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The devastating effect of Ganoderma boninense (G. b) infections in oil palms, which 
leads to low-income revenues, due to the low yield of diseased palms, has driven 
researchers to look for early diagnostic techniques. The secondary metabolite, 
quinoline which was reported to be excreted from the oil palms when attacked by G. 
b can be used to detect the pathogenic fungus. In order to facilitate an indirect early 
detection of G. b, a new electrode based on functionalized multi-walled carbon 
nanotube was developed in this study. The development of the new electrode is 
based on layer-by-layer self-assembly method using activated multi-walled carbon 
nanotubes (aMWCNTs) as a backbone, for the attachment of other nanomaterials 
such as gold nanoparticles (AuNPs) and low molecular chitosan nanoparticle 
(ChTSNPs). The synthesized gold nanoparticles dispersion was characterized using 
Zetasizer nano series, UV-visible spectroscopy and cyclic voltammetric (CV) 
technique. The aMWCNTs and prepared nanohybrid materials (AuNPs-aMWCNTs), 
were characterized with the aid of field emission scanning electron microscope 
(FESEM), energy dispersive X-Ray (EDX), while ChTSNPs-aMWCNTs and 
aMWCNTs were characterized utilizing Fourier-transform infrared (FTIR) 
spectroscopy. The electrode modification process was monitored by FESEM and 
voltammetric techniques.  Secondary metabolites were extracted from healthy and 
infected oil palm extracts, using ultrasound-assisted extraction (UAE) method. The 
performance of the developed electrode was optimized and characterized in 
quinoline using CV and linear sweep voltammetric (LSV) methods. The developed 
electrode was characterized in the leaves and root extract secondary metabolites 
using LSV technique under optimized conditions. The results showed that  AuNPs of 
size 49.27nm and polydispersity index (PDI) of approximately 46% was chosen for 
electrode modification. This is because the PDI is below 50%. The FESEM 
micrographs show distinction among the pristine MWCNTs, aMWCNTs  AuNPs-
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aMWCNTs, bare electrode and the modified electrode. Also, the attachment of the 
carboxylic group (-COOH) to the walls of MWCNTs and the loading of the 
ChTSNPs onto the aMWCNTs were confirmed by the FT-IR spectral. The optimized 
conditions are as follow: 0.20 M citrate buffer, pH 5.5, accumulation potential, -0.52 
V, accumulation time, 180 s and scan rate, 0.06 V/s. Under the measured optimal 
conditions, the anodic peak current (Ipa) is directly proportional to concentration of 
quinoline, giving rise to the linear regression equation, Ipa (µA) = 0.7684 + 43.197 
[Quinoline]/ (µM), coefficient of correlation, R² = 0.9949, with linear range 0.0004 
and 0.10 µM, limit of detection (LOD)  3.75 nM and limit of quantification (LOQ)  
12.5 nM. The relative standard deviation (RSD) of Ipa of quinoline with single 
repeatedly used developed electrode was 2.33%, while it retained 91.7% of the 
current after being kept for twenty days. The evaluated reproducibility RSD for the 
between developed electrode anodic peak current response to quinoline oxidation 
was 3.52%. In addition, no apparent interference was observed in the presence of 
1000-fold excess inorganic ions and 500-fold excess organics in 10.0 µM quinoline 
as all the percentage interferences are below ±10%. Furthermore, the newly 
developed electrode revealed satisfactory Ipa extract secondary metabolite response 
over the concentration range of  0.1 to 0.5 ppm with the limit of detection (3 S/N) 
ranging from 7.87 ppb to 18.54 ppb. The RSD value for reproducibility of Ipa across 
all the secondary metabolites ranges from 0.73% to 29.35%. The 500-fold excess of 
interfering organic species in 100 ppm extract secondary metabolite averagely 
exhibited insignificant interference in the detection process. The proposed sensor 
stands a brighter future in providing a point of care service in the management of 
BSR disease of oil palms in South East Asia, especially in Malaysia. 
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METABOLIT SEKUNDER DALAM Ganoderma boninense YANG 

MENJANGKITI KELAPA SAWIT 

Oleh 

FOWOTADE SULAYMAN AKANBI  

Mei 2018 

Pengerusi : Profesor Nor Azah Binti Yusof, PhD 
Fakulti  :  Sains 

Kesan buruk jangkitan Ganoderma boninense (G.b) pada kelapa sawit menyebabkan 
pulangan yang rendah disebabkan oleh hasil yang berkurangan daripada sawit yang 
dijangkiti, ini menyebabkan para pengkaji mencari kaedah diagnostik awalan. 
Metabolit sekunder, kuinolina yang telah dilaporkan dirembes dari pokok sawit 
apabila diserang oleh G.b boleh digunakan untuk mengesan kulat patogenik ini. 
Untuk menjalankan pengesanan awal G.b, sebuah elektrod baharu yang difungsi 
dengan karbon nanotiub multidinding telah dihasilkan dalam kajian ini. Penghasilan 
elektrod baharu ini berasaskan kaedah swa pasang lapisan demi lapisan 
menggunakan karbon nanotiub multidinding teraktif (aMWCNTs) sebagai tulang 
belakang, untuk pelekatan bahan nano lain seperti nanopartikel emas (AuNPs) dan 
nanopartikel kitosan rendah molekular (ChTSNPs). Ampaian nanopartikel emas 
yang disintesis telah dicirikan menggunakan siri Zetasizer nano, spektroskopi UV - 
tampak dan teknik voltammetrik kitaran (CV). aMWCNTs dan bahan nanohibrid 
yang disediakan (AuNPs-aMWCNT, dicirikan dengan bantuan mikroskop elektron 
pengimbasan pengaruh medan (FESEM), dan X-Ray penyebaran tenaga (EDX). 
Manakala ChTSNPs-aMWCNTs dan aMWCNTs dicirikan menggunakan 
spektroskopi inframerah Fourier-transform (FTIR). Proses pengubahsuaian elektrod 
dipantau menggunakan FESEM dan kaedah voltametrik. Metabolit sekunder 
diekstrak daripada pokok kelapa sawit yang sihat dan terjangkit, menggunakan 
kaedah pengekstrakan berbantu ultrabunyi. Keupayaan elektrod yang dibina 
dioptimumkan dan dicirikan dalam quinoline menggunakan CV dan kaedah 
volumetrik sapuan linear (LSV). Elektrod yang dibina dicirikan pada ekstrak 
metabolit sekunder dedaun dan akar menggunakan teknik LSV dibawah 
persekitaraan yang optimum. Hasilnya menunjukan AuNP bersaiz 49.27 nm dan 
indeks politaburan (PDI) hampir 46% dipilih untuk pengubahsuaian elektrod. Ini 
kerana PDI hendaklah di bawah 50%. Mikrograf FESEM menunjukkan perbezaaan 
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ketara diantara MCWCNTs, aMWCNTs  AuNPs-aMWCNTs elektrod terdedah dan 
elektrod diubahsuai. Pelekatan kumpulan karboksil (-COOH) pada permukaan 
MWCNTs dan pemuatan MWCNTs pada aMWCNTs dikenal pasti menggunakan 
FTIR. Keadaan optimum adalah seperti berikut : 0.20 M penimbal sitrat, pH 5.5, 
pengumpulan keupayaan, -0.52 V, masa pengumpulan, 180 s dan kadar imbas, (0.06 
V/s. di bawah keadaan optimum, puncak arus anodic (Ipa) adalah berkadar langsung 
kepada kepekatan kuinolina, meningkatkan persamaan regresi linear, Ipa (µA) = 
0.7684 + 43.197 [kuinolina]/ (µM), pekali korelasi, R² = 0.9949, dengan julat linear 
0.0004 dan 0.10 µM, had pengesanan (LOD) 3.75 dan had kuantifikasi (LOQ) 12.5 
nM. Sisihan piawai relative (RSD) Ipa kuinolina dengan satu elektrod ulang pakai 
adalah 2.33%, dan mengekalkan 91.7% arus selepas disimpan untuk 20 hari. Nilai 
penghasilan-semula (RSD) untuk diantara tindakbalas arus puncak elektrod 
bertindak balas kepada pengoksidaan kuinolina adalah 3.52 %. Tambahan, tiada 
gangguan yang jelas diperhatikan dengan kehadiran lebihan ion tidak organik 1000 
ganda dan lebihan ion organik 500 ganda, pada 10.0 µM kuinolina, kerana peratusan 
gangguan keduanya adalah di bawah ±10%. Adapun, elektrod yang baharu 
dibangunkan ini menunjukkan tindakbalas Ipa ekstrak metabolit sekunder yang 
memuaskan pada julat kepekatan 0.1 hingga 0.5 ppm dengan had pengesanan (3 
S/N) berjulat dari 7.87 ppb to 18.54 ppb. Nilai RSD untuk penghasilan semula Ipa

diantara kesemua metabolit sekunder berjulat dari 0.73% hingga 29.35%. Lebihan 
spesies organik gangguan di dalam ekstrak metabolit sekunder 100 ppm secara 
purata mempamerkan gangguan yang tidak signifikan dalam proses pengesanan. 
Sensor yang dicadangkan memiliki masa depan yang cerah dalam menangani 
penyakit BSR miyak sawit di Asia Tenggara, terutama di Malaysia. 
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CHAPTER 1 

1INTRODUCTION

1.1 Background of the study 

The incapability of plants to successfully undergo translational motion has indeed 
limit their escaping potentials from invading living and non-living components of the 
ecosystem. Despite this fact, they are able to checkmate a number of attacks by 
brewing up highly functional biological defense weaponry, termed plant secondary 
metabolites (PSMs) or simply secondary metabolites (SMs). Examples of some 
selected SMs that have been studied include phenylpropanoid (López-Gresa et al.,
2011), glucosinolates (Pedras & Hossain, 2011),  phytosterols (Ekade & Manik, 
2014), eugenol and 1,8-cineole (Pavarini et al., 2012), indole (Ahuja et al., 2012). 
SMs are also referred to as volatile organics or volatile organic compounds (Pavarini 
et al., 2012; Sankaran et al., 2010), bioactive compounds (Ekade & Manik, 2014;
Pavarini et al., 2012), antimicrobial compounds (Ahuja et al., 2012). They are, 
therefore, biochemical molecules capable of restraining the adverse environmental 
effects on the standing plants (López-Gresa et al., 2011). SMs are low-molecular-
mass biochemical species endowed with the natural propensity to guard the plants 
from all kinds of stressor factors emanating from the ecosystem (Ahuja et al., 2012; 
Ekade & Manik, 2014; López-Gresa et al., 2011; Pavarini et al., 2012).  These 
groups of compounds are known to significantly exhibit two opposing traits, which 
include being beneficial as well as being destructive (Pedras & Hossain, 2011).  

However, the concern of this present study in on their protective responsibilities for 
the plant kingdom. SMs protect and guard the plants against devastatingly 
destructive agents like insects, pests, microorganisms (Ekade & Manik, 2014; 
López-Gresa et al., 2011; Pedras & Hossain, 2011) and drought, salinity, erosion, 
humidity (Ekade & Manik, 2014; López-Gresa et al., 2011). SMs employed in plant 
defense strategies are of two classes, phytoanticipins (constitutive) and phytoalexins 
(inducible) (Pedras & Hossain, 2011). The focal point of this study is phytoalexins. 
Phytoalexins are a combination of inter-related substances displaying efficient 
biochemical workforce against different disease-causing microbes, whose idea was 
conceived seventy years ago. They are also low molecular mass secondary 
metabolites bearing antimicrobial property and stress induced. Based on their 
effective check and impedance to the spread of pathogenic invasion, they are tagged 
disease resistance molecular markers or simply disease resistance markers (Ahuja et 
al., 2012). Quite unfortunate, lots of crops are lost to these devastating, non-
compromising pathogens (viral, bacterial or fungal) either on the fields or off the 
fields (storage). The economic importance of these pathogens, no doubt has 
precipitated a universal headache, the world over (Ahuja et al., 2012). Researchers, 
scientists and other stakeholders are on their toes looking for the right remedy. In 
this regard, the oil palms in Malaysia and Indonesia have suffered many losses from 
the pathogenic fungus, Ganoderma boninense (G.b) trading a disease called basal 
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stem rot (BSR) disease. According to Nusaibah and co-workers (2016), quinoline is 
SMs produced in oil palms at the site of the attack by G.b within 24hours.  

This tree plant species belong to the genus Elaeis and family Palmae (Bivi et al.,
2010).  Its scientific nomenclature is Elaeis guineensis Jacq. The genesis of this 
plant is from West African sub-continent, the Gulf of Guinea to be precise.  

The Portuguese transported oil palm to Brazil in the 15th century, while the Dutch 
catapulted it to Indonesia in the 18th century and in 1878, it was embraced as a 
decorative plant in Malaya (Naher et al., 2013).  It was also reported that the British 
introduced the oil palm to south-east Asia in the early part of the 1870s (Hushiarian 
et al., 2013).  The fruit of the oil palm is a drupe, with three-layered pericarp 
comprising of the outer skin (exocarp), outer pulp bearing palm oil (mesocarp) and 
inner hardcore circumscribing the kernel bearing the kernel oil (endocarp) (Naher et 
al., 2013).  The oil palm trees commence fruit procreation after thirty months of 
cultivation and are blessed with a proactive lifespan of twenty to thirty years 
(Hushiarian et al., 2013).  A quarter of a hectare of land is required to yield a tone of 
palm oil. They are topmost edible oil generating crop globally (Hushiarian et al.,
2013; Naher et al., 2013; Tee et al., 2013) Other products obtainable from oil palms 
include biofuels (Naher et al., 2013) , kernel oil, kernel cake, oleochemicals, 
biodiesel and other up-stream products (Ho & Tan, 2015). Reference to the foreign 
exchange earnings, Indonesia and Malaysia are the leading nations in palm oil 
exportation around the globe (Ho & Tan, 2015; Hushiarian et al., 2013) as over 
several billions of US dollars were pocketed by both countries in the year 2012. 
According to Bivi and co-workers (2010), oil palm is known as the Golden crop of 
Malaysia as it stands out as the only crop used as means of poverty alleviation in the 
country. However, this economic crop is faced with a great threat of drastic low 
yield which may result to proportionate low foreign exchange income on the part of 
exporting countries and subsequently low-quality products by the importing 
countries.  

The oil palm is challenged by a pathogenic fungus, called Ganoderma boninense,
causative organism for basal stem rot (BSR) disease (Bivi et al., 2010; Ho & Tan, 
2015; Hushiarian et al., 2013; Naher et al., 2013; Zain et al., 2013; Nusaibah et al.,
2016; Tee et al., 2013).   

This destructively devastating disease had killed and still killing lots of oil palms, yet 
to be remedied. Economic losses to the tune of millions of US dollars have largely 
been reported as result of the lethal BSR disease (Hushiarian et al., 2013; Nusaibah 
et al., 2016; Zain et al., 2013). 

The uncompromising pathogenic fungus, launching an assault on oil palms 
specifically in Malaysia and Indonesia and other tropical regions of Thailand, Papua 
New Guinea and Africa have been uncovered to be G. boninense (Kok et al., 2013).
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It is of the genus Ganoderma Karst and classified as a higher fungus. It is a member 
of the large family of Ganodermataceae, in the order Aphyllophorales, in subclass 
Hymenomycetes and in the class Basidiomycetes (Idris et al,. 2000). It has been 
affirmed that it is the causative organism for Upper stem rot (USR) and basal stem 
rot (BSR) diseases of oil palms (Rakib et al., 2014a, 2014b). Out of the 15 
Ganoderma species responsible for stem rot disease world over, 7 are documented in 
Malaysia, as follows G. boninense, G. zonatum, G.miniatocinctum and G. tornatum, 
G. applanatum, G.chalceum, G. lucidum and G. pseudoferreum. The first three are 
highly pathogenic, while G. tornatum is non-pathogenic. The format of disease 
spread is precipitated on two pathways, namely, root contact and basidiospore 
(Rakib et al., 2014b). BSR is propagated in a very latent mode. The exploit of G
boninense being necrotrophic is not easily deciphered at the on-set of its attack on oil 
palms. In the process, the fungi destroyed cell wall barrier of the oil palms through 
the activity of the destructive enzymes released by the fungal pathogens, thus 
enabling the formation of regular infection hyphae within the oil palms. Mostly, the 
basidiomata are revealed after the demise of the cell of the oil palms.  

The mycelia of these fungi often sensitize the protective defense response in oil 
palms (Nusaibah et al., 2016).  

Both youthful and aged standing palms are prone to BSR with high severity 
documented in old palms (Bivi et al., 2010; Kok et al., 2013). Some of the 
symptoms include deterioration of bole, closed spear leaves, fractured frond petioles, 
and appearance of basidiomata around the stem, root or bole regions (Kok et al.,
2013), eventuality paving a way to the killing the oil palm in the process. Eighty 
percent of palm stands can be laid to rest by BSR, usually midway through their 
productive lifespan (Bivi et al., 2010; Chong et al., 2012; Priwiratama & Susanto, 
2014). A variety of control measures have been undertaken, such as, agrophysical 
methods like soil drenching, crop rotation, clean clearing, chemical methods like use 
of fungicides, biological methods like use of endophytic bacteria (Bivi et al., 2010; 
Chong et al., 2012) or saprophytic fungi (Priwiratama & Susanto, 2014), series of 
molecular approaches, lignin content alteration in oil palm root. Summarily, till date, 
no certified cure has been adduced to G.boninense as most of the controls are limited 
in their efficacies. 

Based on the foregoing, the sustainability of oil palms is greatly at stake, as no 
known technique has been discovered to tackle the devastating arsenal of G. 
boninense till date (Chong et al., 2011). The urgent need for a proactive detective 
method is therefore non-negotiable. Methods employed so far include the use of 
Ganoderma selective medium (GSM) and polymerase chain reaction (Chong et al.,
2011). Some of these methods are not efficient enough or are technically deficient in 
the application.  Santoso et al., (2011) discovered and mapped oil palms with BSR 
disease using strongly resolving QuickBird satellite imagery in oil palm plantation 
located in North Sumatra, Indonesia. This imaging technique is a kind of remote 
sensing method. GanoSken Tomography Technology comprising of sound sensors 
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and tomography software has also been utilized to monitor deterioration in tree 
plants.  

Though effective, it is not time-friendly. Considering the large expanse of oil palms 
plantation a relatively simple, easy to handle and cost-effective detection equipment 
will be a better option. On this premise the combination of the multispectral and 
thermal camera had been successfully implemented by Khairunniza-bejo et al.,
(2015) to investigate BSR diseased and BSR disease free oil palms. These 
technologies are still deficient in that they only detect the BSR at an advanced stage, 
which left the planter no option of any curative approach. Anyway, the search for 
early diagnostic method continues. Kandan et al., (2010) applied a serological 
method based on enzyme-linked immunosorbent assay (ELISA) with polyclonal and 
/or monoclonal antibodies to detect Ganoderma disease. The shortcoming of the 
ELISA technique is cross-reactivity among different Ganoderma spp and other 
saprophytic fungi, give rise to low sensitivity and specificity.  Lelong et al., (2010) 
made use of hyperspectral reflectance spectroscopy to uncover BSR disease and 
monitor different stages of the pathogen infection on oil palms. However, the 
method is limited in that canopy optical properties arising from the white rot fungus 
is yet to be ratified. Rakib et al., (2014b) employed geographical information system 
and geostatistics to monitor the pattern of distribution of the disease in the field. 
Nasim et al., (2010) used PCR method to detect Ganoderma disease, utilizing 
powerful genetic marker, internal transcribed spacers region of the ribosomal-DNA. 
A number of issues arose in this approach ranging from Inefficiencies of different 
DNA polymerases, the presence of PCR inhibitors in the sample matrix and variation 
in the performance of PCR thermal cyclers. 

Unarguably, the search for quick, simple, sensitive, portable, cheap and point of care 
detective method is on-going. A look at electrochemical approaches may herald the 
much-needed antidote. The only limiting factor is the absolute dearth of studies on 
the electrochemical detection of G. boninense either laboratory wise or field wise.  

However, Dutse and co-workers, (2012) had eventfully detected G. boninense using 
electrochemical-based DNA approach. The advent of nanotechnology aided the team 
in mixing relevant nanomaterials to obtain nanocomposites of salient properties like 
improved biocompactibility, stability, penetration capacity, area to volume ratio, 
electrical conductance, catalytic ability, biocatalyst loading potential and structural 
feature. The team employed PEDOT-PSS blended with metallic silver nanoparticles 
to modify the electrode and applied a novel ruthenium complex as intercalating 
material for interaction and detection of G. boninense (Dutse & Yusof, 2011). Based 
on the success recorded by this team, it is hoped that pure electrochemical sensor 
could as well provide a functional approach for early detection of G. boninense. 

It is a truism that many of the chemical and related research laboratories cannot do 
without the tool called electrochemical methods. A typical example of this method is 
the voltammetric method.  These approaches have been successfully employed in 
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basic studies of redox processes to analyze reaction mechanisms. Studies involving 
the kinetics and thermodynamics of ion and electron transfer processes have equally 
been conducted via these essential tools. Courses on adsorption and crystallization 
events at the surfaces of an electrode are inclusive.  The broad utilization of these 
techniques is ascribed to the following;  inexpensive instrumentation, the excellent 
sensitivity with a lengthy linear range of concentration, quick response period and 
concurrent detection and determination of many analytes (Gulaboski & Pereira, 
2008). 

1.2 Problem statement 

Ganoderma boninense is the principal pathogenic fungus responsible for the spread 
of BSR in every developmental stage of the oil palms, commencing from the nursery 
seedlings to adults on the plantation fields. BSR can be transmitted through airborne 
basidiospores and mycelia of G. boninense during root to root contact in oil palms 
fields. The dreadful arsenals from the fungi easily disintegrate cell wall components, 
the strongly protective lignin inclusive. BSR not only promulgates retarded oil yield, 
it also causes the stands to collapse thus causing severe economic loss to the oil palm 
industry. 1928 was the year BSR came to be recognized in the country (Bivi et al.,
2010). The ensuing economic loss accrued to the tune of millions US dollars, thereby 
increasing the anxiety of stakeholders in the oil palm sector (Hushiarian et al., 2013). 
The worry of the stakeholders is precipitated by the fact that the oil palm, is a 
globally acclaimed economic tree, being portrayed as one of the world’s major 
sources of edible oil and a momentous precursor of biodiesel fuel. Therefore, there is 
dire need to protect the palms from extinction by detecting the devastating fungus at 
the onset of infection in oil palms. Thus, this study aimed at early detection of G. 
boninense. 

Although G. boninense had been successfully identified as the pathogenic fungi 
causing BSR in oil palms for the past few decades, it remained to be the most serious 
problem in many areas in Malaysia and Indonesia. Unfortunately, there is no single 
reliable procedure for curtailing the spread of this disease. Unarguably, a limiting 
factor in controlling the BSR disease is the lack of reliable diagnostic technique(s) 
for early diagnosis. This implies the severity of BSR detection at its earliest stage. 
The findings from previous methods produced little success.   

Molecular method like polymerase chain reaction (PCR) is used to detect the 
presence of bacteria in a sample that might be negative in a routine culture and 
serology due to the trace amount. In the process, DNA fragments are isolated from a 
specific region of a genomic DNA. However, many uncertainties from PCR results 
were observed with regard to whether or not bacterial DNA detected is alive or dead. 
Inclusive are inefficiencies of different DNA polymerases,  the presence of PCR 
inhibitors in the sample matrix and variation in the performance of PCR thermal 
cyclers (Chong et al., 2011). The use of blotting hybridization requires coupling with 
a PCR procedure that makes it laborious and requires being operated by an expert. 
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On the other hand, enzyme-linked immunosorbent assay (ELISA) is another 
promising approach faced with cross-reactivity among different Ganoderma spp and 
other saprophytic fungi resulting in low sensitivity and specificity (Kandan et al.,
2010). Imagery techniques have equally been advanced such as GammaScorpion: 
mobile gamma-ray tomography system by Hamidon & Mukhlisin (2014). The 
challenges being Cumbersomeness, non-portability, long scanning period and 
harmful radiation effect of gamma rays emitted by the instrument. In the same vein, 
hyperspectral reflectance technique was employed by Khairunniza-bejo et al., (2015) 
in oil palm plantation in Malaysia. The modus operandi of HSI can be summarized 
as follows, 50 – 300 images are acquirable in a given hyperspectral image cube at 
different wavelengths with the resolution of 1 – 10nm from a specific wavelength 
region. The problem encountered is the inability to image thick foliage. Anyway, 
research is on-going in various areas to factor out the much-needed technique to 
combat the menace of this pathogenic fungus on standing palms. 

Despite the fact that the electrochemical pathway is convenient, simple, selective, 
speedy and environmentally friendly the challenge remains the development and 
production of a smart and efficient sensing system for the early detection of G. 
boninense, with the potential of providing a point of care service.  

The current miniaturization of electrochemical detection with the advent of screen 
printing technology for environmental analysis may be effective in this regard. The 
current advancement in the technology of electrochemical sensor may be the answer 
to this problem. Thus, the development of a novel sensor is hereby embarked upon to 
facilitate the early detection of G. boninense in infected oil palms.  

However, the present study hopes to advance an indirect approach in conciliating 
early detection of G. boninense infections in oil palms, by considering secondary 
metabolites (SMs) excreted during the attack of the lethargic fungi.  The detection of 
these SMs is crucial to the early detection of G. boninense, the causative fungal of 
basal stem rot (BSR) disease in oil palms. These metabolites are often excreted by 
the oil palms as defensive soldiers whenever the pathogenic fungi launch a morbid 
attack on the economic trees. One of the SMs produced by the plants during such 
invasion within 24 hours of attack is quinoline. 

1.3 Objective of the study 

The focal point of this study is to develop a simple, efficient and cheap electrode 
system for the detection of secondary metabolites in G.boninense infected oil palms. 
This implies an indirect early detection of the troublesome fungus. The detection 
system consists of screen printed carbon electrode modified with nanohybrid 
materials, namely gold nanoparticles activated multi-walled carbon nanotubes 
(AuNPs-aMWCNTs) and chitosan activated multi-walled carbon nanotubes 
(ChTSNPs-aMWCNTs).  The analytical performance of the developed system in the 
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detection of quinoline and secondary metabolites in both healthy and G.boninense
infected leaf and root extracts of oil palm will be investigated.  

However, the general objective of this study is to develop an electrochemical sensor 
for the detection of secondary metabolite quinoline in G. boninense infected oil 
palms. The specific objectives of the present study are: 

i. To prepare and characterize surface modifiers such as the gold nanoparticle, 
nanocomposites (AuNPs-aMWCNTs and  ChTSNPs-aMWCNTs) and to 
modify the electrode and optimize the operating conditions of the modified 
electrode 

ii. To carry out the electrochemical characterization of the developed electrode for 
quinoline detection using cyclic voltammetry 

iii. To carry out the electrochemical characterization of the sensor for secondary 
metabolite detection in roots and leaves extracts from healthy and infected oil 
palms using linear sweep voltammetry 

iv. To verify the on-site efficacy of the sensor by carrying out the characterized 
detection using developed electrode in the main plantation 6-months old oil 
palms  
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