihat
kajian demensia di mana pengukuran diambil terhadap kematian peserta
selain daripada kovariat lain dalam tempoh masa tertentu. Jenis
pengukuran berulang yang dikumpulkan dari setiap individu dari masa ke
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masa melanggar beberapa andaian model berstatistik terutamanya apabila
kepentingannya adalah untuk menentukan faktor risiko yang
mempengaruhi hasil kajian. Tujuan dari pendekatan ini adalah untuk
mengkaji dan menggunakan ukuran ini untuk meramal kebarangkalian
kemandirian pesakit demensia di masa hadapan.

Model pemilihan Copas yang telah dibangunkan untuk menilai dan
mengambil kira kepincangan penerbitan dilaksanakan dalam kajian ini.
Satu kelemahan utama model ini adalah ia bergantung kepada beberapa
analisis kepekaan yang menyebabkan terdapat banyak anggaran kepada
ukuran kesan walaupun untuk satu data analitik-meta. Untuk mengatasi
masalah model pemilihan Copas, prior Bayesian yang baharu yang dikenali
sebagai prior segi tiga telah dibangunkan dan digunakan untuk
menyesuaikan parameter model Copas melalui taburan kebarangkalian.
Prior yang dibangunkan dinilai melalui analisis kepekaan berbanding
dengan prior yang lain. Ia juga digunakan untuk set data meta-analitik
antidepresan. Prior yang baharu dibangunkan ini selanjutnya digunakan
untuk analisis meta bagi demensia dan subjenisnya. Untuk mengawal
keheterogenan (variasi antara kajian), model tak berparameter Bayesian
telah dilaksanakan melalui Proses Dirichlet. Suatu prior kuasa dicadangkan
dan diaplikasikan ke atas data analitik-meta (bersejarah) dan digunakan
sebagai prior untuk menentukan sama ada senaman menpunyai kesan
keatas kemorosotan kognitif. Prior kuasa dijelmakan kepada nilai
kebarangkalian yang mana penganggar posterior diperolehi. Untuk
menganalisis pengukuran berulang dan data peristiwa masa untuk menilai
kesannya terhadap demensia, kami mencadangkan untuk menggunakan
pendekatan pemodelan tercantum. Rangka kerja pemodelan yang
dicadangkan melibatkan model risiko relatif piawai dan model risiko
lanjutan serta sub-model kesan campuran linear pada ukuran berulang
kovariat berlongitud.

Keputusan daripada simulasi menunjukkan bahawa, prior segi tiga patut
digunakan. Anggaran bilangan kajian adalah sama dengan pangkas kaedah
dan isi. Analisis kami menunjukkan kesan perlindungan sebanyak 21%
untuk aktiviti fizikal yang tinggi pada semua penyebab demensia dengan
nisbah kemungkinan sebanyak 0.79, Selang Kredibiliti (SK) 95% (0.69,0.88),
kesan perlindungan yang lebih tinggi dan lebih baik sebanyak 38% untuk
penyakit Alzheimer dengan nisbah kemungkinan 0.62, SK 95% (0.49,0.75),
33% untuk penurunan kognitif dengan nisbah kemungkinan 0.67, SK 95%
(0.55, 0.78) dan kesan bukan perlindungan untuk demensia vaskular 0.92,
SK 95% ( 0.62, 1.30). Keputusan statistik yang signifikan telun diperolehi
apabila prior informatif yang dirumus daripada data analitik-meta pada
nilai muka dengan nisbah kemungkinan 0.69, SK 95% (0.58, 0.80) terhadap
aktiviti fizikal yang tinggi dan paling rendah; 0.63 dengan SK 95% (0.50,
0.79) terhadap yang sederhana dan paling rendah. Pendekatan pemodelan
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tercantum mendapati hubungan kuat antara skor 3MS dan risiko kematian
yang mana keputusan menunjukkan setiap penurunan unit dalam skor
3MS terdapat peningkatan 1.135 (13%) risiko kematian melalui
kemorosotan kognitif dengan SK 95% (1.056, 1.215).

Prior segi tiga adalah alternatif yang lebih baik untuk digunakan. Prior ini
memberi kesan keseluruhan atau min keseluruhan yang jauh lebih baik
daripada melakukan beberapa analisis kepekaan. Pelaksanaan proses
Dirichlet dalam analisis-meta dapat mengatasi masalah keheterogenan.
Dalam menilai kesan senaman terhadap kemerosotan kognitif dengan prior
kuasa, didapati secara jelas wanita tua yang terlibat dalam senaman
sederhana akan mempunyai risiko yang lebih rendah untuk mengalami
penurunan kognitif. Dalam pemodelan tercantum pengukuran longitud,
keputusan menunjukkan penurunan dalam skor 3MS mempunyai risiko
peningkatan mortaliti yang signifikan disebabkan oleh penurunan kognitif
apabila dilaksanakan melalui model tercantum tetapi ianya tidak signifikan
dibawah model risiko relatif piawai.
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CHAPTER 1

BACKGROUND

1.1 Bayesian Statistics

Bayesian statistics dates back to the eighteenth century by a British Clergyman and
mathematician named Thomas Bayes. In Bayes and Price (1763) landmark paper
titled, “An essay towards solving a problem in the doctrine of chance”, the
foundations were laid. It was not until Laplace rediscovered the Bayesian principle
in a much greater clarity and generality and then proceeded to apply it solve to
problems in population statistics and meteorology that it gained wider attention
(Jaynes, 1986).

Bayesian statistics is based on theory of conditional probabilities. In Bayesian
methods, the data can be represented by y and the model parameters θ and these
parameters are observed to be random quantities. The data can either be continuous
or discrete with the likelihood, distribution or density function represented by
p(y|θ), which is then taken to be the plausibility of the data given the parameters of
the model. In the Bayesian context, θ is the unknown random variable and y
represents the sample of n independent and identically distributed observations.
Bayesian statistics deals with joint distributions which is expressed as the likelihood
of the data y given the parameter θ , and denoted as L(y|θ).

The model parameters, described as unknown quantities and assigned prior
distributions, are specified for the parameters of the model. These prior
distributions can be obtained on the bases of external evidence available to the
analyst and related to the current study of interest, by either soliciting experts
opinion (Sutton et al., 2000) or previous studies (Bradlow et al., 1999; Smith et al.,
1995; Cohen et al., 2013). These types of priors are referred to as informative or
subjective priors (refer to Subsection 2.3.2 for details). The second type of prior are
known as the non-informative, and these are based on Jeffreys prior which is invariant
under parametrization. These priors are used in situations where scientific
objectivity are of much interest to the analyst (Berger, 2006).

1.2 Meta-Analysis

The science of meta-analysis, which is the combination of results from independent
multiple studies in a defined area of interest has witnessed an explosive growth in
the scientific literature especially of recent times. However, it was not until the 20th
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century that Simpson and Pearson (1904), applied the idea of combining results from
clinical trials. A high number of research reports by the middle of the 20th century
compelled researchers to focus on delivering and applying methods to synthesize
results (Pratt et al., 1940; Light and Smith, 1971; Smith and Glass, 1977). The term
meta-analysis according to Glass (1976), is defined as “statistical analysis of a large
collection of analysis results from individual studies for the purpose of integrating
findings”.

The works of Simpson and Pearson (1904) and Pratt et al. (1940), led to the recognition
of meta-analysis by many authors (Rosenthal, 1978; Hedges and Olkin, 2014; Elwood,
2006). Berlin et al. (1989) described meta-analysis as the quantitative formalization of
the literature review process. Elwood (2006) applied the idea of meta-analysis to
determine the effectiveness of aspirin on the recurrence of heart attack. The idea
behind meta-analysis is to quantitatively synthesise evidences from different studies
on a specific area to provide a numerical summary of a pooled or overall estimate for
an outcome of interest to possibly resolve conflicting issues or reports.

1.3 Joint Modelling of Longitudinal and Survival outcomes

Longitudinal data emanate from observational and clinical trials studies that are
measured repeatedly on subjects over a specified time period. These type of
repeated measurements are encountered in health sciences that aids the health
practitioners to comprehend and appreciate the level and development of a
particular type of disease under investigation. Most of these longitudinal data are
collected alongside time-to-event outcomes that may be of interest to the
practitioner (Rizopoulos, 2012b). Longitudinal studies are also used to characterize
human growth and ageing. It is also used to determine factors associated with some
human health as well as evaluate the treatment effects. Some of the advantages of
longitudinal studies are their ability to measure the change in outcome or exposure
on an individual. With longitudinal study, one is able to measure the occurrence or
timing of the disease onset which may be correlated with changes in patient
exposure (Rizopoulos, 2012b).

Two main disadvantages of analysing longitudinal data are; there is risk of bias due
to incomplete follow-up or drop-out of participants during the study period. This
becomes more of a problem if follow-up subjects to the end of the study differ from
subjects who discontinued. Also, analyses of longitudinal data requires statistical
methods that can properly account for the intra-subject correlation of the response
measurements while determining the risk of an outcome of interest. These types of
scenarios occur for instance in HIV clinical trials where CD4 cell counts are
considered as biomarkers measured repeatedly over a period of time alongside time
to the occurrence of Acquired Immune Deficiency Syndrome (AIDS) or death
(Rizopoulos, 2012a). There are two main types of methods used in jointly modelling
longitudinal and time-to-event outcomes, these are; linear mixed effects and
survival models. These models are elaborated in details in Sections 2.4 and 2.5.
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1.4 Dementia

Dementia constitute a number or set of behaviours or symptoms that result in
difficulties with individuals cognitive functions. One is said to have dementia when
that person is observed not to be able to undertake everyday task pertaining to
his/her daily activities, is unable to live independently without being cared for.
Dementia is an organic disorder, related to the physical deterioration of the human
brain tissue that is detected through a brain scan of autopsy after death. Dementia
patients symptoms get worse over time which is not just due to normal ageing
(Alzheimer-Disease-Association, 2017). Due to the progressive nature of the disease,
it is possible that by the time one is diagnosed of it, it would have reached an
advanced stage making it difficult for a realistic cure to be carried out. Some of the
primary symptoms include confusion, personality changes, memory loss, unable to
plan and unable to do task orderly (Alzheimer-Disease-Association, 2017).

1.5 Problem Statement

Most of the methods used by researchers for data analysis focus on single survey
types. In most of the cases, a study is conducted by either a researcher or group of
researchers and the data collected by these researchers are analysed in a way that
other previous studies are not incorporated into the statistical model. In analysing
these types of data, the general assumptions are that the previous studies are either
prone to bias or were conducted elsewhere which may not be relevant or appropriate
to be combined with the current study.

The inappropriate nature of this approach stems from the fact that in this scientific
world a single problem affect almost everybody irrespective of one’s geographical
location. There are significant number of scientist or researchers who have
previously investigated similar studies that there is the need for the present
researchers to understand and incorporate these previous findings into their
“current” research so as to make more informed decisions.

The statistical approach that combines all relevant findings from previous studies to
enable researchers obtain a pooled estimate about an outcome of interest that might
not have been observed from individual studies is known as meta-analysis (Sutton
et al., 2000). The term meta-analysis according to Glass (1976) is defined as
“statistical analysis of a large collection of analysis results from individual studies
for the purpose of integrating findings”.

The commonly used methods for meta-analysis are the fixed effects (Yusuf et al.,
1985) and random effects (DerSimonian and Laird, 1986). Since the purpose of
combining results is to ensure an efficient overall pooled estimate of all findings, it is
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important that, any statistical model specified for these analyses take into
consideration all relevant information order than just synthesizing and obtaining
statistical summaries. Though the frequentist random effects model has a similar
hierarchical form as that of the Bayesian random effects model, it does not
incorporate external sources of information that will enable a better estimate of the
overall pooled effect size. Studies that are combined to obtain a pooled effect size
estimate are mostly heterogeneous and with different sample sizes ranging from
small to very large. It is therefore important, that external information or different
statistical approaches are sought and incorporated or applied to the model in order
to reduce the effect of heterogeneity for a more accurate summary estimates.

The two most important issues that affect meta-analysis results as indicated in
Subsection 2.2 are publication bias and heterogeneity among studies (Sutton and
Abrams, 2001). There is a limited literature on publication bias from the Bayesian
perspective. The first Bayesian methodological approach to estimate and adjust for
publication bias was by Givens et al. (1997). Givens et al. (1997) proposed a data
augmentation approach via a hierarchical model. The number of outcomes of the
studies assumed missing or unobserved were simulated and added to the observed
effect size estimates for analysis.

The second approach was an implementation of the Copas selection model via a
Bayesian paradigm by Mavridis et al. (2013). These authors examined and applied it
in network meta-analysis. The Copas model assumes that very large studies (with
small standard errors) have high probabilities of being published than small studies
(with large standard errors) and the probability that a study will be published and
selected depends on its effect size. They obtained informative prior for the model
parameters by soliciting external data and eliciting experts opinions. The Copas
selection model involves both the probability of publication and effect size. The
Copas model assumes that in the presence of publication bias, the propensity of
publication will be correlated with the effect size. This Copas model relies on
sensitivity analysis such that the probability a study is published is determined
under different possibilities or scenarios Copas and Shi (2001).

The difficulty in using this Copas model proposed by Copas and Li (1997) via the
Bayesian methods is the use of more than four or five different prior distributions on
the model parameters which yields about four or five different posterior estimates
thereby resulting in conflicting interpretations with just one outcome of interest. The
first part of this study addresses this problem by developing a prior distribution to
estimate the Copas model parameters (without one necessarily conducting
sensitivity analysis) and this is evaluated and applied to both randomised clinical
trials and observational (dementia and its subtypes) studies. A Bayesian
nonparametric approach is also proposed to control for the non-normality of the
meta-analytic data.

Studies (such as dementia) collect information on deaths of participants in addition to
other covariates of interest which are often measured intermittently at different time
points (Rizopoulos, 2012a). These are measurements that are taking repeatedly for
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each participant over a time period. For instance, the Mini Mental State Examination
(MMSE). This instrument is not predictive in nature and hence should be considered
as an instrument that is measured with some degree of errors. Measurements of
this type violates a number of statistical models assumptions, especially when the
interest is to determine the risk factors that affect the survival of dementia patients.
It is therefore imperative that a more robust statistical approach is adopted to be able
to handle the repeated measurements of the MMSE scores while determining the
factors that affect the survival of these group of people. The prognostic values of this
covariate is also usually of interest in this type of studies because they shed light on
the natural history of the disease (Rizopoulos, 2012b).

For one to study the relationship between these covariates and the survival outcome
of interest, it is possible to use the covariates as time-dependent or time-varying
covariates in a relative risk model or better known as a Cox proportional hazards
regression model (Cox and Hinkley, 1979). The Cox model stipulates the necessity of
having a complete knowledge of the covariate history for all individuals in order to
maximize the partial likelihood and thereby estimate the model parameters
accurately. In other to again, implement this approach, we must understand that the
covariate value need to be a time-continuous process measured without errors.
Though the approach of using the covariate as a time-varying measured without
errors have been adopted in literature to determining the risk of survival among
dementia patients. The most important variables of interest (3MS) violates this
assumption. This therefore causes the estimated parameters to be biased towards
the null.

In this study we have proposed and implemented the Joint or Shared parameter
modelling to;

1. the longitudinal measurements of the modified Mini-Mental State Examination
over a 21-year follow-up dataset, considered to be measured with errors,

2. the 3MS variable directly to mortality of individuals via cognitive impairment,

3. jointly model the relationship between the repeated measures of the variable
3MS and the risk of mortality using standard and extended relative risk, and
linear mixed effects models,

4. establish the possibility of predicting participants’ survival probability based
on their 3MS scores to enable physicians have a better understanding of their
patients’ risk of mortality via cognitive impairment,

5. propose a model that is capable of accurately predicting future 3MS scores
based on their previous measurement(s) to enable practitioners keep track of
their patients’ health.

5



© C
OPYRIG

HT U
PM

1.6 Justification of the Study

1. The development of a robust Bayesian prior for the Copas model parameters
to be used to assess and account for publication bias in meta-analysis based
on which just one overall effect estimate can be obtained. This ameliorates the
problem of conducting sensitivity analysis which results in a more number of
effect size estimates with likely different posterior mean effects. This
culminates into varied interpretations from just a single meta-analysis.

2. This study further develops a new approach that deals with the issues of
heterogeneity and non-normality in meta-analytic data. Heterogeneity of
studies has the potential to seriously bias the grand/overall mean effect
which is of essence in evidence-based medicine (meta-analysis). It is a well
established fact that in any data analysis, parametric (linear) models are
preferred to non-parametric ones if and only if the variables of interest satisfy
the assumptions of normality especially with relatively small samples. This
study sort to advance this statistical fact by proposing and applying the idea
of a Bayesian non-parametric methodological approach to meta-analysis of
observational studies when normality is a problem.

3. In the Bayesian framework, there are two types of approaches; these are
subjective and objective. One of the purposes of this study is to establish the
point that meta-analytic data can be used to construct Bayesian prior that has
the potential of satisfying these two approaches in a single analysis. This
makes interpretation of the results more general and acceptable to all.

4. Finally, there are two types of variables, endogenous (measured with errors)
and exogenous (measured without errors). Therefore, any statistical approach
should clearly delineate between these two variables for a better, precise and
accurate estimation of the specified model’s parameters/coefficients. This will
allow for a meaningful interpretation and conclusion to be drawn. The
weakness of ignoring or assuming that all variables can be considered as
exogenous or time-varying covariates which has the potential to give
misleading results to both researchers and practitioners have been considered
in this work.

1.7 Research Objectives

This study develops Bayesian prior distribution to assess and account for
publication bias and heterogeneity and as well proposes a more robust Bayesian
statistical approach to model data collected repeatedly and apply to dementia and
its sub-types. This research seek:

1. To develop a Bayesian new prior for the Copas selection model parameters to
assess and account for publication bias in meta-analysis.

2. To propose a Bayesian non-parametric approach to handle heterogeneity in
meta-analysis.
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3. To formulate an informative prior using meta-analytic data through a power
transformation approach to determine the effect of exercise on the risk of
cognitive decline among older women.

4. To explore, develop and implement a joint modelling approach to a
longitudinal measurement of a marker which is measured with some degrees
of errors.

1.8 Thesis Outline/Organisation

This thesis is organized into seven different chapters. The first two chapters give an
overview (background) and literature review. The first introduces the concept of
Bayesian analysis, meta-analysis, joint modelling as well as the problem statement
and objectives of the study. It also introduces the concept of cognitive decline,
dementia and its subtypes which constitute the basis for this research. The second
chapter includes some literature reviews on meta-analysis, the relative risk survival
model (Cox proportional hazards model) and linear mixed effects model. The next
four chapters constitute the four main objectives of this thesis. The final part
summarizes the results of all chapters presiding it and with some recommendations
and suggested future work.

Chapter Three of this thesis, develops a Bayesian prior referred to as triangular prior.
Its performance is assessed against other known choices of prior distributions for
the Copas selection model through sensitivity analysis with simulated meta-analytic
data. It is validated using meta-analytic data from the United States Food and Drugs
Administration.

Chapter Four applied the proposed prior in a meta-analysis of physical activity on
cognitive decline, Alzheimer’s disease, vascular dementia and all cause-dementia. In
the same Chapter, we proposed a Bayesian non-parametric approach to meta-analysis
via the Dirichlet Process. The purpose of this approach is to overcome issues with non-
normality of the meta-analytic data.

Chapter Five, details a completely different way of analysing data from the subjective
and objective Bayesian perspective taking into consideration an informative prior
formulated from previous studies obtained through meta-analysis. This is used to
determine the effect of physical activity on cognitive decline.

In Chapter Six of this thesis, a proposal on Bayesian methodological approach to
handle observations measured repeatedly overtime is presented. For instance, 3MS
in cognitive impairment or dementia. This approach will be extended into
predicting survival probabilities as well as the repeated measurements that will
enable practitioners to have a better understanding of their patients health. Chapter
Seven provides conclusions, recommendations and suggestions for future
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work/research.
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schemes. The Annals of Statistics, 1(2):353–355.

Blondell, S. J., Hammersley-Mather, R., and Veerman, J. L. (2014). Does physical
activity prevent cognitive decline and dementia?: A systematic review and meta-
analysis of longitudinal studies. BMC Public Health, 14(1):510–522.

Bradlow, E. T., Wainer, H., and Wang, X. (1999). A bayesian random effects model for
testlets. Psychometrika, 64(2):153–168.

Broe, G., Creasey, H., Jorm, A., Bennett, H., Casey, B., Waite, L., Grayson, D., and
Cullen, J. (1998). Health habits and risk of cognitive impairment and dementia
in old age: a prospective study on the effects of exercise, smoking and alcohol
consumption. Australian and New Zealand Journal of Public Health, 22(5):621–623.

Brooks, S. P. and Gelman, A. (1998). General methods for monitoring convergence of
iterative simulations. Journal of Computational and Graphical Statistics, 7(4):434–455.

Buchman, A., Boyle, P., Yu, L., Shah, R., Wilson, R., and Bennett, D. (2012). Total daily
physical activity and the risk of ad and cognitive decline in older adults. Neurology,
78(17):1323–1329.

Burr, D., Doss, H., Cooke, G. E., and Goldschmidt-Clermont, P. J. (2003). A
meta-analysis of studies on the association of the platelet pla polymorphism of
glycoprotein and risk of coronary heart disease. Statistics in Medicine, 22(10):1741–
1760.

Carlin, J. B. (1992). Meta-analysis for 2× 2 tables: A bayesian approach. Statistics in
Medicine, 11(2):141–158.

Carlson, M. C., Helms, M. J., Steffens, D. C., Burke, J. R., Potter, G. G., and Plassman,
B. L. (2008). Midlife activity predicts risk of dementia in older male twin pairs.
Alzheimer’s & Dementia, 4(5):324–331.
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a dialogue with josé m. bernardo. Journal of Statistical Planning and Inference,
65(1):159–177.

Iwasa, H., Yoshida, Y., Kai, I., Suzuki, T., Kim, H., and Yoshida, H. (2012). Leisure
activities and cognitive function in elderly community-dwelling individuals in
japan: a 5-year prospective cohort study. Journal of Psychosomatic Research,
72(2):159–164.

Jang, H., Lee, S., and Kim, S. W. (2010). Bayesian analysis for zero-inflated regression
models with the power prior: Applications to road safety countermeasures.
Accident Analysis & Prevention, 42(2):540–547.

Jaynes, E. T. (1986). Bayesian methods: General background. Retrieved 20 May 2015
from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1055.

Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems.
The Royal Society of London A: Mathematical, Physical and Engineering Sciences,
186(1007):453–461.

Jeffreys, S. H. (1967). Theory of Probability: 3d Ed. Clarendon Press.

Jessen, F., Amariglio, R. E., Van Boxtel, M., Breteler, M., Ceccaldi, M., Chételat, G.,
Dubois, B., Dufouil, C., Ellis, K. A., Van Der Flier, W. M., et al. (2014). A conceptual
framework for research on subjective cognitive decline in preclinical alzheimer’s
disease. Alzheimer’s & Dementia, 10(6):844–852.

104



© C
OPYRIG

HT U
PM

Jones, D. R. (1995). Meta-analysis: Weighing the evidence. Statistics in Medicine,
14(2):137–149.

Kalmijn, S., Launer, L., Stolk, R., De Jong, F., Pols, H., Hofman, A., Breteler, M.,
and Lamberts, S. (1998). A prospective study on cortisol, dehydroepiandrosterone
sulfate, and cognitive function in the elderly. The Journal of Clinical Endocrinology &
Metabolism, 83(10):3487–3492.

Karp, A., Paillard-Borg, S., Wang, H.-X., Silverstein, M., Winblad, B., and Fratiglioni,
L. (2006). Mental, physical and social components in leisure activities equally
contribute to decrease dementia risk. Dementia and Geriatric Cognitive Disorders,
21(2):65–73.

Kerola, T., Hiltunen, M., Kettunen, R., Hartikainen, S., Sulkava, R., Vuolteenaho,
O., and Nieminen, T. (2011). Mini-mental state examination score and b-type
natriuretic peptide as predictors of cardiovascular and total mortality in an elderly
general population. Annals of Medicine, 43(8):650–659.

Kim, J.-M., Stewart, R., Bae, K.-Y., Kim, S.-W., Yang, S.-J., Park, K.-H., Shin, I.-S., and
Yoon, J.-S. (2011). Role of bdnf val66met polymorphism on the association between
physical activity and incident dementia. Neurobiology of Aging, 32(3):551–e5.

Kishimoto, H., Ohara, T., Hata, J., Ninomiya, T., Yoshida, D., Mukai, N., Nagata,
M., Ikeda, F., Fukuhara, M., Kumagai, S., et al. (2016). The long-term association
between physical activity and risk of dementia in the community: the hisayama
study. European Journal of Epidemiology, 31(3):267–274.

Korczyn, A. D. and Halperin, I. (2009). Depression and dementia. Journal of the
Neurological Sciences, 283(1):139–142.

Kruschke, J. K. (2013). Bayesian estimation supersedes the t test. The Journal of
Experimental Psychology: General, 142(2):573–603.

Kujala, U. M., Kaprio, J., Sarna, S., and Koskenvuo, M. (1998). Relationship of leisure-
time physical activity and mortality: the finnish twin cohort. Journal of the American
Medical Association, 279(6):440–444.

Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data.
Biometrics, 38(4):963–974.

Lambert, P. C., Sutton, A. J., Burton, P. R., Abrams, K. R., and Jones, D. R. (2005).
How vague is vague? a simulation study of the impact of the use of vague prior
distributions in mcmc using winbugs. Statistics in Medicine, 24(15):2401.

Larson, E. B., Wang, L., Bowen, J. D., McCormick, W. C., Teri, L., Crane, P., and
Kukull, W. (2006). Exercise is associated with reduced risk for incident dementia
among persons 65 years of age and older. Annals of Internal Medicine, 144(2):73–81.

Laurin, D., Verreault, R., Lindsay, J., MacPherson, K., and Rockwood, K. (2001).
Physical activity and risk of cognitive impairment and dementia in elderly persons.
Archives of Neurology, 58(3):498–504.

Lee, I.-M. and Paffenbarger, R. S. (1998). Physical activity and stroke incidence the
harvard alumni health study. Stroke, 29(10):2049–2054.

105



© C
OPYRIG

HT U
PM

Lee, S., Choi, J., and Kim, S. W. (2010). Bayesian approach with the power prior for
road safety analysis. Transportmetrica, 6(1):39–51.

Lee, S., Yuki, A., Nishita, Y., Tange, C., Kim, H., Kozakai, R., Ando, F., and
Shimokata, H. (2013). Research relationship between light-intensity physical
activity and cognitive function in a community-dwelling elderly populationan 8-
year longitudinal study. Journal of the American Geriatrics Society, 61(3):452–453.

Lesaffre, E. and Lawson, A. B. (2012). Bayesian biostatistics. John Wiley & Sons.

Light, R. and Smith, P. (1971). Accumulating evidence: Procedures for resolving
contradictions among different research studies. Harvard Educational Review,
41(4):429–471.

Link, A. M. (1998). Us and non-us submissions: an analysis of reviewer bias. Journal
of the American Medical Association, 280(3):246–247.

Luck, T., Riedel-Heller, S., Luppa, M., Wiese, B., Köhler, M., Jessen, F., Bickel, H.,
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