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In spite of tremendous applications of bioactive glasses, their low mechanical 

properties such as low strength and high brittleness have limited their clinical 

applications as load-bearing implants. To overcome these limitation hence in this 

study, an alternative approaches proposed is by the development a novel composite 

of Bioglass (BG) and Hydroxyapatite (HA) via thermal treatment method. However, 

under such sintering conditions, the poor thermal stability of HA (dehydration and 

decomposition process) which occurred remarkably should be taken into account, 

since it declines the mechanical properties of the composite. Therefore, Calcium 

Fluoride (CaF2) was incorporate into BG composition to improve the thermal 

stability of HA. In this research work, the purpose is to investigate the microstructure 

and mechanical properties and also their relationship of new BG-HA biocomposite 

with the incorporation of CaF2 in BG system. Such observation is not documented in 

the literature in this scope of research since investigations on the microstructure, 

mechanical properties and also their relationship of based BG have remained 

pointing only towards the effect of heat treatment and liquid phase sintering (LPS), 

without considering the role of CaF2 on the microstructure and mechanical properties 

of BG-HA composite. In addition, in this study, the observation of parallel relation of 

microstructure and mechanical properties of the BG-HA composites at each stages of 

sintering temperature was also elucidated. 

 

 

SiO2-Na2O-CaO-P2O5-CaF2 were prepared by conventional melt quenching method 

and  were mixed with HA through solid state reaction, in proportion of 0, 10, 20, 30 

and 40 wt% respectively. Each composition was sintered from 500 to 1000 °C with 

50 °C increments. The samples were characterized by Thermal Gravimetric 

Analysis-Differential Scanning Calorimetry (TGA-DSC), Fourier Transform Infrared 

Spectroscopy (FTIR), X-ray Diffraction (XRD), Field Effect Scanning Electron 

Microscopy coupled with Energy Dispersive Spectroscopy (FESEM-EDAX), 

density, grain size, microhardness and compressive strength measurement. FTIR 
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analysis showed the evidence of non-bridging oxygens (NBO’s) with the increase of 

the network-modifying species content (CaF2), which responsible for the decrease in 

the volume of network structure thus increase the value of density. The XRD 

analysis indicated that BG with 10 wt% HA content sintered at 800 °C show high 

thermal stability by the presence of Na2Ca3Si2O8, Na4CaSi3O9, Na2Ca3Si6O16, HA, 

FA and with the absence of β-TCP phases. FESEM micrograph illustrated increasing 

of grain size by the increasing of sintering temperature. The result shows that 

density, hardness and compressive strength improved from 500-800 °C sintering 

temperature. However, at 850-1000 °C sintering temperature the density, hardness 

and compressive strength significantly decreased. Finally, density of 2.95 g/cm3, 

hardness of 250 HV and compressive strength value of 103 MPa has been attained 

for BG with 10 wt% HA content sintered at 800 °C. The superior mechanical 

strength was attributed to the improved densification by heat treatment, LPS and also 

by the improvement of HA thermal stability through the incorporation of CaF2. 
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Walaupun kaca bioaktif mempunyai aplikasi yang menarik, sifat mekaniknya yang 

lemah seperti sifat kekerasan yang rendah dan kerapuhan yang tinggi telah 

membataskan aplikasi klinikalnya sebagai implan pembawa beban. Bagi mengatasi 

had tersebut, pendekatan alternatif yang dicadangkan adalah dengan penyediaan 

komposit baru iaitu Bioglass (BG) dan Hydroxyapatite (HA) melalui teknik rawatan 

haba. Walau bagaimanapun, di bawah pembabitan keadaan persinteran, kestabilan 

haba HA yang rendah (proses dehidrasi dan penguraian) yang belaku secara luar 

biasa harus dititik beratkan, memandangkan ianya menyebabkan kemerosotan sifat 

mekanikal komposit tersebut. Oleh itu, Calcium Fluorida (CaF2) telah diperkenalkan 

dalam komposisi BG untuk meningkatkan kestabilan haba HA. Penyelidikan ini 

adalah bertujuan untuk menyiasat sifat struktur mikro dan mekanikal serta hubungan 

kait antara kedua sifat tersebut terhadap biokomposit BG-HA yang baru melalui 

pengenalan CaF2 dalam sistem BG. Pemerhatian ini tiada dalam kesusasteraan 

bidang penyelidikan ini dan kajian mengenai sifat struktur mikro, mekanik dan juga 

hubungan kait antara keduanya terhadap BG hanya memberi tumpuan kepada kesan 

rawatan panas dan persinteran fasa cecair, tanpa mempertimbangkan peranan CaF2 

pada struktur mikro dan sifat mekanikal komposit BG-HA. Di samping itu, dalam 

kajian ini, pemerhatian terhadap hubungan struktur mikro dengan sifat mekanikal 

komposit BG-HA pada setiap peringkat suhu persinteran juga diperjelaskan.  

 

 

SiO2-Na2O-CaO-P2O5-CaF2 disediakan melalui kaedah kebiasaan iaitu pencairan 

pelindap kejutan dan dicampur dengan HA melalui tindak balas keadaan pepejal 

masing-masing dengan kadaran 0, 10, 20, 30 dan 40 wt%. Setiap komposisi disinter 

dari 500 hingga 1000 °C dengan kenaikan 50 °C. Sampel tersebut dicirikan oleh 

Pengukuran Haba Gravimetrik-Kalorimetri Pengesan Berbeza (TGA-DSC), 

Spektroskopi Inframerah Transformasi Fourier (FTIR), Pembelauan Sinar-X (XRD), 

Mikroskopi Elektron Pengesan Kesan Medan dan Spektroskopi Penyebaran Tenaga 

(FESEM-EDAX), pengukuran ketumpatan, saiz butiran, kekerasan mikro dan 
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kekuatan mampatan. Analisis FTIR membuktian kewujudan oxygen yang tidak 

bersambung (NBO’s) dengan peningkatan kandungan spesis rangkaian pengubahsuai 

(CaF2), yang bertanggungjawab terhadap pengurangan isipadu struktur rangkaian 

lalu meningkatkan nilai ketumpatan. Analisis XRD menunjukkan bahawa BG 

dengan 10 wt% HA yang disinter pada 800 °C mempunyai kestabilan terma yang 

tinggi dengan pembentukan fasa Na2Ca3Si2O8, Na4CaSi3O9, Na2Ca3Si6O16, HA, FA 

tanpa kehadiran fasa β-TCP. Mikrograf FESEM menunjukkan peningkatkan saiz 

butiran dengan peningkatan suhu persinteran. Keputusan ini menunjukkan bahawa 

ketumpatan, kekerasan dan kekuatan mampatan meningkat dengan suhu persinteran 

dari 500-800 °C. Walau bagaimanapun, pada 850-1000 °C ketumpatan, kekerasan 

dan kekuatan mampatan menurun. Akhirnya, nilai ketumpatan pada 2.95 g/cm3, 

kekerasan pada 250 HV dan kekuatan mampatan pada 103 MPa dicapai oleh BG 

dengan 10 wt% HA, disinter pada 800 °C. Keunggulan kekuatan mekanikal adalah 

disebabkan oleh peningkatan ketumpatan oleh rawatan haba, sintering fasa cecair 

serta peningkatan kestabilan haba HA melalui pengenalan CaF2. 
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CHAPTER 1 

 

INTRODUCTION 

1.1    Introduction 

In this chapter, the author’s motivation for embarking upon research into the specific 

area is introduced and explained. Background and research topic is presented first, 

followed by selection of materials, problems statement, objectives of study and 

outline of the thesis. 

 

 

1.2    Background of Study  

Over the last several decades, an increase in longevity and life expectancy has raised 

the average age of the world’s population. It is projected that by 2050 there will be 

more than 1 billion people alive on earth aged 60 years old or older (Gunduz and 

Oktar, 2014). Currently, there are a large number of older people aged at 70 and 80 

years old compared to previous years. This improvement may be related to better 

nutrition and improvement in medical care, improved vaccinations, drugs and water 

treatment. Moreover, in the light of human life expectancy up to 90 years, the 

improvements in life care and the increase of accidents, due to sport activities and car 

accidents, the need for effective and inexpensive biomaterials available to everyone 

such as those produced from biologically derived HA and BG, is in great demand. 

This has resulted in an urgent need for improved biomaterials and processing 

technologies for implants, more so for orthopaedic and dental applications.  

 

 

Owed to this, implants or transplants can be utilized to preserve human’s quality of 

life due to illnesses disorder and accidents. Bone and joint degenerative and 

inflammatory problems affect millions of people worldwide. In fact, they account for 

half of all chronic disease in people over 50 years in developed countries. In 

addition, it is predicted that the percentage of person over 50 years of age affected by 

bone diseases will double up by 2020. The number of treated skeletal defiencies 

steadily increases in a global state. Effective ways for bone replacements and 

enhancement of bone formation together with research directed to find ideal 

biomaterials for grating purposes, which will feature biocompatibility and productive 

simplicity and economy are required. 

 

 

Medical technologies benefit the lives of people in many ways. Through the use of 

biomaterial technologies, people can live healthier, more productive and independent 

life. Many individuals who previously may have been chronically ill, disabled, or 

suffering chronic pain can now look forward to leading normal or close to normal 

life. Worldwide health care problem are including defects and functional disorder of 

bone (Carrington, 2005). With the increasing of aging people and illness, bone repair 
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has turn out to be the main clinical and socioeconomic necessity (Cancedda et al., 

2003). Research into novel materials for biomedical applications is ever increasing as 

the medical community look to improve their way in which disorders and trauma are 

treated. Many new materials have been developed in an attempt to address these 

concerns but there are still issues surrounding the appropriateness of their mechanical 

properties, the ability of degradable materials to retain their properties once 

implanted and the ability to form the material in situ to the requirements of the 

surgeon. 

 

1.3    Selection of Materials 

To date, with the advancement of medicine, biology and materials science, metal, 

polymers and natural materials have been utilized as biomedical implant. 

Nevertheless, some of them are bioinert materials (stainless steel, titanium alloy and 

aluminium ceramics) which restricted their clinical applications owing to their non-

active bond with human tissue (Younger and Chapman, 1989). Therefore, selection 

of appropriate bioceramics is significantly important. Among various kinds of 

materials, bioactive ceramics such as BG and HA are considered as the most 

promising biomaterials, due their ability to form direct bonds with living bone and 

afterwards implantations in bone defects (Liu, 2012). Consequently, in the previous 

decades BG and HA has turn into research hotspot for bone repair.  

 

BG ceramics open up new possibilities for medical treatment and constitute a new 

area of research in the natural science and medicine. Owing to their widely variable 

combinations of properties, BG ceramics can be more easily adapted to suit medical 

requirements that can customary implant. BG extensively used in various ways as in 

replacement of hips, knees, tendons and ligaments due to the appropriate such us 

compatibility, chemical stability and high wear resistance. Bioactive glass-ceramics 

are establish to have superior mechanical properties corresponding to bending 

strength, fracture toughness and young’s modulus, allowing to be used in load 

bearing applications (Hashmi et al., 2013). Bioactive glass-ceramics has been used 

successfully in more than 60,000 clinical cases including vertebral replacement and 

iliac creast repair. 

 

In 2016, a research team from University of Milano-Bicoccu and Imperial Collage of 

London have developed BG, a material that mimics the properties of natural cartilage 

and might support its regrowth to benefit persons suffering severe pain due to 

osteoarthritis. The material can be formulated to be shock absorbent and also imitates 

the load bearing quality of real cartilage. Engineering synthetic cartilage disc 

implants from BG would be the alternative to conventional treatment. The BG would 

act similarly to real cartilage without the need for metal or plastic devices employed 

at present. These achievements thus demonstrate that it is possible to design 

bioactive glass-ceramics with improved microstructure and mechanical properties 

that should be possible to use clinically as load bearing applications. Glass ceramics 

obtained by sintering process and it is well documented that during the incident of 

crystallization and densification, the parent glass microstructure’s shrinks, hence 
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reducing the porosity and the solid structure improves in mechanical strength. 

Brittleness as well as low fracture toughness continues as main problem of these 

materials. Due to this drawback, bioactive glass is limited in use as implant devices 

for load bearing applications. 

 

Numerous techniques have been investigated in attempts to improve the mechanical 

properties of BG ceramics, by formation of BG composites reinforced with other 

bioactive ceramics which is HA. Owed to it structural and compositional 

resemblance to the mineralized matrix of natural bone, HA was identified as unique 

bioceramics for implants, The bone bonding capacity of HA may help cementless 

fixation of orthopaedic prosthesis. Despite this criteria, it is also known for its 

simulating effect of bone formation, termed as osteoconductive (Natasha et al., 

2011). HA was identified as the ultimate stable calcium phosphate (Sinha et al., 

2008) and have been comprehensively studied for its numerous potential in medical 

applications. The main reason for developing and producing composite materials is 

to achieve a combination of properties not achievable by any of the elemental 

materials alone. Approaches to achieving enhanced mechanical properties including 

the incorporation of CaF2 into the BG composition. In recent years, increasing 

interest has been shown in sintering of BG with HA. Such composites come to retain 

their useful bioactive properties whilst providing more suitable mechanical properties 

for load bearing application. 

 

1.4    Problem Statement 

The enormous progress made in the field of medicine over the past few decades has 

been partly due to the introduction of new instruments but also a result of the use of 

new materials. It is impossible to imagine modern medicine without bioceramic 

materials. BG ceramics open up new possibilities for medical treatment and 

constitute a new area of research in the natural science and medicine. Owing to their 

widely variable combination of properties, BG ceramics can be more easily adapted 

to suit medical requirements that can customize implants. BG on the other hand, 

exhibit excellent biocompatibility, but their poor mechanical properties (low 

strength, toughness and high brittleness) are a significant hindrance for load-bearing 

applications. 

 

Recently, several attempts have been made to combine bioactive glasses with HA of 

different composition, in order to develop composites with improved mechanical 

performance. Unfortunately, the production of such composite systems implies in 

several drawbacks, including decomposition of HA phase/ or reactions between the 

constituent phases and also crystallization of the original phase, with non-trivial 

consequences in terms of microstructure and mechanical properties of the final 

samples. In addition, poor thermal stability of HA in the sintered composite induced 

a weaker mechanical strength of BG-HA composite as implant for load-bearing 

applications. 
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Therefore, research is in development on the preparation, microstructure and 

mechanical characterization of BG-HA composites and it is essential to prepare new 

biocomposites using every potential compositional changes and changes of 

preparation parameter since microstructure and mechanical properties of this 

composite are identified to be critically influenced by these significant variations. 

Instead of the influence of sintering temperature and LPS, it is also possible to 

enhance the microstructure and mechanical properties of the composite by thermal 

stability improvement of HA through the incorporation of CaF2 into BG composition. 

Furthermore, it is expected that the composites have superior microstructure and 

mechanical properties, could be attributed by sintering the composites at low 

temperature, and hence much reduces the porosity.  

 

 

Since there were only little studies on the effect of HA additions on BG composition, 

the exact role of “CaF2” incorporation in BG and how it can improve the 

microstructure and mechanical properties of the composite have not yet been 

clarified. Moreover, most of the work has been devoted to heat treatment and LPS 

effect in order to improve the microstructure and mechanical properties, while no 

reports can be found on the role of CaF2 in BG-HA composite. Also, in spite of many 

investigation carried out on BG, investigation concern about the parallel relation of 

microstructure and mechanical properties of the BG-HA composites at each stages of 

sintering  temperature has not been sufficiently elucidated. 

 

 

Based on the problem statement, the hypothesis of this research project is the 

observation of high densification, less porosity and small grain size microstructure 

would result in the increase of mechanical properties in the samples. Nevertheless, 

the existence of pores, large and abnormal grain size would deteriorate the 

microstructure and mechanical properties. The microstructure and mechanical 

properties would be enhanced due to the sintering at relatively low sintering 

temperature and the influences of LPS as well as major improvement of HA thermal 

stability with low tendency of HA thermal decomposition, resulting less formation of 

pores and small grain size observed in the sample. Another hypothesis of this 

research project is the observations of microstructure changes would greatly 

influence the mechanical properties of BG-HA composites at each stage of sintering 

temperature. It is also expected that the incorporation of CaF2 would be remarkable 

in terms of microstructure and mechanical properties improvements for BG-HA 

composites in this study.  
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1.5    Objective of Study 

In this present research work, five different compositions of SiO2-Na2O-CaO-P2O5-

CaF2 BG/HA composite with eleven sintering temperatures were performed. The aim 

of this research is to investigate the microstructure and mechanical properties of 

novel BG/HA composite with the inclusion of CaF2 in the BG composition. With the 

main aim of this research, the following objectives are: 

 

i. To investigate the microstructure properties of BG-HA composites. 

ii. To evaluate the mechanical properties of BG-HA composites. 

iii. To study the relationship between microstructure and mechanical properties 

of BG-HA composites. 

 

 

1.6    Outline of Thesis 

This thesis is divided into six chapters. Chapter 1 provides general introduction about 

biomaterials and also the importance of this significant study in our lives. Chapter 2 

reviews related literature which is compulsory to understand the objective of the 

project. This chapter associates with previous work and gives motivation for the 

work performed in this thesis. Chapter 3 concentrates on the basic concepts and 

theory of biomaterials. This chapter focuses more on process, reaction, properties, 

application and further details about materials involved in this study. Chapter 4 

describes the methodology used in the design of the experiments. It also includes the 

characterization techniques and instruments used in this research field. Chapter 5 

present the findings of the study in the order of the specific problem as stated in the 

problem of statement. This chapter also discussed the significance of the results.  

Finally, chapter 6 summarizes a brief, generalized statement  to  answer the general 

and each of the specific sub-problems and presents an outlook for future work. 
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