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There is a lack of reports on superconducting behavior of Y3Ba5Cu8O18-δ (Y-358) 

superconductor which belong to Y-Ba-Cu-O family. In addition, the role of alkali 

metals, Ca and K, substitution on the Ba site on the microstructural property of 

Y-Ba-Cu-O superconductors have not been well understood. In this work, bulk Y-

358 and YBa2Cu3O7-δ (Y-132) superconductors were synthesized by a new technique 

based on thermal treatment method using PVP as capping agent. The samples were 

sintered in flowing O2 at 980°C for 24 hour. In addition, the effect of alkali metals 

(M = Ca and K) substitutions in Ba site of Y-123 and Y-358 on the microstructure 

and superconducting properties were systematically investigated using X-rays 

diffraction (XRD), field emission scanning electron microscope (FESEM), energy-

dispersive X-ray spectroscopy (EDX), resistivity behaviour (ρ–T), temperature 

dependence of resistance measurement, and alternating current susceptibility (AC) 

and electron spin resonance (ESR) techniques.  

From XRD results, the Y-123 and Y-358 showed orthorhombic crystal structure 

besides small amount of secondary phased such as Y-211. In the case of Y-123, the 

orthorhombicity and crystallite size changed differently with Ca and K substitutions. 

For Ca substituted Y-358, the orthorhombicity and crystallites size increases up to x 

= 0.01 and 0.02 respectively and then decreases. The intensity of XRD peaks 

changed unsystematically with K substitution in Y-358, however it shows 

improvement at x = 0.03 and 0.14.  
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From Field Emission Scanning Electron Microscope (FESEM) micrographs, the 

grain size of pure Y-358 is larger and more compact compared to Y-123. The grain 

size was found to be larger when Ba is substituted with either Ca or K than the pure 

samples in both Y-123 and Y-358. For both Y-123 and Y-358 samples, the grains 

become much finer, almost with different shape and well-connected as K contents 

increases.  

Both Y-123 and Y-358 samples exhibited good metallic behaviour in the normal 

state and one step transition. The Y-123 and Y-358 showed critical temperature 

Tc(R=zero) at 87 and 92 K and onset of superconducting transition Tc (onset) at 93 K and 

98 K, respectively. The Tc(R=zero) for Ca substituted Y-123 and Y-358 was decreased. 

The changing of lattice parameters in Y-123 and Y-358 structure due to Ca 

substitution may disturb the oxygen content and hence affect Tc. The Tc(R=zero) was 

increased as K substitution in Y-123 increased. In general Y-123 and Y-358 samples 

with initial Ca and K substitution show sharper superconducting transition (Tc) than 

pure, which could be due to good microstructural morphology and better 

crystallinity. 

The AC susceptibility measurement show that for the Ca substituted Y-123 and   Y-

358 samples a decrease in diamagnetism onset temperature Tc-onset, was observed 

from real part (χ') which exhibited two-step transitions related to the 

superconducting intra and intergrain coupling. The Tc-onset decreased in the case of 

Ca substituted samples and increased in the case of K substituted samples. This 

decrease is mainly due to the decrease and increase of hole concentration 

respectively. The intergranular critical current density, Jcm, of pure Y-123 and Y-

358, 34.4 A cm-2 and 34.7 A cm-2 respectively, increased to 35 Acm-2 at (x=0.08) and 

36.3 Acm-2 at (x=0.2) for Ca substituted Y-123 and Y-358, respectively and K to 35 

Acm-2 at (x=0.1) and 38.8 Acm-2 at (x=0.12) for Ca substituted Y-123 and Y-358, 

respectively, which could be due the improvement of the grain boundary and the 

hence the grains’ coupling. On the other hand, Josephson current, Io, and Josephson 

energy, Ej decreased and increased with the Ca and K concentration respectively due 

to degrading  and coupling  between the grain connectivity. 

From electron spin resonance (ESR), the Ca and K substituted in Y-123 and Y-358 

showed ESR spectra consisted of two peaks. The g-factors increased with increment 

of Ca and K content in both Y-123 and Y-358 samples, which could be due to 

changes in the oxygen ordering in Y-123 and Y-358. 
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Fakulti :   Sains 

 

 

Terdapat kekurangan laporan mengenai kelakuan superkonduktor Y3Ba5Cu8O18-δ 

(Y-358) superkonduktor yang dimiliki oleh keluarga Y-Ba-Cu-O. Di samping itu, 

peranan logam alkali, Ca dan K, penggantian pada tapak Ba terhadap sifat 

mikrostruktur superkonduktor Y-Ba-Cu-O tidak difahami dengan baik. Dalam kajian 

ini, bahan pukal Y-358 dan Y2Ba3Cu8O18-δ (Y-132) superkonduktor telah 

disintesis oleh teknik baru berdasarkan kaedah rawatan haba menggunakan PVP 

sebagai ejen pengehadapan. Sampel-sampel telah disinter dengan mengalirkan O2 

pada 980 ° C selama 24 jam. Selain itu, kesan penggantian logam alkali (M = Ca dan 

K) di tapak Ba Y-123 dan Y-358 terhadap sifat-sifat mikrostruktur dan 

superkonduktor disiasat secara sistematik dengan menggunakan  spektrum 

pembelaun sinar-X (XRD), spektroskopi penyebaran tenaga sinar-X (EDX), 

mikroskop elektron pengimbasan pelepasan medan (FESEM), kelakuan resistiviti (ρ-

T), kebergantungan suhu pengukuran rintangan, dan teknik resonans spektrum 

elektron (AC) dan resonan spin elektron (ESR). 

 

 

Dari hasil XRD, Y-123 dan Y-358 memperlihatkan struktur kristal ortorombik selain 

sejumlah kecil fasa menengah seperti Y-211. Dalam Y-123, saiz ortorombik dan 

kristalit berubah secara berbeza dengan penggantian Ca dan K. Bagi Ca digantikan 

Y-358, saiz ortorombik dan kristalit meningkat sehingga x = 0.01 dan 0.02 masing-

masing dan kemudian berkurangan. Keamatan puncak XRD berubah secara 

sistematik dengan penggantian K dalam Y-358, namun ia menunjukkan peningkatan 

pada x = 0.03 dan 0.14. 
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Dari mikrograf pengimbasan pelepasan elektron mikroskop (FESEM), saiz bijirin 

tulen Y-358 lebih besar dan lebih kompak berbanding dengan Y-123. Saiz bijian 

didapati lebih besar 

 

 

Apabila Ba digantikan dengan Ca atau K daripada sampel tulen di kedua-dua Y-123 

dan Y-358. Untuk kedua-dua sampel Y-123 dan Y-358, biji-bijian menjadi lebih 

halus, hampir dengan bentuk yang berbeza dan terhubung dengan baik apabila 

kandungan K meningkat. 

 

 

Kedua-dua sampel Y-123 dan Y-358 mempamerkan sifat logam yang baik dalam 

keadaan normal dan peralihan satu langkah. Y-123 dan Y-358 menunjukkan suhu 

kritikal Tc(R=zero)  pada 87 K dan 92 K dan permulaan superconducting transition 

Tc (onset) pada 93 K dan 98 K, masing-masing. Tc(R=zero) untuk Ca digantikan Y-

123 dan Y-358 telah menurun. Perubahan parameter kekisi dalam struktur Y-123 

dan Y-358 disebabkan oleh penggantian Ca boleh mengganggu kandungan oksigen 

dan seterusnya menjejaskan Tc.  Tc(R=zero meningkat apabila penggantian K dalam 

Y-123 meningkat. Secara umum sampel Y-123 dan Y-358 dengan pengubahsuaian 

tulen, yang boleh disebabkan oleh morfologi mikrostruktur yang baik dan 

kristalografi yang lebih baik. 

 

 

Pengukuran kerentanan AC menunjukkan bahawa untuk Ca menggantikan sampel 

Y-123 dan Y-358, penurunan pada suhu awal diamagnetisme Tc (onset), 

diperhatikan dari bahagian sebenar (χ ') yang memperlihatkan peralihan dua langkah 

yang berkaitan dengan intra dan inter butiran superkonduktor gandingan. Tc (onset) 

berkurangan dalam kes sampel Ca yang digantikan dan meningkat dalam kes sampel 

K yang digantikan. Penurunan ini adalah disebabkan oleh penurunan dan 

peningkatan penumpuan lubang masing-masing. Ketumpatan arus kritikal inter 

butiran, Jcm, tulen Y-123 dan Y-358, 34.4 Acm-2 dan 34.7 Acm-2 masing-masing, 

meningkat kepada 35 Acm-2  pada (x = 0.08) dan 36.3 Acm-2  pada ( x = 0.2) untuk 

Ca digantikan masing-masing Y-123 dan Y-358 dan K hingga 35 Acm-2  pada (x = 

0.1) dan 38.8 Acm-2 pada (x = 0.12) untuk Ca digantikan Y-123 dan Y-358 masing-

masing, yang mungkin disebabkan oleh peningkatan sempadan butiran dan 

gabungan butiran. Sebaliknya, tenaga Arus Josephson, Io, dan Josephson, Ej 

menurun dan meningkat dengan penumpuan Ca dan K masing-masing kerana 

direndahkan dan gandingan antara gabungan butiran. 

 

 

Dari resonans spin elektron (ESR), Ca dan K yang digantikan dalam Y-123 dan Y-

358 menunjukkan spektrum ESR terdiri daripada dua puncak. Faktor g meningkat 

dengan peningkatan kandungan Ca dan K dalam kedua-dua sampel Y-123 dan Y-

358, yang mungkin disebabkan oleh perubahan dalam susunan oksigen di dalam Y-

123 dan Y-358.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of the study  

High temperature superconductivity (HTSC), based on cuprate system, was 

discovered by Bednorz and Muller in 1986 which introduces a new era for 

superconductivity research area of interest (Keimer et al., 2015; Maple, 1998). Since 

that time many efforts have been devoted to understanding nature of 

superconductivity, find new materials and to make these materials ready for the uses 

in technology application (Chu et al., 2015). Currently, more than 200 members of 

copper-based oxides based superconductors were found by self-doping or doping 

into the parent materials of some copper based oxides (Chu et al., 2015). 

BiSr2Ca2Cu3O10 and YBa2Cu3O7 (Y-123) systems appear to be the most candidate 

for superconductor’s technology. The Y-123 is more favourable for superconducting 

application advantage this is attributed to its physical robustness and superior 

superconducting behaviour in a higher magnetic field (Maple, 1998). The great trend 

in superconductivity field is motivated by the promise possible uses of it in the near 

future for electric power transmission without losses and also in the construction of 

quantum high-power generators. In addition, superconductivity phenomenon is 

involved to develop quantum computers (Tsai, 2010). 

1.2 Y-Ba-Cu-O (YBCO) family 

The Yttrium barium copper oxide (Y-Ba-Cu-O) was the first material showing 

superconductivity above 77 K (boiling point of nitrogen) (Bednorz & Müller, 1986). 

Several stoichiometry formula were synthesized where superconducting properties 

depend on the number of CuO chains and CuO2 planes (Hackl, 2011). Currently, Y-

Ba-Cu-O family include YBa2Cu3O7−δ (Y-123), YBa2Cu4O8 (Y-124), Y2Ba4Cu7O15 

(Y-247), and Y3Ba5Cu8Ox (Y-358). Y-123 has one CuO chain and two CuO2 planes 

with 91 K critical temperature Tc. Y-124 has one double CuO chain and two CuO2 

planes with Tc = 80 K while Y-247 has a mixture of single and double CuO chains 

with a mix of two CuO2 planes and exhibiting Tc (30 – 90) K depending on its 

oxygen content (Slimani et al., 2014). The phases mentioned above were previously 

identified as secondary phases in Y-123 system, hence it is difficult to obtain it in a 

single phase (Chu et al., 2015). Recently, Y-358 compound was firstly prepared by 

Aliabadi et al. with Tc = 98 K which was confirmed to be attributed to the strong 

correlation interaction within layered copper oxides (Bednorz & Müller, 1988; Lee 

et al., 2006). Y-358 is similar to that of Y-123, but with two additional CuO chains 

and three additional CuO2 planes (Mazaheri et al., 2015). There is a discrepancy in 

the literature regarding structure properties of Y-358 phase. While some group have 

claimed that it has same lattice parameters like Y-123 (Topal et al., 2011; 

Udomsamuthirun et al., 2010), other reported that the lattice parameters a and b are 

http://www.chemeurope.com/en/encyclopedia/Superconductivity.html
http://www.chemeurope.com/en/encyclopedia/Nitrogen.html
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same to Y-123 while c lattice parameter three time that of in Y-123 (Aliabadi et al., 

2009). Due to the similarity of the two phases, Y-123 and Y-358, further 

characterization is needed to shed light on the physical and superconducting 

behavior of Y-358 phase. 

1.3 Role of chemical substitution 

Chemical substitution strongly affects the structure, physical and superconducting 

properties of cuprate superconductors. These oxides, as in the example of Y-123, 

consists of active conducting block [(CuO2) Y (CuO2)] separated by [(BaO) (CuO) 

(BaO)] that can be considered as charge reservoir that controls the carrier into the 

conducting layer. Doping can be done by partially replacing one ion by another with 

different valence or by changing oxygen content and self-doping. Superconductivity 

was induced in antiferromagnetic insulating La2CuO4 by increasing charge carriers 

in CuO2 layer as a result of doping of La site with Ba. In Self-doping, increasing the 

oxygen content (δ), the holes are brought into the CuO2 planes and change the 

structure from tetragonal YBa2Cu3O6 (antiferromagnetic phase) to orthorhombic 

YBa2Cu3O6+δ (Y-123 superconducting phase). On the other hand, doping of Y, Ba, 

or Cu by univalent or divalent elements led to changes in its structure and electronic 

properties. Various research works on substitutions in oxide superconducting 

materials were of immense importance, as variations in critical transition 

temperature were usually observed (M. Sahoo & Behera, 2014; Talantsev et al., 

2014). Thus, the doping can basically vary the concentration of the hole in a 

controlled manner and influence the materials’ superconducting properties. Many 

research activities were mainly devoted to explore substitution effects at Y site 

(Awana et al., 1994; Fisher et al., 1993; Guan et al., 1996; Tallon & Flower, 1993). 

The concentration of charge carrier and effects of charge transfer from Cu-O chains 

to the conducting layers CuO2 in Y-123 take place by Ca2+ partial substitution for 

Y3+. An enhanced Tc is observed as the Ca2+ ion replaces the trivalent Y3+ ion 

(Delorme et al., 2002). The Ca ionic radius is slightly greater than that of Y, so a 

hole is created in the CuO2 plane by the substitution, and increases the concentration 

of electron hole per unit Cu–O (Haibin & Welch, 2005). In general, 

superconductivity is induced by Oxygen in Ca-free Y-123 and Ca does likewise in 

oxygen-deficient Y-123. δ = 6.92 is found to be the optimal doping for oxygen in Y-

123 is, with a Tc of about 90 K. The superconducting Tc can be suppressed by 

alkaline earth metals substitution at Y site (Feng et al., 2001; Nishizaki et al., 2005). 

Specifically, the temperature range of 90 to 80 K has been a subject of vast 

importance and is reported to raise the critical current density, Jc, of the material, 

which is an important parameter for applications Krabbes et al. (2006), and is 

dependant on the number of pinning centers per unit volume in the superconducting 

phase (Campbell, 1996). The current carrying capability of Y-123 across its grain 

boundaries is improved by 35 percent calcium substitution. Doping lowers its 91 K 

critical temperature Tc to a level uncomfortably close to that of the liquid nitrogen 

coolant, 77 K. Up to now, two variants of YBCO systems that can accommodate 

calcium without Tc loss were discovered namely,Y2CaBa4Cu7O16-δ (Tc ~ 96 K) and 

Y3CaBa4Cu8O18-δ (Tc ~ 99 K). Like other types of HTSC, these two types of the Y-
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123 superconducting system have their problems of poor mechanical properties and 

brittle nature as well (Mellekh et al., 2006). 

Among the cationic substitutions in Y-123, potassium substitution for barium has 

gain more interest (Felner & Barbara, 1988). The potassium ionic radius (1.33 Å) is 

close to that of Ba (1.35 Å), which makes it an ideal substituent for Ba in Y-123. The 

potassium substitution for Ba in Y-123 has been performed by some groups. While 

some groups reported that Tc decreases with increasing potassium doping 

(Mukherjee et al., 1992; Wu et al., 2000), some other groups have claimed it 

increases up to 124 K using KOH (Beales et al., 1992) or 135 K using K2CO3 as the 

source of potassium (Khan, 1988). Thus the effect of potassium addition on 

superconductivity in YBCO system is still controversial. 

The compound substitution on Y-358 phase is still not common till recently. It was 

observed that doping with Ca into Y358 phase reduced Tc significantly without 

affecting the orthorhombic structure (Ayas et al., 2011). The studies of 

superconducting properties of the Ca and K-doped in Y-358, especially in its 

polycrystalline state, are limited or have not been studied and reported yet. 
Therefore, in this research, our aims are to investigate the effect of Ca and K 

substituted at the Ba-site for the Y-123 and Y-358 phases, according to structural, 

superconducting and electrical properties. Thermal treatment technique was carried 

out to prepare the materials. The findings are discussed based on XRD, FESEM, 

electrical measurements, magnetic and ESR spectra. 

1.4 Synthesis of YBCO 

Various synthesis methods have been employed to prepare Y-123 with the aim of 

improving the morphology and superconducting properties. Frequently, these 

ceramics were produced by the solid-state reaction and wet chemical methods (Yeoh 

& Abd-Shukor, 2008). These methods have many advantages and disadvantages as 

will be extensively discussed in the following chapter. In the route of the solid state 

synthesis, the reaction of the reactants takes place in the solid state method to obtain 

the end product. Of all the techniques, the solid-state technique is the most widely 

used when it comes to the synthesis of a vast number of oxide, ceramic materials, 

boride, carbide, and nitride. However, this method has some drawbacks such as 

difficulty to obtain homogenous oxide and the need of several steps of grinding and 

annealing process. Wet chemical based methods have been extensively used to 

fabricate superconductors in order to obtain the good quality product (Yeoh & Abd-

Shukor, 2008). These methods yield an excellent homogeneous oxide and smaller 

size precursors in comparison with traditional solid state reaction method. Recently, 

thermal treatment has emerged as a new method to synthesize fine particles oxides. 

This method is based on an aqueous solution of metals nitrates and polymer such as 

polyvinyl pyrrolidone (PVP) that acts as a capping agent without the addition of 

other chemicals. Several oxides nanoparticles have been successfully prepared using 
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this method (Al-Hada et al., 2016; Al-Hada et al., 2014; Naseri et al., 2011). 

However, there is a lack in the literature on superconductor synthesis using the 

thermal treatment method. It is expected that by using this method, good quality Y-

Ba-Cu-O based materials could be obtained. 

1.5 Statement of the problem 

YBCO family has wider range potential application compared to other materials 

HTSC and thus, they become a major research field (Maple, 1998). However, Jc 

value are limited basically by their insufficient flux pinning properties (Vinu et al., 

2009). This is caused by their poor flux pinning properties and grain boundaries 

(Larbalestier et al., 1991; Mannhart et al., 2000). Although the Jc for single YBCO 

crystals is very high, the value is very low for polycrystals; it only allows a small 

current to pass while maintaining superconductivity. Also, another problem with  Y-

123 compound is that the content of oxygen is not stable (Choudhary et al., 2004). 

The above mentioned issues can be overcome by elemental doping or substitution in 

YBCO materials synthesized by new method (Anjela et al., 2000; Berenov et al., 

2002; Celebi et al., 2000; Daniels et al., 2000; Mohan et al., 2007; A  Veneva et al., 

1996). So far, synthesis of Y-123 and Y-358 using thermal treatment method has not 

yet been performed. While the role of alkali metals (Ca, K) substituting in Ba-site on 

the morphology, structural superconducting behaviour of Y-123 and Y-358 systems 

is not well known yet. Therefore the aim of this work is to study the effect of Ca and 

K substitution on barium site in both Y-123 and Y-358 systems prepared using 

thermal treatment method. The ultimate hope is to shed more light on the critical 

temperature, grain boundary, critical current density, critical magnetic field, AC 

susceptibility, resistivity, by using X-ray Diffraction (XRD), FESEM analysis, four 

point probe method, AC susceptibility and ESR spectra. 

1.6 Objectives of the study 

Our research has been designed based on the following objectives: 

1. To synthesize single phase Y-123 and Y-358 superconducting ceramics 

using thermal treatment method with PVP as capping agent. 

2. To synthesize single phase of Y-123 and Y-358 substituted with Ca, K at Ba 

site via thermal treatment method with PVP as capping agent. 

3. To determine the differences between the properties of bulk of Y-123 and 

bulk Y-358 superconducting ceramics.  

4. To investigate the effect of (Ca, K) substitutions at Ba-site on the 

microstructural, electrical, magnetic and superconducting properties of Y-

123 and Y-358 superconductors. 
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1.7 Significance of the study  

Technological advances demand more complex portable devices with various 

functions. This includes efforts to fabricate HTSC materials, production of long 

superconducting wires and cables with higher Jc, superconducting magnets. Electric 

power networks which include transformers, generators, fault-current limiters, 

motors, and magnetic energy storage and superconducting quantum interference 

(SQUID) devices are among the significant issues. Due to the HTSC strong impact 

potentials on business and society, a new technology needs to be developed in 

Research and Development by scientists and engineers toward fabricating YBCO 

materials which should be less expensive and better than other systems. The 

outcome of this research will add to the knowledge and understanding of the subject 

and ought to shed more light on scientific and technological issues which will help in 

the development of synthesis of YBCO materials for wide range of applications. 

1.8 Scope of the research work  

The study will investigate the effect of doping of calcium Ca and potassium K in 

barium site, with an aim to find higher Tc value in the high temperature of bulk       

Y-123 and Y-358 superconducting materials that will be carried out using thermal 

treatment method only. By so doing, the findings of this study can be compared with 

previous results as an effort to complement the work of other researchers. The bulk 

Y-123 and Y-358 will be prepared based on composition with a stoichiometric 

formula Y(Ba1-xCax)2Cu3O7-δ, Y(Ba1-xKx)2Cu3O7-δ, Y3(Ba1-xCax)5Cu8O18-δ and 

Y3(Ba1-xKx)5Cu8O18-δ for x = ( 0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.8, 0.1, 0.125), 

(0.00, 0.03, 0.05, 0.08, 0.1, 0.125, 0.15, 0.175, 0.2, 0.25), (0.00, 0.01, 0.02, 0.03, 

0.05, 0.08, 0.1, 0.2) and (0.00, 0.03, 0.05, 0.08, 0.1, 0.12, 0.14, 0.16 0.20) 

respectively. The synthesized powder and the sintered samples will be characterized 

using X-ray diffraction (XRD), Field emission scanning electron microscope 

(FESEM)/dispersive X-ray analysis (EDX). The electric properties are studied by 

using four point probe measurements and the magnetic properties will also be 

studied by AC susceptibility measurement. The spin properties are studied by Spin 

Electron Resonance (ESR) signals.  

1.9 Outline of the thesis 

This work is reported in 6 chapters. The first chapter describes a short review of the 

historical developments of superconductivity. This chapter also gives the statement 

of the problem, background of the study, objectives, significance, and scope of the 

study, motivation, and outline of the research work. Chapter 2 deals with detailed 

literature review. It contains background information to assist in understanding the 

aims and results of this investigation, and also present previous reports by other 

researchers with which these results can be compared. Chapter 3 describes the theory 

of superconductivity and the properties of HTSC. Then, chapter 4, the methodology 
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of sample preparation and characterization techniques related to this research work 

are described. In Chapter 5 gives the results and discussion of the structure, 

morphological, AC susceptibility and superconducting properties of YBCO (123) 

and YBCO (358) substitution within Ca and K in the Ba site are presented. Lastly, 

Chapter 6 gives the conclusion derived from the research and suggestion for future 

work.  
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