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SYNTHESIS AND CHARACTERIZATION OF GADOLINIUM AND  
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OXIDE NANOCOMPOSITES FOR THERAPEUTIC AGENT DELIVERY 

By 

MUHAMMAD SANI USMAN 

July 2018 

Chairman: Professor Mohd Zobir bin Hussein, PhD 
Faculty:        Institute of Advanced Technology 

BSTRACT 

Multimodal delivery system (MDS) or theranostic delivery system (TDS) is still 
at its infancy. In this work, the concept of MDS was employed, where 
magnesium/zinc aluminium-layered double hydroxides (Zn/Mg-Al LDH) and 
graphene oxide (GO) were used as nanocarriers (host) to intercalate and 
adsorb therapeutic agents (chlorogenic acid, prochatetuic acid and gallic acid), 
and contrast agents; gadolinium (Gd) as well as gold nanoparticles (AuNPs) 
as guest molecules. The Gd contrast agent was used as the main contrast 
agent for magnetic resonance imaging (MRI) and the AuNPs served as 
supporting contrast agent.  

The therapeutic and contrast agents were used to develop various the LDH 
and GO-based nanocomposites. The agents were developed based on ion 
exchange interaction in the LDH and non-covalent π-π stacking bonding and 
OH/COOH hydrogen bonding in the GO. The synthesis routes adopted were 
the Hummer’s modified method for GO and co-precipitation for LDH. The 
mechanism and physico-chemical properties of the nanocomposite formation 
were studied via characterization processes, such as transmission electron 
microscopy (TEM) and field emission scanning electron microscopy (FESEM), 
which were used for shape, size and morphological studies. Fourier 
transformed-infrared spectroscopy (FTIR) and Raman spectroscopy were 
used for chemical interaction studies. Inductive coupled plasma emission 
spectroscopy (ICP‒ES), carbon, hydrogen, nitrogen and sulphur analysis 
(CHNS) and energy-dispersive X-ray (EDS) were used to study the 
composition as well as purity of the samples. The crystallinity and phase 
change was studied with X-ray diffraction (XRD) and the ultra violet – visible 
spectroscopy (UV-Vis) was used for drug release study. The anticancer 
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efficacies of the nanocomposites and the pure phases were evaluated using 
human liver cancer cell lines (HepG2) and mouse fibroblast cell lines (3T3) 
were used in cytotoxicity studies. The inherent signal optimization was done 
on a 3 Tesla MRI machine, to determine the diagnostic properties of the 
nanocomposites.   
 
 
Subsequent amounts of the loaded therapeutic agents were estimated 
between 15-60%, depending on the nanocarrier and the therapeutic agent. All 
the pharmacokinetic releases of the therapeutic agents were best fitted to the 
pseudo-second order kinetic model. The XRD analysis results confirmed the 
drug intercalation in the LDH galleries and adsorption on the GO surface. 
Similarly, the FTIR and Raman spectroscopy confirmed the bonding that 
occurred between the host and guest molecules. CHNS, ICP‒ES and EDX 
equally showed the presence of all the intended compounds and elements in 
the nanocomposites. The AuNPs grown on the LDH and GO nanocomposites 
as observed from TEM and FESEM micrographs were poly-dispersed with 
various shapes and sizes (2-120 nm).  
 
   
The nanocomposites were observed to inhibit growth of HepG2 cells and 
showed less toxic in the 3T3 cell lines.  Preliminary MR imaging contrast 
properties test conducted showed enhanced T1 and T2 signals in the samples 
containing the nanocomposites.   
 
 
Based on the highlighted results, TDS could serve as potential replacement 
for the incumbent toxic anticancer agents, which could be used simultaneously 
in diagnosis.  
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ABSTRAK 
Sistem penghantar multimodal (MDS) atau sistem penghantar teranostik 
(TDS) untuk penghantaran ubat masih di peringkat awal. Konsep sistem 
penghantar multimodal telah digunakan di dalam projek ini di mana 
zink/magnesium dwi-hidrokdsida berlapis (Zn/Mg-Al LDH) dan graphene 
oksida (GO) telah digunakan sebagai ‘nanocarriers’ atau hos. Nanocarriers 
tersebut bertindak sebagai platform untuk interkalasi dan penyerapan agen 
terapeutik (asid klorogenik, asid prochatetuic dan asid gallic) beserta agen 
kontras iaitu; gadolinium (Gd) dan partikel nano emas (AuNPs) sebagai 
molekul tetamu. Agen kontras Gd telah digunakan sebagai agen kontras 
utama untuk pengimejan resonans magnet (MRI) dan nano partikel emas 
bertindak sebagai agen kontras sokongan. 
 
 
Agen-agen terapeutik dan kontras tersebut telah digunakan untuk mensintesis 
pelbagai nanokomposit dwi-hidrokdsida berlapis (LDH) dan nanokomposit 
graphene oksida (GO). Agen-agen tersebut telah disintesis berasaskan 

- katan 
hydrogen OH/COOH di dalam GO. Kaedah sintesis yang telah digunakan 
adalah kaedah Hummer diubahsuai untuk GO dan kaedah pemendakan 
bersama untuk LDH.  Mekanisma formasi dan ciri-ciri fiziko-kimia 
nanokomposit telah dikaji menggunakan pelbagai kaedah pencirian. 
Mikroskopi transmisi electron (TEM) dan mikroskopi imbasan elektron 
pemancaran medan (FESEM) digunakan untuk kajian bentuk, saiz dan 
morfologi. 
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Spektroskopi transformasi Fourier inframerah (FTIR) dan spektroskopi Raman 
digunakan untuk kajian interaksi kimia. Spektrometri pancaran plasma 
gandingan aruhan (ICP-EOS), analysis unsur CHNS dan pengimbas serakan 
tenaga sinar X (EDX) turut digunakan untuk mengkaji komposisi dan ketulenan 
sampel. Kristaliniti dan perubahan fasa dikaji menggunakan pembelauan sinar 
X (XRD), seterusnya spektroskopi ultraungu tampak (UV-VIS) digunakan 
untuk kajian pelepasan ubat. Kesan anti-kanser nanokomposit dan fasa tulen 
telah dinilai menggunakan sel kanser hati manusia (HepG2) dan kajian 
sitotoksisiti dijalankan menggunakan sel fibroblast tikus (3T3). 
Pengoptimuman isyarat yang wujud telah dilakukan menggunakan mesin MRI 
3 Tesla untuk menentukan ciri diagnostik nanokomposit yang telah disintesis. 
 
 
Jumlah agen terapeutik yang telah dimuatkan di dalam hos dianggarkan 
antara 15 – 60% berdasarkan nanocarrier dan agen terapeutik yang 
digunakan. Pelepasan farmakokinetik untuk semua agen terapeutik adalah 
didapati mengikut model kinetik tertib pseudo kedua. Keputusan XRD 
menunjukkan ubat telah diinterkalasi di dalam LDH dan diserap di permukaan 
GO. Keputusan FTIR dan spektroskopi Raman turut menunjukkan ikatan 
antara hos dan molekul tetamu. Analisis CHNS, ICP-EOS dan EDX semua 
menunjukkan kehadiran setiap elemen dan sebatian yang dikehendaki di 
dalam nanokomposit. AuNPs yang disintesis di atas nanokomposit LDH dan 
GO telah dianalisis melalui TEM dan FESEM dan didapati terdiri daripada 
pelbagai bentuk dan saiz (2 – 20nm). 
 
 
Nanokomposit diperhatikan telah menghalang pertumbuhan sel HepG2 dan 
adalah didapati kurang toksik terhadap sel 3T3. Ujian awal ciri kontras 
pengimejan resonans magnet menunjukkan peningkatan isyarat T1 dan T2 di 
dalam sampel yang mengandungi nanokomposit. 
 
 
Berdasarkan keputusan yang telah diketengahkan, TDS menggunakan 
nanokomposit berasaskan Zn/Mg LDH atau GO berpotensi untuk 
menggantikan agen antikanser toksik yang sedia ada dan pada masa yang 
sama  turut boleh digunakan untuk tujuan diagnosis.  
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

1.1  Background  

 

The concept of “nanotechnology” was first introduced by an American physicist 
known as Richard Feynman as far back as 1959 [1, 2]. The concept of 
Nanotechnology is still being utilized in various fields of science and other areas 
of researches, such as nanomedicine, despite age of its inception. As a matter 
of fact, new research areas such as theranostics, that are currently emerging 
are based on nanotechnology theory. Nanotechnology is a simple term in any 
area of science or technology that involves the use of materials within the 
nanoscale dimensions (nanomaterials).  
 
 
Nanomaterials are generally considered materials with at least a dimension 
within the nanoscale. The generally accepted nanoscale is 1-100 nm [3].  
 
 
1.2  Nanomedicine  

 
Nanomedicine is considered as any field or area of nanotechnology that is 
applied to prevent or treat human diseases.  "Nanomedicine" was first reported 
by Drexler et al., 1991 [4]. Nanomedicine is vast and covers a wide range of 
research areas, from materials to engineering, so long the materials used are 
within the nanoscale [5]. One of the most promising areas of nanomedicine is 
in novel therapeutics and drug delivery systems, which has reached the level 
of clinical in some areas of the advanced world [6-8]. Nevertheless, the use 
nanotechnology in multifunctional delivery for targeting of specific diseases or 
multiple diseses across biological barriers is still at its infancy stage. 
Consequently, there is yet to be an established framework for administering 
dose for nanomaterials-based drug [9].   
 
 
1.3  Nanodelivery Systems 

 
Nanodelivery system refers the use of nanomaterials or nanostructured as 
delivery agents for materials, mainly therapeutic agents, diagnostic or the 
combination of both (theranostic), and other food bioactives [10].  The system 
offers an opportunity for stability, solubility improvement and control, 
bioavailability as well as reduction in toxicities of therapeutic agents [11, 12]. 
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Multimodal or multifunctional nanodelivery systems are very much at early 
stage. The system encompasses therapeutic and diagnostic agents with 
morethan one imaging applications [13]. As mentioned earlier, the most 
important aspect of nanoscience in nanomedicine is the area of drug delivery; 
the purpose of drug targeting is to enable site-specific delivery of the drugs, 
which would help in doing away with unwanted side-effects. The nanocarrier 
can easily be used in drug dosage control since the drugs will be delivered to 
a specific target. Lately, nanotechnology is being applied in the simultaneous 
diagnosis and treatment of cancer related diseases in theranostic delivery 
systems [14]. The system is derived from the wide knowledge of molecular 
science of human body. The therapeutic agents used in this work are listed 
below: 
 
 
Gallic acid (GA) is naturally occurring polyhydroxyl phenolic compound that can 
be found in different varieties of fruits. It has medicinal and disease preventive 
properties, such as anti-inflammatory, antibacterial and antiviral. The natural 
product has anticancer properties, which makes it good candidate for cancer 
chemotherapy. [15, 16]. However, the anticancer properties of the plant-based 
material is yet to be fully explored. 
 
 
Protocatechuic acid (PA) is a natural product of numerous medicinal plants 
sources. The plants include hibiscus sabdariffa L, hypericum perforatum L and 
Ginkgo biloba L, whereas the pharmacological properties of the protocatechuic 
acid include, anti- antimicrobial [17], inflammatory [18], cardioprotective and 
antigenotoxic [19], antimutagenic [20], and most importantly anticancer [21] 
and antitumor [22]. The therapeutic agent has potentials of being a worthy 
anticancer agent. 
 
 
Chlorogenic acid (CA) is a phenolic compound that is naturally occurring and 
originates from coffee. Chlorogenic acid has medicinal properties such as 
antioxidants and anticancer properties, antiaging and neurodegenerative 
diseases protective properties [23]. 
 
 
1.4  Problem Statement 

 

Cancer disease remains a major cause of mortality globally. The deaths 
associated with cancer are increasing yearly, as reported by the world health 
organisation (WHO) [24]. Although there are various methods of cancer 
treatment, chemotherapy remains the most utilised form of cancer treatment. 
This could be due to the availability of varieties of chemotherapeutic agents. 
However, reports have indicated that most of the chemotherapeutic agents are 
toxic and had caused various unwanted side-effects, such as vomiting and hair 
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loss. This is understandably due to non-selective target of cells by the 
anticancer agents. Thus, the use of these agents poses a threat to human 
health. 
 
 
All cancer treatments require prior diagnosis, which are mostly done using 
molecular imaging techniques. Magnetic resonance imaging (MRI) is often 
employed for this purpose. However, MRI contrast agents are administered to 
patients prior to the imaging. The contrast agents have also been reported to 
be toxic even in their chelate forms and less toxic in nanocomposites form.  
A possible solution to this problem is to deliver the therapeutic agents to the 
cancer cells, which in turn could protect the healthy cells and by extension will 
eliminate the side-effects. Although some researchers have tried to develop 
anticancer drug and therapeutic agent’s delivery systems via nanocarriers, a 
universal multi delivery system is still lacking. A holistic delivery system were 
both the therapeutic and the contrast agents can be delivered to the cancer 
cells region will be more effective in the treatment of cancer. Therefore, this 
work is focused on developing a theranostic delivery system where the 
diagnostic and the therapeutic agents can be delivered using different nano 
delivery agents.   
 
 
1.5  Hypothesis 

 

Theranostic nanocomposites will reduces the problem of toxicities of 
therapeutic and contrast agents towards healthy cells and will provide better 
cancer diagnosis and treatment than the current toxic chemotherapy treatment 
and diagnosis with contrast agents. Better yet, it will provide the option of 
holistic and more precise approach towards treatment of cancer. 
 
 
1.6  Scope of Study 

 

The inspiration of this study is derived from the fact that anticancer agents 
currently been used in chemotherapy are toxic and harmful to normal human 
cells. The MRI contrast agents used in cancer diagnosis are equally toxic to 
certain extent. This project is aimed at producing unique nanocomposites that 
will simultaneously deliver both the therapeutic and diagnostic agents to the 
cancer sites. The theranostic nanocomposites in this work were developed 
using different nanocarriers, therapeutic agents, and contrast agents. The 
nanocomposites were tested with cancer and normal cell lines as well as with 
MR imaging equipment. The nanocomposites could serve as potential 
theranostic anticancer agents for more efficient and less toxic cancer treatment 
than the incumbent chemotherapy treatment.  
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1.7  Objectives  

 

The purpose of this study is to develop theranostic delivery systems for 
simultaneous delivery of anticancer and MRI contrast agents. The systems will 
integrate various natural occurring phenolic therapeutic agents [gallic acid 
(GA), protocatechuic acid (PA) and chlorogenic acid (CA)], and diagnostic 
agents [gadolinium (Gd) and gold nanoparticles (AuNPs)] loaded on Zn/Mg-Al 
layered double hydroxide (LDH) and Graphene oxide (GO) nanocarriers. The 
theranostic systems have the capability to enhance MRI contrast via the T1 
signals as well as to deliver the therapeutic agents simultaneously. The general 
toxicities, if any, of the contrast and therapeutic agents is expected to be 
reduced in the nanocomposite form.  
 
 
The specific objectives for the theranostic delivery systems development are 
highlighted below:  
 
 

i. To prepare and incorporate the various therapeutic and contrast agents 
into the nanocarriers. 

ii. To characterize the physico-chemical properties of the synthesized 
nanocomposites loaded with the various therapeutic agents using 
various characterization techniques. 

iii. To study the cytotoxicity and therapeutic agents release pattern of the 
therapeutic agents loaded nanocomposites. 

iv. To evaluate the anticancer activities of the theranostic nanocomposites. 
 To determine the MRI contrast enhancement properties of the prepared 
theranostic nanocomposites. 
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