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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Doctor of Philosophy

ON SOME PACKING AND PARTITION PROBLEMS IN
GEOMETRIC GRAPHS

By

HAZIM MICHMAN TRAO

July 2018

Chairman : Professor Adem Kilicman, PhD
Faculty : Science

Graph packing problem refers to the problem of finding maximum number of
edge-disjoint copies of a fixed subgraph in a given graph G. A related problem is
the partition problem. In this case, the edge-disjoint subgraphs are sought but
require that the union of subgraphs in this packing is exactly G. It is often useful
to restrict the subgraphs of G to a certain graph or property.

In this thesis, packing and partition problems are studied for different
properties such as matching, tree and cycle, and these problems are considered
in various geometric graphs. The families of geometric graphs that are
investigated include the complete geometric graphs, triangle-free geometric
graphs, and complete bipartite geometric graphs.

First, the problem of partitioning the complete geometric graph into plane
spanning trees is investigated, giving sufficient conditions, which generalize the
convex case and the wheel configuration case.

The problem of packing plane perfect matchings is studied in triangle-free
geometric graphs where we establish lower and upper bounds for the problem.
An algorithm for computing such plane perfect matchings is also presented.
Moreover, a sufficient condition is provided for the existence the set of
edge-disjoint plane perfect matchings whose union is a maximal triangle-free
geometric graph.
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Furthermore, the problem of partitioning the complete bipartite geometric graphs
into plane perfect matchings is studied and sufficient conditions for the problem
are presented.

Finally, the problem of packing 1-plane Hamiltonian cycles into the complete
geometric graph is studied in order to establish lower and upper bounds for the
problem. An algorithm for computing such 1-plane Hamiltonian cycles is also
presented.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

MENGENAI BEBERAPA MASALAH PEMBUNGKUSAN DAN
PEMBAHAGIAN DALAM GRAF GEOMETRIK

By

HAZIM MICHMAN TRAO

Julai 2018

Pengerusi : Profesor Adem Kilicman, PhD
Fakulti : Sains

Masalah pembungkusan graf merujuk kepada masalah mencari bilangan
maksimum salinan pinggir-sisihan pada sub graf tetap dalam graf G yang
diberikan. Masalah yang berkaitan ialah masalah pembahagian. Dalam kes ini,
sub graf pinggir-sisihan dicari tetapi penyatuan sub graf dalam pembungkusan
ini perlu tepat dengan G. Adalah sering berguna untuk menyekat sub graf G
kepada tertentu graf atau sifat tertentu.

Dalam tesis ini, masalah pembungkusan dan pembahagian dikaji untuk sifat yang
berbeza seperti padanan, pokok dan kitaran, dan masalah ini dipertimbangkan
dalam pelbagai graf geometrik. Keluarga graf geometrik yang diselidiki termasuk
graf geometrik yang lengkap, graf geometrik bebas segitiga, dan graf geometrik
bipartit lengkap.

Pertama, masalah membahagikan graf geometrik lengkap kepada satah yang
merangkumi pokok disiasat dan dengan memberikan keadaan yang mencukupi
akan mengitlakkan kes cembung dan kes konfigurasi roda.

Masalah padanan sempurna pembungkusan satah telah dikaji dalam graf
geometrik bebas segitiga dengan batas bawah dan atas untuk masalah ini
ditetapkan. Satu algoritma untuk mengira padanan sempurna satah sebegini
juga dibentangkan. Selain itu, keadan yang mencukupi disediakan untuk
memperihalkan kewujudan set padanan sempurna satah pinggir-sisihan, yang
penyatuannya merupakan graf geometrik bebas segitiga maksimum.

iii



© C
OPYRIG

HT U
PM

Tambahan pula, masalah pembahagian graf geometrik bipartit lengkap kepada
padanan satah sempurna telah dikaji dan keadaan yang mencukupi untuk
masalah tersebut dibentangkan.

Akhirnya, masalah pembungkusan kitaran Hamiltonian 1-satah ke dalam graf
geometrik lengkap juga telah dikaji untuk menghasilkan batas bawah dan atas
untuk masalah ini. Satu algoritma untuk mengira kitaran Hamiltonian 1-satah
ini juga dibentangkan.
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CHAPTER 1

INTRODUCTION

Recently, two related types of graph theoretical problems, packing and partition
problems, have garnered a lot of interest among those in the field of graph
theory. These two problems offer important applications in various distinct
areas of science (e.g. mathematics, physics and computer science ). In this
thesis, these problems are considered in various types of geometric graphs.

This chapter includes necessary basic definitions, followed by a scop of our study,
a description of problem statements, research objectives, and finally, a review of
the obtained results.

1.1 Definitions and Notation

In order to understand the terminology of the packing and partition problems,
the notation and definitions which will be used throughout this thesis are first
stated. For more graph theoretic terminology, the work of Chartrand and Lesniak
(2005) may be consulted.

A graph G is a finite, non-empty set V (G) together with a (possibly empty) set
E(G) (disjoint from V (G)) of two-element subsets of disjoint elements of V (G).
If the vertex pairs of the edge set are ordered, the graph is referred to as directed
and otherwise undirected. The terms order and size are used to refer to the
number of elements in the vertex and edge set, respectively. A graph may be
naturally represented in the plane as points with simple curves among them.

Two vertices u and v within V are said to be adjacent, if uv ∈ E, and the degree
of a vertex v is the number of adjacent vertices of v. In the case that all vertices
of G have degree d, G is called a d-regular graph or a regular graph of degree d.

Two edges in a graph are said to cross each other if they have a common point
which is interior to both of them. A graph is said to be non-crossing or plane if
its edges do not cross each other.

Given a graph G = (V,E), a graph G′ = (V ′, E′) is termed a subgraph of G
if V ′ ⊆ V and E′ ⊆ E. A subgraph G′ is an induced subgraph of G if every
edge of G contained in V ′ belongs to E′. A subgraph is termed spanning if
V ′ = V . Two subgraphs H1 and H2 of a graph G are said to be edge-disjoint if
E(H1) ∩ E(H2) = ∅.

1
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A length represents a number of edges. A path of a certain length n in a graph,
denoted by Pn, is an ordered list of distinct vertices v0, v1, . . . , vn such that
vi−1vi is an edge for all 1 ≤ i ≤ n. The first and last vertices of a path are its
endpoints, while the rest are interior points. Likewise, a cycle of length n in a
graph, denoted by Cn, is an ordered list of distinct vertices v1, v2, . . . , vn such
that vi−1vi, 2 ≤ i ≤ n, and vnv1 are edges.

In the case that G contains an induced subgraph isomorphic to a graph H, then
G is said to contain H. The graph G is said to be H-free if it does not contain
H. In particular, a graph is triangle-free if it does not contain a cycle of length
three.

In extremal graph theory, many problems stated in the form: For a graph on n
vertices satisfying a certain property P , how many edges have? A special case if
P is H-free property for some fixed graph H, Turán solved the following problem:

Theorem 1.1.1 (Turán 1941) (Felsner, 2004)

The number of edges of a Km+1-free graph on n vertices is at most (1− 1
m)n

2

2 .

A wheel W is a graph with n vertices, obtained from a cycle Cn−1 whose vertices
are joined to an additional vertex by edges.

A tree is a connected graph with no cycle. Let T denote a tree with m vertices.
It is easy to see that for any two vertices in T , there is a unique path joining
these two vertices. If T has only two vertices of degree 1, then T is called an
m-path. Let T ′ be the tree obtained from T by deleting all vertices of degree 1.
If T ′ is a path, then T is called a caterpillar . A double star is a caterpillar in
which T ′ is a 2-path.

A matching in a graph is a set of edges without common vertices. A perfect
matching is a matching in which every vertex of the graph is incident to exactly
one edge of the matching. In other words, perfect matchings are only possible on
graphs with an even number of vertices.

A k-factor is a regular graph of degree k. Since a perfect matching is a regular
graph of degree one, it is a 1-factor.

A graph G1 is isomorphic to a graph G2, denoted G1 ∼= G2, if there exists a
one-to-one mapping referred to as isomorphism, denoted by φ, from V (G1) onto
V (G2) such that uv ∈ E(G1) if and only if φ(u)φ(v) ∈ E(G2).

2
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The union of graphs G and H, written G ∪H, consist of the vertex set V (G) ∪
V (H) and the edge set E(G)∪E(H). In order to specify the edge-disjoint union
with E(G) ∩ E(H) = ∅.

For n ≥ 1, the complete graph, denoted by Kn, consists of n vertices with all
possible edges. Thus, Kn contains n(n− 1)/2 edges; consequently, every pair of
vertices form an edge.

A bipartite graph is a graph whose vertices can be divided into two disjoint sets,
A and B, such that every edge connects a vertex in A to one in B. A complete
bipartite graph is a special kind of bipartite graph where every vertex of A is
connected to every vertex of B.

A point set P in the plan is said to be in general position if no three points are
collinear. Through out this thesis, all point sets will be considered to be in the
general position.

The convex hull of P is a smallest convex set that contains all points of P and is
denoted by CH(P ). A set P is said to be in the convex position in the plane if
all points are on the boundary of CH(P ). A convex geometric graph is a graph
with the vertices in convex position.

A set P of m points is said to be in regular wheel configuration in the plane, if
m − 1 of its points are regularly spaced on a circle C and a point at the center
of C. It is to be noted that those points in C are the convex hull of P and the
ordering of the points of C around the convex hull.

The double chain of P of 2m points consists of two sets of m points, one forming
a convex chain (the lower chain) and another forming a concave chain (the upper
chain). Furthermore, each straight-line, defined by two points from the upper
chain, leaves all the points from the lower chain on the same side, and vice versa.

An interesting topic of study within combinatorial geometry is halving lines,
which plays an important role in the analysis of many algorithms in combinatorial
geometry (Edelsbrunner, 1987).

A halving line of a set P of 2m points in general position in the plane, is a line
passing through two points in P , and cutting the remaining set of 2m− 2 points
in half, that is, leaving m− 1 points of P on each side.

3
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Given an arbitrary line passing through any point of P , it can be rotated by at
most 180 degrees where it hits some other point of P which makes it a halving
line. Thus, the minimum number of the halving lines is m while the maximum
number is unknown.

On other hand, a line L is said to bisect a set P of m points in general position
in the plane, if both open half spaces defined by L contain precisely m

2 points.
To be more specific, L does not passes through any point of P . There is no loss
of generality to assume m is odd, since otherwise, any point v may be removed
and any line that bisects P − {v} also bisects P .

In the case that P is a disjoint union of two point sets P1 and P2, the ham-
sandwich cut theorem guarantees the existence of a line that simultaneously
bisects P1 and P2 (Edelsbrunner, 1987) and (Lo et al., 1994).

Theorem 1.1.2 (Ham Sandwich Theorem) (Lo et al., 1994)
For a point set P in general position in the plane that is partitioned into sets R
and B, there exists a line that simultaneously bisects R and B.

1.2 Scope of Study

This study particularly focuses on the counting of edge-disjoint plane subgraphs
in graphs, which is known as packing or partition problem. This problem is one
of the problems in combinatorial computational geometry and which is
particularly studied in geometric graphs. So a brief background of
combinatorial computational geometry and geometric graphs are introduced in
the next two sections.

1.2.1 Combinatorial Computational Geometry

The origins of the term “computational geometry” are disputed among
researchers, but many computing scientists point to the doctoral thesis of
(Shamos, 1978) or his earlier paper on geometric complexity (Shamos, 1975).
Yet, there are those who dispute that the term was concocted ten years earlier
with the doctoral thesis of (Forrest, 1968) or his later paper on computational
geometry (Forrest, 1971).

There are even, others who claim that it began with the formal investigation of
(Minsky and Papert, 1969) in which geometric properties of a figure can and
cannot be computed with a variety of computational neural network models
available at the time.

4
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Berg reported that the birth of computational geometry, as a discipline, was
credited to the discipline of algorithms design and analysis in the late 1970s
(Berg et al., 2008). Since then, the field has garnered recognition as a
stand-alone discipline supported by a large community of avid researchers,
journals and conferences. The emergence of computational geometry as a
research discipline stems from two main reasons. Firstly, from the aesthetic
nature of related problems and solutions, and secondly, from the many
applications which include computer graphics, integrated circuit design (ICD),
computer vision and image processing, robotics, and other applications rooted
in geometric algorithms.

One of the main branches of computational geometry is “combinatorial
computational geometry”, which treats geometric objects as discrete entities. A
vital book on the topic was written by (Preparata and Shamos, 1985), who
dates the first usage of the term with combinatorial by 1975. Ever since, this
phrase has been used to refer to algorithmic study on discrete and
combinatorial geometric structures and can also be regarded as the geometric
version of “Algorithm Design and Analysis”.

Geometric settings, such as networks of roads or wires in the plane, along with
restrictions in computational graph theory were of the both two problems
influential in the development of computational geometry. This field in modern
times is considered the basis of robotics, geographic information systems (GIS)
and computer-aided design and manufacturing (CAD/CAM) among others.

This thesis is devoted to studying one of the fundamental questions in
combinatorial computational geometry. This question involves the computing of
a number of non-crossing configurations in the plane realized with straight line
segments and connected by pairs of points from a finite ground set. Graph
classes of interest realized in this way include spanning trees, perfect matchings
and spanning cycles.

1.2.2 Geometric Graphs

Geometric applications often lead to questions which may be unable to be
answered by traditional graph theory. Thus, there is a demand for new
techniques which could appropriately answer such demands.

In this section, the definitions surrounding the geometric properties of graphs
are given. A geometric graph is a graph whose vertex set is a set of points in
general position in the plane (i.e., no three points lie on a common line) and
whose edge set contains straight-line segments (possibly crossing) connecting the
corresponding points. A geometric graph is plane or non-crossing if its edges do
not cross each other. It is to be noted that the abstract graph corresponding to

5
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a plane geometric graph is always planar, but some geometric realizations of a
planar graph may have crossing edges. A geometric graph is said to be 1-plane
if every edge has at most one crossing.

Upon the realization that many classical questions in extremal graph theory
have natural analogues (Bollobás, 1978), researchers attempted to initiate the
systematic study of geometric graphs. Among the first researchers to do this
were (Avital and Hanani, 1966), (Kupitz, 1979) and (Alon and Erdos, 1989).

There are many applications of geometric graphs from circuit design, mapping,
wireless networks (Frieze et al., 2009), the web graph (Aiello et al., 2009; Fu
et al., 2010), and on-line social networks (Bonato et al., 2012). Within these
stochastic models and a feasible chosen metric space, the network vertices are
characterised by points. On the other hand, edges are chosen by a mixture of
relative proximity of the vertices and probabilistic rules.

Edge crossings are generally undesirable in most applications of geometric graphs.
By definition or by nature, numerous structures which are the topic of study
for computational geometry are non-crossing. Such examples include minimum
spanning trees, Delaunay triangulations or shortest-path of traveling salesman.
Another example is of the shortest spanning tree and shortest matching on n given
points in which the plane is automatically non-crossing and can be computed in
polynomial time (Eppstein, 2000) and (Mitchell, 2000).

1.3 Problem Statements

One of the fundamental questions in combinatorial computational geometry is
finding the maximum number of non-crossing geometric graphs on a set of points
in the plane. Packing and partition problems have a rich history in graph theory,
with many of the oldest and most intensely studied topics within this area (Pyber,
1992).

Beineke, in a survey, defined both the general packing and covering problem as
stated in the following problems (Beineke, 1969):

Problem 1.3.1 The packing problem is the problem of asking for the maximum
number of graphs with a certain property and having as their union (being edge-
disjoint subgraphs of) a given graph G.

While, the covering problem involves finding the minimum number of graphs
with a certain property whose union is a given graph G (Harary, 1970). A
related problem is the partition problem,

6
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Problem 1.3.2 The partition problem is the packing problem such that the union
of subgraphs is precisely a given graph G.

In other words, a partition of the edge set of a graph is both a packing and a
covering problem.

Graph packing and partition problems have been studied in many contexts,
including from the algorithmic complexity perspective. In general, the problem
of partitioning a given graph and the packing problem proved are both
NP-complete in (Dor and Tarsi, 1997).

Radoiĉiĉ proved that detecting a non-crossing perfect matching and spanning
tree in a given geometric graph is NP-complete (Radoiĉiĉ, 2004).

The packing problem may be considered in which it is to be determined whether
a graph contains a spanning tree or a cycle that does not share edges. In this case,
the decision problem proved is NP-complete (Bernáth and Király, 2015). They
also established the NP-completeness of the partition problem of determining
whether the edge set of a graph can be partitioned into a spanning tree.

1.4 Research Objectives

The contributions to this thesis are organized as four objectives below:

A well-known problem concerning geometric graphs asks whether every complete
geometric graph on 2n vertices has a partition of its edge set into n plane spanning
trees?

In the case that the given graph is a convex complete graph on 2n vertices,
an affirmative answer to the above question follows from a result of (Bernhart
and Kainen, 1979). For the case of geometric graphs, a characterization for the
partitions of the complete convex graph into plane spanning trees is presented
in (Bose et al., 2006). They presented a sufficient condition for partitioning the
edge set of complete geometric graphs into plane spanning double stars. So our
first objective is:

1. (i) To determine whether any complete geometric graph on 2n vertices
has a partition of its edge set into n plane spanning caterpillars or
non-caterpillar.

(ii) To give a complete characterization for the partitions of the complete
geometric graph in wheel configuration into plane spanning trees.
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The problem of packing non-crossing perfect matchings into the complete
geometric graph is considered in (Biniaz et al., 2015). They proved a
lower bound for the problem and presented tight bounds for some special
configurations of point sets. In the case that the maximum number of
edge-disjoint non-crossing perfect matchings is packed into a set of an
even number of points in convex position, the result is a maximal
triangle-free geometric graph, this lead to the following objective:

2. To find the maximum number of edge-disjoint non-crossing perfect
matchings on a set of 2n points in the plane such that their union is a
triangle-free geometric graph.

For same above reasons, it is natural to consider the following objective:

3. To determine whether any complete bipartite geometric graph Kn,n have
a partition of its edge set into n plane perfect matchings.

Finding a Hamiltonian cycle in a graph is NP-complete even if the graph
is known to be planar (Garey et al., 1976). Moreover, counting the number
of Hamiltonian cycles that are contained in a graph is #P-complete even
if the graph is known to be planar (Lískiewicz et al., 2003).

Many past researchers have attempted the problem of counting the number
of plane Hamiltonian cycles on a given graph, which may not necessarily
be edge-disjoint (Motzkin, 1948), (Akl, 1979), (Dumitrescu, 1999), (Sharir
and Welzl, 2006) and (Sharir et al., 2013).

It is not always possible to find more than one edge-disjoint plane
Hamiltonian cycle for a given set of points. A relaxation is considered in
order to solve it as a 1-plane, rather than a plane problem. Thus, the
following objective is considered:

4. To find the number of 1-plane Hamiltonian cycles can be packed into a
complete geometric graph Kn, for any set of n points in the plane.

1.5 Organization of Thesis

This thesis falls into seven chapters. Since a short introduction of the content is
given at the beginning of each chapter, we shall give only a brief outline of the
thesis.

8
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In Chapter 1, the background of graph theory problems within the context of
current study is given. This is followed by objectives set in order to address
current packing and partition problems.

In Chapter 2, past studies which address packing and partition problems are
presented. These studies are organized into appropriate sections, each addressing
a sub-problem arising depending on the type of graph.

In Chapter 3, the first objective will be considered for a given set P of 2n points
in the plane for the partitioning of complete geometric graphs into plane spanning
trees. In the case that P is in general position, sufficient conditions are given to
generalize two cases: the wheel configuration and the convex position. For the
case that P is regular wheel configuration, all such partitions are characterized.

In Chapter 4, the second objective will be considered for the packing of edge-
disjoint plane perfect matchings for triangle-free geometric graphs for a given set
P of 2n points in the plane where 2n points, n = 2k + h and 0 ≤ h < 2k. For
the case P in general position, the problem is approached in two directions. The
first direction shows that there exist at least k edge-disjoint non-crossing perfect
matchings whose union is a triangle-free geometric graph. The second direction
presents a sufficient condition for the existence of n edge-disjoint non-crossing
perfect matchings whose union is a maximal triangle-free geometric graph. For
the other two special positions for P in both convex position and regular wheel
configuration, a tight upper bound will be given.

In Chapter 5, the third objective will be considered for partitioning complete
bipartite geometric graphs on a given set P of 2n points in the plane into n
non-crossing perfect matchings. The problem will be solved by considering three
special cases of P : convex position, double chain position and general position.
For each cases, sufficient conditions will be presented for a complete bipartite
geometric graph having a partition into plane perfect matchings. For the obtained
graphs, the constructions will be investigated.

In Chapter 6, the fourth and final problem will be considered for the packing of
1-plane Hamiltonian cycles into complete geometric graphs, on a given set P of n
points in the plane. In the case that P is in general position, an algorithm will be
presented for computing such 1-plane Hamiltonian cycles. Moreover, the lower
bound, k− 1, will be proved, where n = 2k + h and 0 ≤ h < 2k makes use of the
previous algorithm. On the other hand, for the other two special positions for P
(convex position and regular wheel configuration), a tight upper bound will be
given.

In Chapter 7, a summary of the results of the present thesis is presented with
the recommendations for some open problems.

9
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