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Microwave absorbers generally consist of a filler material inside a polymer 
matrix. The filler contains one or more elements that do most of the absorbing.  
Absorbers are used in a wide range of applications to eliminate stray or 
unwanted radiation that could interfere with a system’s operation. Ferrites is the 
most common shielding material in the development of absorbing composites. 
However, ferrites are heavy, corrosive, non-biodegradable and expensive. This 
project investigates the application of oil palm empty fruit bunch fibres (OPEFB) 
as an alternative to ferrite fillers for microwave absorbing applications with PLA 
as the host matrix. OPEFB offer various advantages such as low cost, low 
density, better thermal, insulating properties and biodegradability. Also PLA has 
significant advantages including ease of fabrication, zero toxicity, 
biodegradability, high mechanical strength and thermal plasticity. Different 
compositions of filler were doped and blended to produce OPEFB-PLA and 
OPEFB-PLA-Fe2O3 composites via Brabender Plastograph EC blending 
machine operating at 170°C with rotor speed of 50 rpm for 20 minutes. The total 
mass of each blended composite was 45g and contained 200 μm size OPEFB 
fibres. The crystalline structure of the composites was analyzed using X-ray 
diffraction (XRD) machine. The elemental compositions were examined using 
Scanning Electron Microscopy (SEM), energy dispersive X-ray analysis (EDX) 
and Fourier transform infrared (FTIR) techniques. Thermal analyses were 
carried out using TGA and DTG. The dielectric properties and S-Parameters, 
were measured using a PNA (N5227) Network Analyzer from 8GHz to 12 GHz 
for rectangular waveguide and 0.01 GHz to 12 GHz for microstrip at room 
temperature. The theoretical calculations of the S-Parameters coefficients of the 
samples were computed using Finite Element Method (FEM) in conjunction with 
the COMSOL software. The comparison between the measured and calculated 
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scattering parameters was also investigated.  The permittivity of the composites 
was found to be dependent on the mixing ratio between OPEFB, PLA, and 
Fe2O3. At 10 GHz in the X-band frequencies, the dielectric constants of OPEFB-
PLA and OPEFB-PLA-Fe2O3 composites were found to be between 3.04 to 3.36 
and 3.14 to 3.7 respectively while the loss factor values were from 0.3 to 0.4 and 
0.3 to 0. 346. Both the dielectric constant and loss factor of the OPEFB-PLA 
OPEFB-PLA-Fe2O3 composites increased with increasing percentages of 
OPEFB and Fe2O3 fillers.  Furthermore, the results obtained from the scattering 
parameters |S11| and |S21| were used to determine the absorption loss of the 
different percentages of OPEFB-PLA and OPEFB-PLA-Fe2O3 composites 
samples, the absorption loss were found at 10 GHz to be from 0.049 to 0.105 
and 0.045 to 0.062 respectively. Finally, the effect of the different percentages 
of OPEFB and Fe2O3 filler on the electric field was investigated by visualizing 
the electric field distribution pattern of the OPEFB-PLA and OPEFBPLA-Fe2O3 
composites samples placed in the rectangular waveguide and placed on the top 
of microstrip using finite element method. 
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FABRIKASI DAN CIRI-CIRI KOMPOSIT ASID POLILAKTIK DIPERKUATKAN 
DENGAN FIBER KELAPA SAWIT DAN FERUM OKSIDA UNTUK 

KEGUNAAN MIKROGELOMBANG 

Oleh 

DAW MOHAMMAD ABDALHADI 

Mei 2018 

Pengerusi :   Profesor Madya Zulkifly Abbas, PhD 
Fakulti :   Sains 

Penyerap mikrogelombang kebiasaanya mempunyai bahan pengisi di dalam 
polimer matrik. Pengisi mempunyai satu atau lebih elemen yang melakukan 
penyerapan. Penyerap digunakan dalam banyak aplikasi untuk menghilangkan 
radiasi sesat atau yang tidak diperlukan daripada menganggu operasi sistem. 
Besi oksida (Fe2O3) adalah bahan pelindung yang biasa digunakan di dalam 
perkembangan komposit penyerap. Walau bagaimanapun besi oksida adalah 
berat, menghakis, tidak biodegrasi dan mahal.  Projek ini membincangkan 
aplikasi komposit serat tandan kosong (OPEFB) sebagai alternatif pengisi besi 
oksida untuk aplikasi penyerapan mikrogelombang dengan asid polilaktik (PLA) 
sebagai hos matrik. OPEFB mempunyai banyak kelebihan seperti murah, 
densiti yang rendah, terma yang baik, berciri penebat dan boleh biodegradasi. 
PLA juga mempunyai banyak kelebihan termasuk mudah untuk difabrikasi, tiada 
toksik, boleh biodegrasi, kekuatan mekanikal yang tinggi dan terma keplastikan. 
Pengisi dengan komposisi yang berbeza telah di didopkan dan digaul untuk 
menghasilkan komposit OPEFB-PLA dan OPEFB-PLA-Fe2O3 menggunakan 
mesin penggaul Brabender Plastograph EC pada 170°C dengan kelajuan rotor 
50rpm selama 20 minit. Kesemua jisim komposit adalah 45g dan mengandungi 
serat OPEFB sebesar 200 μm. Struktur Kristal komposit telah diperiksa 
menggunakan mesin pembelahan sinar-X (XRD). Komposisi elemental telah 
diperiksa menggunakan Pencarian Elektron Mikroskopi (SEM), analisis tenaga 
larian sinar-X (EDX) dan teknik pengubah Fourier inframerah (FTIR). Analisis 
terma dilakukan menggunakan TGA dan DTG. Pemalar dielektrik dan 
Parameter-S diukur menggunakan PNA (N5227) Network Analyzer dari 8GHz 
hingga 12 GHz untuk pandu gelombang bersegi empat dan 0.01 GHz hingga 12 
GHz untuk mikrostrip suhu bilik. Teori pengiraan untuk Parameter-S pekali di 
kira melalui Finite Element Method (FEM) dengan perisian COMSOL. 
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Perbandingan diantara pengukuran dan pengiraan parameter penyerakan juga 
diperiksa. Kadar ketulusan komposit juga dijumpai berhubung kait dengan 
nisbah diantara OPEFB, PLA dan Fe2O3. Di frekuensi X pada 10GHz, dielektrik 
pemalar OPEFB-PLA dan OPEFB-PLA-Fe2O3 komposit dijumpai diantara 3.04 
hingga 3.36 dan 3.14 hingga 3.7 masing-masing manakala faktor hilang untuk 
adalah dari 0.3 hingga 0.4 dan 0.3 hingga 0.346. Kedua-dua pemalar dielektrik 
dan faktor hilang untuk OPEFB-PLA dan OPEFB-PLA-Fe2O3 komposit 
bertambah dengan pertambahan nilai OPEFB dan Fe2O3 pengisi. Tambahan 
lagi, keputusan yang didapati dari parameter penyerakan |S11| dan |S21| telah 
digunakan untuk mengira penyerapan yang hilang dalam perbezaan peratusan 
OPEFB-PLA dan OPEFB-PLA-Fe2O3 sampel komposit, nilai penyerapan yang 
hilang di 10 GHz adalah dari 0.049 hingga 0.105 dan 0.045 hingga 0.062 
masing-masing. Akhir sekali, kesan perbezaan peratusan OPEFB dan Fe2O3 
pengisi dalam medan elektrik telah diperiksa dengan mereka medan elektrik 
corak pengedaran untuk OPEFB-PLA dan OPEFB-PLA-Fe2O3 komposit sampel 
yang diletakkan di dalam pandu gelombang segi empat dan yang diletakkan di 
atas microstrip menggunakan finite element method.  
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CHAPTER 1 

1 INTRODUCTION 

The extensive development of electronic equipment and telecommunications 
has led to major concerns about electromagnetic pollution which has risen to a 
level never attained before. This situation has necessitated the continuous 
development of materials which are highly efficient in the inhibition or shielding 
of this undesirable radiation. Electromagnetic shielding is defined as the 
prevention of the propagation of electric and magnetic waves from one medium 
to another by using conducting or magnetic materials (Mu et al. 2015). The 
shielding can be carried out by minimizing the electromagnetic waves passing 
through a system either by reflection of the wave or by absorption and dissipation 
of the radiation power in the material. Theoretically, shielding reduces the 
coupling of electromagnetic waves, electromagnetic fields, and electrostatic 
fields and its effectiveness depends on the type of the material used, its 
thickness, the size of the shielded volume and operating frequency. In the 
industry of aerospace, for example, innovative solutions are needed to shield 
effectively sensitive electronic equipment such antennas from EMI without 
adding much of weight to aircraft. In the past, the problem of EMI was solved by 
isolating the electronic device through some metallic housing. Common metals 
like silver, iron, and aluminum were seen in most of the shields composed of 
metals used at that time. The high strength and conductivity of metals and alloys 
like mu-metal made them an interesting choice for applications such as shielding 
materials especially for shielding from low magnetic fields. The main parts of mu-
metal were copper (5%), iron (14%), nickel (79.5%) and chromium (1.5%). It had 
sufficient ductility and could simply be made into sheets necessary for magnetic 
shields. Also, high permeability in mu-metal provided an avenue for the magnetic 
line of flux around the shielded area. Nonetheless, the disadvantage was that 
the metals were easily susceptible to oxidation or corrosion and so could not be 
utilized for outside applications. The heavyweight and price of the metal shields 
also limit the use of metals as shielding materials (Jagatheesan et al. 2015).  
Nowadays, the most common method of shielding by reflection is the use of 
metallic plates or adsorption by conductive polymers. Polymeric materials have 
also acquired popularity due to their flexibility, light weight, corrosion resistance, 
and lower cost than metals. Currently, metallic materials and polymer 
composites are by far the most commonly used materials. Research has also 
been carried out on the applications of polymer composites loaded with 
conductive fillers, fibres, nanotubes and dispersing particles (X. Chen, Liu, Liu, 
& Pan, 2015). Metals such as copper, gold, and silver have also been widely 
used in shielding. The problems of metal plates mainly focused on the discomfort 
of poor mechanical flexibility owing to the high stiffness, high weight density, and 
high cost. For a typical EM absorbing material, low density, high conductivity, 
strong broadband absorption and excellent thermal stability are the key 
parameters. The mechanism of microwave absorption categorizes the materials 
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into two major sections; dielectric loss materials and magnetically lossy 
materials (Arief, Biswas, & Bose, 2017). 

Ferrites have been used as absorbing materials in various forms for many years 
due to their large magnetic loss and large resistivity. Since the imaginary part of 
the complex permittivity of ferrites is very small, the dielectric loss is almost 
negligible and therefore their absorbing performance mainly depends on the 
magnetic loss (Li et al. 2017) 

The design of an EMI shielding material with some degree of attenuation while 
meeting a set of environmental criteria, maintaining economics and regulating 
shielding have been proposed. The main motivation behind the proper design of 
the shield is to make a product that can conform to International Electromagnetic 
Interference Regulatory Standards. Investigation of new active materials 
applicable as microwave absorbers for electromagnetic interference (EMI) 
shielding of various electronic devices ranks among significant present-day 
activities (Paligova et al., 2004). Several studies have also been carried out to 
develop new microwave absorbing materials with high complex permeability and 
low reflection loss (Luo et al., 2015). 

1.1 Absorbing Composites 

Most conventional composites are supported by polymer as the matrix while 
fillers are the reinforcement’s materials. The fillers are selected according to their 
properties which are based on what is needed from the composite. Many 
commercially produced composites utilize polymer matrix material often called 
a resin solution. There are a lot of different polymers with several broad 
categories and many variations available depending upon the preliminary raw 
ingredients. The most commonly used polymers are polyester, polylactic acid 
(PLA), polycaprolactone (PCL), ester, epoxy, phenol, polyimide, polyamide, 
polypropylene, and others (Pawar et al. 2016). Polymers have a very low 
concentricity of free charge carriers, and thus are non-conductive and 
transparent to electromagnetic radiation. Therefore, they are not appropriate for 
use as shielding for electronic equipment because they cannot protect it from 
external radiation. Also, they cannot prevent the flight of radiation from the 
component. Various fillers can be added to the isolating polymeric matrix to 
obtain different conductivity ranges. Therefore, the type or nature of fillers 
determines the dielectric characteristics of the polymer compound. A polymer 
that is conductive has evolved much interest in the recent past due to their 
excellent flexibility and easy preparation procedures as against conventional 
inorganic semiconductors. They are applied in areas of electronics as flexibility 
conductors and shielding devices, especially from electromagnetic radiation. 
(Gupta et al. 2015).The ceramic microwave absorbers lack flexibility and 
moldability into any desired shape. These difficulties can be overcome by 
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incorporating the ferrites into the rubber matrix. Incorporation of ferrite powders 
in natural or synthetic rubbers produces flexible Rubber ferrite composites, 
which have many novel applications (Prema et al. 2008). 

1.2 Interactions of Materials with Microwaves 

The ability of the material to interact with electromagnetic energy is related to 
the material complex permittivity. A frequency characterizes this property in any 
homogeneous, isotropic and linear dielectric material. The dielectric constant is 
a measure of how much energy from an external electric field is stored in the 
material, while the loss factor accounts for the loss energy dissipative 
mechanisms in the material (Lamberti et al. 2015). Therefore, the material with 
a higher loss factor is readily heated by microwave (Satish et al. 2006). On the 
other hand, any material that has a very low loss factor is transparent to 
microwave effect. The microwave is only a small part of the electromagnetic 
spectrum (300 MHz to 300 GHz), which corresponds to wavelengths between 
1m  and 0.001m (Mudinepalli et al 2013). However, their uses have become 
more and more important in the study of material properties. The material 
characterization is essential for the correct selection and conversion of a 
substance for industrial, scientific and medical applications. The dielectric 
parameters over a wide temperature range are needed to assess their suitability 
for use in telecommunication, dielectric waveguides, lenses, dielectric 
resonators, and microwave integrated circuits (MICs). The electromagnetic 
spectrum consists of various types of electromagnetic signals. Microwave 
behaves similarly to light wave, which travels in straight lines, reflect, refract, 
diffract, scatter, and interfere in the same physical length. However, they differ 
in the behavior due to the difference in wavelength. Microwave wavelengths are 
typically 105 greater than optical wavelengths. Thus microwaves tend to interact 
with materials and structures on a macroscopic scale. For example, microwaves 
can penetrate most non-metallic materials, reflect and scatter from internal 
boundaries, and interact with molecules (Bahr, 1982). Microwaves do not 
change or heat in any way the material due to the extremely low energy emitted 
(Yahaya et al., 2015). The signals can penetrate inside dielectric (electrically 
insulating) material easily. The depth of penetration is dictated by the loss factor 
of the dielectric material (ability to absorb microwave energy), the frequency of 
operation and the reflected or transmitted signal can then be related to the 
dielectric properties of the material (Zoughi et al. 1995).Many ideas have been 
tried to adapt these phenomena to microwave applications. The two critical 
applications that deal with the use of microwave properties are EMI shielding 
and radar absorbing materials.The uses of microwave technology can be found 
in various fields such as communications, radio, military, environmental remote 
sensing, weather monitoring and forecasting, soil settlement system, astronomy 
and medical system. Much of the success of today's microwave technology is 
due to decades of unremitting efforts, hard work and careful research by Andre-
Marie Ampere, Carl Friedrich Gauß, Michael Faraday, Oliver Heaviside, Heinrich 
Hertz and James Clerk Maxwell (Pozar, 2009). 
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The interest of this work is in the interaction of microwaves with materials. These 
include parameters of absorption in materials, scattering, reflection, and 
transmission. These effects are utilized in various test setups to allow 
quantitative measurements in materials. 

1.3 OPEFB Background  

Natural fibres offer several advantages such as low density, low cost, 
biodegradability, acceptable specific properties, better thermal and insulating 
properties and low energy consumption during processing (Faizi et al., 2017). 

The oil palm industries generate an abundant amount of biomass in millions of 
tons per year (Mohanty et al. 2005) which, if properly utilized, can solve the 
problem with disposal and build value-added products as well. OPEFB fibre is 
among the biomass that is currently utilized as fuel in the oil palm mills for the 
production of energy. There are ongoing attempts to transform OPEFB fibres 
into fertilizers by burning them into ash, which is abundant in potassium. 
However, this brings the issue about the environmental pollution created by the 
unrestrained burning of OPEFB fibres. The investigation of OPEFB fibre 
properties, such as their mechanical and physical characteristics, has resulted 
in their diverse applications in the field of composite materials. 

Oil palm fibres are obtained from two parts of the oil palm tree, which are, the 
OPEFB and mesocarp. Among these two, OPEFB fibre is the most frequently 
used in composite materials and several other applications, because OPEFB is 
comprised of a cluster of fibres which is easily available and cheap. OPEFB 
fibres are extracted from the empty fruit bunch through the retting process while 
the mesocarp fibres are waste materials that remain after the oil extraction and 
requires cleaning before it is finally used (Hassan et al. 2010). 

1.4 PLA Background 

Biodegradable polymers are defined as those that undergo microbially induced 
chain scission leading to the mineralization. Biodegradable polymers may not be 
produced from bio source only, but it can be derived from the petroleum source. 
Polymers are also being produced from bio sources such as poly-
hydroxybutyrate (PHB) and polyhydroxy valerate (PHV). On the other hand, the 
biodegradable polymer which is produced from the petroleum source is 
polylactic acid (Ray et al. 2005). PLA production has grown annually, and 
currently, it is estimated that worldwide production will reach at least 800,000 
tons by 2020 with Japan and the USA the two major producers. PLA has gained 
importance due to its mechanical properties which are similar to the 
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petrochemical-based plastics polyethylene terephthalate (PET) and polystyrene 
(PS). It has some favourable properties including ease of fabrication, zero 
toxicity, biocompatibility, high mechanical strength and thermal plasticity and is 
compostable. Most importantly its raw material, lactic acid, can be obtained from 
renewable resources, principally starch. As PLA is a polymer synthesized from 
renewable resources, it has been suggested that its use could help to lower 
greenhouse gas emissions and reduce fossil energy consumption compared to 
conventional petrochemical-based polymers. However, the ever-increasing 
diversion of starch feed-stocks such as maize to PLA production also brings 
pressures on land use and agriculture (Karamanlioglu et al. 2017). Polymers are 
usually used as housings or assemblies in the electronic and electrical 
industries. The desirable combination of characteristics like the low cost, a 
simplicity of fabrication, lightweight, and superior insulation characteristic make 
plastics one of the most useful materials for electronics and electrical 
applications. The function of plastics in the electronic and electrical applications 
was limited to general applications with no-load bearing uses. Plastic materials 
reinforced with fibre serve as effective insulators which enhance the mechanical 
properties of the field - carrying conductors (Jayamani et al. 2014). Nevertheless, 
different applications such as cable and wire sheathing and shielding from 
electromagnetic interference require the polymers be made conductive for the 
dispersal of electrostatic charges. This is achieved by incorporating conductive 
reinforcements in them. Combining fibrous reinforcements into polymer matrices 
results into high-performance matrix materials having excellent mechanical 
characteristics suitable for electronics and electrical applications. They can be 
utilized as terminals, connectors, household and industrial plugs, printed circuit 
boards and switches. 

1.5 Fe2O3 Background 

Ferrites can be defined as magnetic materials which are a composition of an 
oxide containing ferric ions as the essential constituent. There are two types of 
ferrites namely, soft and hard ferrites. The soft ferrite does not retain significant 
magnetization, while the hard ferrite has a rather permanent magnetization. The 
soft ferrite has a broad range of applications in electronics such as television 
refraction yokes and flyback transformers, revolving transformers in video 
players and recorders as well as switch-mode power supplies. Also, soft ferrite 
is used in electromagnetic interference and radio frequency interference 
absorbing materials, and a wide variety of transformer, filters, and inductors in 
electronic home appliances and industrial equipment (Mandal et al., 2016). 

Iron oxides are among the most diffused chemical compounds in nature and are 
composed of Fe combined with O. Nowadays, they are used mainly as the raw 
in iron and steel industry and as pigments. Some can be achieved by thermal 
transformation; for example maghemite (γ- Fe2O3), which can be derived from 
the heating of some iron oxides associated with organic matters, or hematite (α- 
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Fe2O3), that can be produced by heating goethite [α FeO(OH)] at a temperature 
between 250°C and 300°C (LEVATO, 2013). Hematite (α-Fe2O3) is the most 
stable form of iron oxide with uncommon magnetic behavior, such as anti-
ferromagnetism and weak ferromagnetism. The Hematite has the same crystal 
structure of corundum in the rhombohedral lattice system (Xu et al. 2015). 

1.6 Electrical properties 

Electromagnetic wave entering into the materials can be almost entirely 
attenuated and absorbed within the finite thickness of the absorber (attenuation 
characteristic). However, when the fillers are made from dielectric and 
ferroelectric materials, permeability remains the same throughout the range of 
frequency, and their higher propagation constant allows wave absorber to be 
produced thinner. These absorbers being purely dielectric, polarization and 
conductive losses are the principal mechanisms for the absorption of the 
microwave, and the complex permittivity is an important parameter to be 
measured (Rui et al. 2011). The interaction of microwaves with materials can be 
determined from Maxwell’s equations and the materials’ properties. The 
relations define a range of properties including propagation mode, reflection, 
refraction, transmission, and impedance (Luo et al. 2015). Both the permittivity 
and permeability are complex numbers of which the imaginary part is associated 
with losses. This rich and complex system of properties allows a very wide range 
of measurement techniques at microwave frequencies. Some methods have 
been used in the measurements of electromagnetic properties at microwave 
frequencies. Amongst these methods are the transmission and reflection line 
technique, free space measurement technique, open-ended coaxial probe 
technique, and resonant method (Venkatesh, 2005). These techniques can be 
grouped into two methods depending on sample location, namely; coaxial line 
or waveguide and free space measurement. The details of the first group have 
been clearly expounded by Von Hippel (Baker,1990). The main disadvantage of 
these methods is the difficulty in placing the sample to fit into the waveguide or 
coaxial fixture with no air gap. The details of these techniques would be 
described in subsequent chapters. 

1.7 Problem statement 

Materials with good absorption are in demand to solve many EMI problems in 
industrial and commercial electronics. The most common shielding material is 
mu-metal; an alloy containing copper, chromium, iron, and nickel.  Pure iron or 
scientifically known as Ferrites are commonly used in the development of 
absorbing composites. However, like any other metals, ferrites are heavy, 
corrosive, non-biodegradable and expensive. Usage of different metals such as 
ferrites for shielding could easily lead to galvanic corrosion which in turn 
increased the nonlinearity behavior and decreased its shielding effectiveness. In 
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recent years, conventional plastic materials filled with conductive materials are 
gaining interests as alternatives to mu-metal. However, these conductive 
materials are mostly non-biodegradable. During the biodegradation process, 
biodegradable polymers are broken down into their simpler constituent 
components and redistributed through elemental cycles such as the carbon and 
nitrogen cycles. 

This project investigates the application of oil palm empty fruit bunch fibres 
(OPEFB) as an alternative to ferrite fillers for microwave absorbing applications 
with PLA as the host matrix.  OPEFB is categorized as a palm oil industry waste 
which is generated from the oil extraction mills process. OPEFB offer various 
advantages such as low cost, low density, better thermal and insulating 
properties, acceptable specific properties low energy consumption during 
processing and biodegradability. OPEFB can provide good flexural strength, 
tensile strength, stiffness, and elongation at break. It is expected that fibres with 
lower grain size will have a higher density which in turn will increase both the 
dielectric constant and loss factor of the OPEFB (Shinoj et al. 2010). However, 
to date, the effect of grain size of OPEFB on the value of dielectric constant and 
loss factor has not been investigated. 

Polycaprolactone (PCL), an aliphatic polyester has been proposed as the host 
matrix for microwave absorber (Ahmad et al. 2017). PCL is a biodegradable 
polymer. However, electronics application of PCL is limited due to its low melting 
temperature (57–60 °C) and inferior mechanical properties. In contrast, many 
biopolymers have many superior qualities such as polylactide (PLA) with melting 
temperature 160°C and higher mechanical strength. PCL waste has a long 
decomposition time more than 24 month. Whilst PLA decomposed within 6 to 12 
months (Pal et al. 2013) and (Meng et al. 2010). PLA also has other significant 
advantages including ease of fabrication, zero toxicity, biocompatibility, high 
mechanical strength and thermal plasticity. Most importantly its raw material, 
lactic acid, can be obtained from renewable resources, principally starch. As PLA 
is a polymer synthesized from renewable resources, it has been suggested that 
its use could help to lower greenhouse gas emissions and reduce fossil energy 
consumption compared to conventional petrochemical-based polymers. It is 
important to visualize the electric field distribution in a transmission line for 
microwave circuit designer. However, although the electric field distribution of a 
microwave substrate in a closed waveguide has been reported in the literature 
(Hotta et al. 2011). But none has been published for open transmission line 
system such as microstrip.  The electrical properties of heterogeneous materials 
are closely related to the composition of its constituents. The effect of ferrites on 
the attenuation of biobased absorbers was not investigated by previous workers. 
It is important to clearly distinguish the attenuation contribution to the composite 
between the bio-based host matrix and ferrites for cost-effective production of 
bio-based ferrite absorbers. 
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1.8 Research Objectives 

The main objectives of this work are:  

1. To fabrication samples of pure OPEFB fibre with different fibre size and 
samples of OPEFB-PLA, OPEFB-PLA-Fe2O3 composites with various 
percentage of OPEFB and Fe2O3 fillers and then characterize their 
structural properties by using XRD, TGA, DTG, FTIR, SEM, and EDX.  

2. To determine the effect of OPEFB fibre size on its dielectric constant and 
loss factor values and measure the relative permittivity of OPEFB-PLA and 
OPEFB-PLA-Fe2O3 composites using the open-ended coaxial probe and 
rectangular waveguide techniques. The latter technique is also used to 
measure the permeability of the OPEFB-PLA -Fe2O3 composites. 

3. To study the effect of fillers on the on the scattering parameters and 
absorption values of OPEFB-PLA and Fe2O3-OPEFB-PLA composites 
using rectangular waveguide and microstrip technique. The scattering 
parameters results will be compared theoretically with Finite element 
method (FEM). 

4. To visualize the electromagnetic field distribution of the composites using 
FEM for various filler percentage. 
 
 

1.9 The scope of study 

In this study, biodegradable composites would be fabricated using OPEFB and 
PLA with Fe2O3 added to improve their electrical and magnetic properties. The 
melt blending technique via Brabender machine would be carried out. The effect 
of the different percentage of OPEFB and Fe2O3 fillers on the dielectric 
properties would be measured using the open-ended coaxial probe and 
rectangular waveguide techniques. The effect of the OPEFB and Fe2O3 filler on 
the transmission and reflection coefficient of the OPEFB-PLA and OPEFB-PLA-
Fe2O3 composites would also be studied. It also proposes to use FEM COMSOL 
software in calculating scattering parameters and for simulating electromagnetic 
wave excited through OPEFB-PLA and OPEFB-PLA-Fe2O3composites samples 
when placed inside a rectangular waveguide and on top a microstrip. The result 
obtained for scattering parameter through measurement, simulation and 
calculation will also be compared. Error analysis for the comparison is 
determined by both measurements and FEM techniques. The morphological 
characterization would be carried out using specific equipment like the XRD, 
FTIR, SEM, and EDX. 
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