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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Doctor of Philosophy 

Abstract 

PREPARATION AND CHARACTERIZATION OF ZINC OXIDE AND 

TITANIUM OXIDE POLYETHERSULFONE HYBRID FILM 

PHOTOCATALYSTS FOR DEGRADATION OF METHYL ORANGE 

By 

ZUL ADLAN BIN MOHD HIR 

July 2018 

Chair: Associate Professor Abdul Halim bin Abdullah, PhD 

Faculty: Institute of Advanced Technology 

Environmental issues and scarcity of water reserves have led to the development of 

photocatalyst technology to recycle the polluted water. The photocatalyst is usually 

applied in powder form but suffers several drawbacks; (i) agglomeration which led to a 

decrease in photoactivity and (ii) difficult and costly recovery process. These problems 

could be overcome by immobilizing the catalyst on a support. With the aim to provide 

alternative solution to the solid–liquid separation problem, polyethersulfone (PES) was 

chosen as the support due to its stability against radicals produced during photocatalytic 

reaction. This work investigated the physicochemical characteristics of TiO2/PES, 

ZnO/PES and reduced TiO2 (rTiO2)/PES hybrid film photocatalyst prepared via phase 

inversion technique and reported, for the first time, its synergistic contribution in the 

field of photocatalysis. The films were characterized using Scanning Electron 

Microscopy (SEM), Energy Dispersive X-ray (EDX), X-ray Diffraction (XRD), X-ray 

Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and UV-vis 

Diffuse Reflectance Spectroscopy (UV-vis DRS) analyses. XRD, SEM and EDX 

analyses revealed that the TiO2, ZnO and reduced TiO2 (rTiO2) were homogeneously 

dispersed and embedded onto the PES film. XPS and UV-vis DRS results confirmed the 

existence of interstitial site of TiO2 (458.2 and 463.9 eV), ZnO (1021.0 and 1043.8 eV) 

and rTiO2 (456.1 and 461.8 eV) with their respective band gap energy of 3.00, 3.15 and 

2.85 eV. The films exhibited higher surface roughness and enhance hydrophilicity 

compared to PES film alone. The photoactivity of the films was evaluated with respect 

to methyl orange (MO) degradation under both UV and visible light irradiation. 

Emphasis was placed on the effect of catalyst loading, pH, concentration, number of 

films and recyclability study. The best film photocatalysts displayed pseudo first-order 

kinetics with almost 80% and 30% for PES–TiO2 (13 wt%), 100% and 56% for PES–

ZnO (17 wt%), 76% and 55% for PES–rTiO2 (13 wt%) of MO removal under original 

condition against UV and visible light irradiation, respectively. A complete removal of 

MO was achieved at pH 2.0 for both PES–TiO2 (13 wt%) and PES–rTiO2 (13 wt%) and 

pH 5.8 for PES–ZnO (17 wt%). The degradation percentage decreased with increasing 

initial concentration of MO (5–20 mg/L) but increased with increasing number of films. 

The major active species were found to be •O2
– for both PES–TiO2 (13 wt%) and PES–

rTiO2 (13 wt%) and h+ for PES–ZnO (17 wt%). The best films can be recycled for up to



© C
OPYRIG

HT U
PM

ii 

 

five times while retaining its stability and degradation efficiency without being subjected 

to any regeneration process. The degradation of palm oil mill effluent (POME) was 

monitored through chemical oxygen demand (COD) analysis with degradation 

percentage of 20%, 27%, 12% and 12%, 18%, 15% under UV and visible light 

irradiation, respectively with some reduction in American Dye Manufacturers’ Institute 

(ADMI) colour values. 
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Abstrak 

 

PENYEDIAAN DAN PENCIRIAN FOTOMANGKIN FILEM HIBRID 

POLIETERSULFON ZINK OKSIDA DAN TITANIUM OKSIDA BAGI 

DEGRADASI METIL OREN 

 

 

Oleh 

 

ZUL ADLAN BIN MOHD HIR 

 

Julai 2018 

 

 

Pengerusi: Profesor Madya Abdul Halim bin Abdullah, PhD 

Fakulti: Institut Teknologi Maju 

 

 

Isu-isu alam sekitar dan ketandusan sumber air telah membawa kepada pembangunan 

teknologi fotomangkin untuk mengitar semula air tercemar. Fotomangkin tersebut 

kebiasaannya digunakan dalam bentuk serbuk tetapi mengalami beberapa kelemahan; (i) 

penggumpalan yang membawa kepada penurunan fotokeaktifan dan (ii) proses 

pemulihan yang mahal dan sukar. Permasalahan ini boleh diatasi dengan memegunkan 

mangkin tersebut keatas satu sokongan. Dengan tujuan untuk memberikan penyelesaian 

alternatif kepada masalah pemisahan pepejal–cecair, polietersulfon (PES) telah dipilih 

sebagai sokongan kerana kestabilannya terhadap radikal yang terhasil semasa tindak 

balas fotopemangkinan. Kerja ini menyiasat pencirian fizikokimia fotomangkin filem 

hibrid TiO2/PES, ZnO/PES dan TiO2 terturun (rTiO2)/PES yang disediakan melalui 

teknik fasa penyongsangan dan dilaporkan, buat kali pertama, sumbangan sinergisnya 

dalam bidang fotopemangkinan. Filem-filem tersebut dicirikan menggunakan analisa 

mikroskopi pengimbasan elektron (SEM), serakan tenaga sinar-X (EDX), pembelauan 

sinar-X (XRD), spektroskopi fotoelektron sinar-X (XPS), mikroskopi daya atom (AFM) 

dan spektroskopi kepantulan resap UV-vis (UV-vis DRS). Analisa XRD, SEM dan EDX 

mendedahkan bahawa TiO2, ZnO dan TiO2 terturun (rTiO2) diserakkan secara homogen 

dan tertanam keseluruh filem PES. Keputusan XPS dan UV-vis DRS mengesahkan 

pembentukan ruang–antara TiO2 (458.2 and 463.9 eV), ZnO (1021.0 and 1043.8 eV) dan 

rTiO2 (456.1 and 461.8 eV) dengan tenaga jurang jalur masing-masing adalah 3.00, 3.15 

dan 2.85 eV. Filem-filem tersebut memperlihatkan kekasaran permukaan yang lebih 

tinggi dan meningkatkan hidrofilik berbanding filem PES sahaja. Fotokeaktifan filem–

filem yang telah disediakan dinilai dengan degradasi larutan metil oren (MO) di bawah 

kedua-dua penyinaran cahaya UV dan nampak. Penekanan diberikan pada kesan muatan 

pemangkin, pH, kepekatan, bilangan filem dan kajian kitar semula. Filem pemangkin 

terbaik memaparkan kinetik tertib pertama pseudo dengan hampir 80% dan 30% untuk 

PES–TiO2 (13 wt%), 100% dan 56% untuk PES–ZnO (17 wt%), 76% dan 55% untuk 

PES–rTiO2 (13 wt%) penyingkiran MO dalam keadaan asal masing-masing terhadap 

penyinaran cahaya UV dan nampak. Penyingkiran lengkap MO dicapai pada pH 2.0 

untuk kedua-dua PES–TiO2 (13 wt%) and PES–rTiO2 (13 wt%) dan pH 5.8 untuk PES–

ZnO (17 wt%). Peratusan degradasi berkurangan dengan peningkatan kepekatan awal 

MO (5–20 mg/L) tetapi meningkat dengan peningkatan bilangan filem. Spesis aktif 
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utama yang ditemui adalah •O2
- untuk kedua-dua PES–TiO2 (13 wt%) and PES–rTiO2 

(13 wt%) dan h+ untuk PES-ZnO (17 wt%). Filem–filemterbaik boleh dikitar semula 

sehingga lima kali sementara mengekalkan kestabilan dan kecekapan degradasi tanpa 

dikenakan sebarang proses pemulihan semula. Degradasi efluen kilang minyak kelapa 

sawit (POME) dipantau melalui analisa keperluan oksigen kimia (COD) dengan 

peratusan degradasi sebanyak 20%, 27%, 12% dan 12%, 18%, 15% masing-masing di 

bawah penyinaran cahaya UV dan nampak, dengan beberapa pengurangan dalam nilai-

nilai warna Institut Pengilang Pewarna Amerika (ADMI). 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Research Background 

 

 

Presently, modern societies around the world are facing serious environmental problems 

(water and air pollution) due to rapid industrial development. According to The United 

Nation World Water Development Report in 2017 (UNESCO, 2017), small and medium-

sized enterprises (SMEs) and informal industries typically discharge their wastewater to 

municipal systems or directly to the environment. Following the appropriate standard 

operating procedures (SOPs), the related industries shall comply with the regulations to 

avoid penalties, which means that, the wastewater must be adequately treated before 

being released to the water bodies. Unfortunately, some industries may find it to be easier 

to pay the fines rather than to invest in wastewater treatment plant as to comply with 

regulations. There are also some cases where the occurrence of pollutants in the aquatic 

environments are sourced by hospital effluents, landfill leachates, livestock and chemical 

runoff from industries into water channels which further exacerbate the quality of water 

(Luo et al., 2014; UN-Water, 2015). 

 

 

Besides, the use of pharmaceutical and personal care products such as fragrances, 

sunscreens, artificial sweeteners, antibiotics and pesticides in our daily activities could 

possibly worsen the existing environmental problems. These wastes are continuously 

release from these sources and drift into water bodies (Rodriguez-Narvaez et al., 2017). 

Since 1980 and 1990’s, water pollution remediation has become a high priority due to 

the health risk attributed by the polluted water in which millions of people rely on 

freshwater from the rivers for cleaning and household purposes. The water systems in 

both developed and developing countries is also struggling to confront with the growing 

pressure from the discharge of hazardous chemicals and toxic industrial wastes which 

considered as the core pollutants responsible for the pollution of water. Without adequate 

water treatment process, this poses a greater risk to public health, food security and 

economy growth while cultivating the unhealthy lifestyle affecting the poor, women and 

children (UNEP, 2016). 

 

  

Up to this point, several conventional methods have been employed to recycle and use 

the industrial wastewater. However, most of these methods are concentrating on the 

management and removal of pollutants by using physical, chemical, electrochemical, 

biological, filtration, electrical and chemical oxidation. Filtration and sedimentation are 

physical methods used to treat municipal wastewater, industrial wastewater and drinking 

water. In sedimentation method, settling of suspended particles is achieve gravitationally. 

Filtration technology involves removals via microfiltration, ultrafiltration, nanofiltration 

and reverse osmosis. However, it is not feasible for treating wastewater because of its 

high working pressures, significant energy consumption, high cost of membrane and a 

relatively short membrane life. Reverse osmosis is effective for discolouring and 

desalting of the most diverse range of wastes, and hence it is employ for recycling the 

wastewater. Biological treatment (aerobic, anaerobic and combined aerobic–anaerobic) 
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is the most common and widespread technique used in wastewater treatment. It offers 

great advantages by being relatively inexpensive, having low running costs and the end 

products are not being toxic. However, this process depends on the presence of specific 

microorganism or potential bacteria to mitigate targeted chemicals and it needs longer 

time for the bacteria to grow before degradation process takes place. Considering several 

drawbacks from these methods, there is a need to develop more effective water treatment 

technologies to remove the persistent organic compounds from wastewater. 

Alternatively, the development of this new method could possibly reduce the problem of 

water shortages and the deterioration of water sources globally.  

 

 

In recent times, treatment of wastewater by means of semiconductor photocatalysis has 

brought great attentions to the scientist worldwide.  This technique, one of the Advanced 

Oxidation Processes (AOPs), is believed to be a beautiful approach in water treatment 

process with best prospect and advance development. It converts the pollutants into 

harmless by products such as water, carbon dioxide and other inorganic ions via 

photocatalytic oxidation process. When properly developed, the technique could mitigate 

the pollutants completely and effectively. This method normally works at or near ambient 

temperature and pressure to degrade organic pollutants present in various kind of 

industrial wastewater (Ribeiro et al., 2015). Photocatalysis utilizes cheaply available 

non-toxic semiconductors such as titanium dioxide and zinc oxide. Most AOPs are 

energy intensive which use various combinations of hydrogen peroxide, ozone, and UV 

light to generate •OH radicals that are responsible for the complete oxidation of  a broad 

range of organic pollutants in the wastewater quickly and non-selectively (Oturan and 

Aaron, 2014; Deng and Zhao, 2015). However, the current trend is shifted to the more 

convenient ways of producing in-situ oxidative radical species via heterogeneous 

photocatalysis. In this context, the process is characterized by the formation of •OH and 

•O2
– radicals on the surface of the semiconductor photocatalyst at the time of treatment 

(Asghar et al., 2015). The advantage of rapid formation of the radical species would 

induce direct interaction between the catalyst surface and the pollutants, which 

eventually lead to the mineralization of the pollutants into harmless species such as CO2 

and H2O molecules, through a series of redox reaction.  

 

 

1.2 Problem Statement 

 

 

Pollution of water bodies by industrial effluence containing some lethal organic 

compounds even at a low concentration brought a rush of threats to human health and 

become a matter of worldwide distress (UN-Water, 2015). The removal of the pollutants 

is challenging due to its unique chemical and physical characteristics. However, 

photocatalysis has been proposed as an effective method to combat the toxic and harmful 

pollutants in the wastewater using semiconductor oxide as photocatalyst. This system 

has been a promising technique since it is safe and environmental friendly, low cost, 

requires the use of efficient light-harvesting and non-toxic semiconductor materials such 

as ZnO and TiO2 as the photocatalyst to degrade the organic pollutants (Ribeiro et al., 

2015).  

 

 

The photocatalyst is typically being applied in suspension mode during water 

remediation process. Nonetheless, this technique suffered from some technical aspects 
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that impeded its industrial application, i.e., the ineffective utilization of ultraviolet or 

visible light due to agglomeration, lower adsorption performance for hydrophobic 

pollutants, inhomogeneous dispersion in aqueous suspensions and post-treatment 

recovery of the nanoparticles after the degradation process in regard to economic, health 

and safety concern. Post-treatment recovery is both costly and time consuming. This is 

because catalyst requires longer settling time and effective solid–liquid phase separation 

techniques (Singh et al., 2013; Dong et al., 2015). While in most cases, recycling the 

powder photocatalyst have significantly reduced its performance due to loss of 

photocatalyst particles during separation process and thus creating secondary pollution 

(Zheng et al., 2017).  

 

 

Previous study shows that the separation of the powder photocatalyst from the organic 

substrate can be accomplished by means of immobilization on a support or magnetic 

approach. Some researchers immobilized the photocatalyst onto various support such as 

glass, stainless steel, beads, etc. Although these studies provide a solution to the solid–

liquid separation issue, the photoactivity of the supported photocatalyst is usually 

reduced due to the reduction of surface active sites and the hindrance in light absorption 

caused by the inactive support. Moreover, the supported photocatalyst could possible 

experience some leaching during the photoreaction. Another attempt was carried out by 

preparing composite photocatalyst comprises of a magnetic core and semiconductor 

oxide, making the powder photocatalyst recoverable due to its magnetic properties. This 

type of composite photocatalyst is normally dependent on the magnetic core size which 

affect the magnetic properties of the materials. Besides, the degradation performance 

also lowers as compared to unrestricted powder photocatalyst in which the direct 

deposition of photocatalyst materials onto the surface of the magnetic particles would 

stimulate high levels of photo-dissolution of the magnetic core when its surface is 

irradiated. The composite magnetic photocatalyst is also still in powder form which make 

them difficult to be retrieved for a large scale practice. Thus, both of these immobilization 

methods still suffer several drawbacks which impractical for industrial scale water 

remediation process (Dong et al., 2015).  

 

 

Driven by the growing need of emerging hybrid photocatalyst and effective separation 

properties for continuous water remediation process, the immobilization of photocatalyst 

onto polymeric materials is now becoming a topic of priority. The recent development 

of microporous and mesoporous polymeric materials have attracted considerable 

attention as a catalyst support due to their outstanding chemical and thermal resistance, 

high mechanical stability for long term period, good affinity for anchoring the 

nanoparticles, as well as high durability against the oxidative condition of the 

photocatalyst–substrate upon light irradiation (Singh et al., 2013; Zheng et al., 2017). 

All these features are the characteristics for a good  polymer support that are easily 

applicable for industrial water treatment at reduced cost technologies. Several polymers 

including polyimide (PI), polysulfone (PSf), polyvinylidene fluoride (PVDF), 

polypropylene (PP), polyacrylonitrile (PAN), and cellulose acetate (CA) have been 

introduced as the support for semiconductor photocatalyst (Bet-moushoul et al., 2015; 

AL-Hobaib et al., 2016; Nor et al., 2016). However, earlier studies have demonstrated  

the suitability  of  polymer resin such as polyethersulfone (PES) as a support material in 

photocatalyst as it is stable under UV exposure and is not degraded by hydroxyl radicals 

formed along the photocatalysis process (Fischer et al., 2015; Mozia et al., 2015). The 

incorporation of nanoparticles inside the PES matrix simultaneously improved its 
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physicochemical properties such as surface roughness, hydrophilicty, porosity, thermal 

and mechanical strength.  

 

 

Although a large amount of literature on PES–semiconductor oxide mixed matrix 

membranes is available, they only focused on the application related to filtration and 

antifouling studies (Yin and Deng, 2014). Hence, it is important to investigate the 

physicochemical characteristics of hybrid film photocatalyst incorporating high amount 

of stable TiO2, ZnO and reduced TiO2 (rTiO2) into PES via phase inversion technique 

and its synergistic contribution especially in the field of photocatalytic reaction has not 

previously been reported. Therefore, this research has continued focuses on the 

photoreaction of the film influence by some operational variables which include 

photocatalyst loading, initial pH, initial concentration, different types of light (UV and 

visible), reusability and radical trapping investigation over methyl orange degradation. 

The advantages of this approach cover several aspects such as cost and energy effective 

in terms of its cut–down size for photoreactor installation and practicability for the 

removal of pollutant in real wastewater. Hypothetically, the synergistic effect between 

the polymer and photocatalyst materials would simultaneously increase the degradation 

efficiency and provides an alternative solution to the solid–liquid phase separation 

problem.  

 

 

1.3 Research Objectives 

 

 

The main aim of this study is to prepare and characterize PES–nanoparticles hybrid film 

photocatalysts for easier solid–liquid phase separation. This study also concerned with 

the physicochemical properties of the prepared photocatalysts and its feasibility to 

degrade methyl orange (MO) dye and palm oil mill effluent (POME) under UV and 

visible light irradiation. To achieve the main aim, there are three research objectives have 

been addressed as follows: 

 

1. To investigate the physicochemical characteristics of PES–TiO2, PES–ZnO and 

PES–rTiO2 film photocatalysts prepared via phase inversion method. 

2. To evaluate the catalytic activity, degradation rate and kinetic study of the 

prepared film photocatalyst in degrading methyl orange (MO) solution under UV 

and visible light irradiation under the experimental conditions of the study. 

3. To test the photocatalytic performance of the best film photocatalyst in the 

degradation of POME.  

 

 

1.4 Scope of Research 

 

 

The scope of this research covers the preparation of hybrid film photocatalyst of PES–

TiO2, PES–ZnO and PES–rTiO2 via phase inversion technique. Subsequently, the surface 

morphology and physicochemical property of PES–nanoparticle hybrid film 

photocatalysts were characterized using Scanning Electron Microscopy (SEM), Energy 

Dispersive X-ray analyzer (EDX), X-ray Diffraction Analysis (XRD), X-ray 

Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and UV-vis DRS 

Spectroscopy analyses. The percentage of porosity (ε) of the prepared film photocatalyst 
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was determined by a gravimetric method.  The performance of the prepared 

photocatalysts was evaluated by degradation of MO solution under both UV and visible 

light irradiation at room temperature and pressure. The effect of some variables such as 

the photocatalyst loading, initial pH, initial concentration, number of films, type of lights 

and recyclability study during the photocatalytic degradation process were also carried 

out.  The total organic compound (TOC) analysis was employed to monitor the 

degradation of MO by determining the residual total carbon in the dye sample. In the 

final stage, the best film photocatalysts were tested in the degradation of palm oil mill 

effluent (POME). The progressive degradation and decolourization of the POME was 

monitored by measuring the chemical oxygen demand (COD) and the American Dye 

Manufacturers’ Institute (ADMI) colour values.
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