

UNIVERSITI PUTRA MALAYSIA

MICROSTRUCTURE AND SUPERCONDUCTING PROPERTIES OF Y-Ba(Ca/K)-Cu-O (Y-123 AND Y-358) SYSTEMS SYNTHESIZED USING THERMAL TREATMENT METHOD

MUSTAFA MOUSA ALI DIHOM

FS 2018 81

MICROSTRUCTURE AND SUPERCONDUCTING PROPERTIES OF Y-Ba(Ca/K)-Cu-O (Y-123 AND Y-358) SYSTEMS SYNTHESIZED USING THERMAL TREATMENT METHOD

MUSTAFA MOUSA ALI DIHOM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

May 2018

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright© Universiti Putra Malaysia

Abstract of thesis presented to Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

MICROSTRUCTURE AND SUPERCONDUCTING PROPERTIES OF Y-Ba (Ca/K)-Cu-O (Y-123 AND Y-358) SYSTEMS SYNTHESIZED USING THERMAL TREATMENT METHOD

By

MUSTAFA MOUSA ALI DIHOM

May 2018

Chairman : Professor Abdul Halim Shaari, PhD Faculty : Science

There is a lack of reports on superconducting behavior of $Y_3Ba_5Cu_8O_{18-\delta}$ (Y-358) superconductor which belong to Y-Ba-Cu-O family. In addition, the role of alkali metals, Ca and K, substitution on the Ba site on the microstructural property of Y-Ba-Cu-O superconductors have not been well understood. In this work, bulk Y-358 and YBa₂Cu₃O_{7- δ} (Y-132) superconductors were synthesized by a new technique based on thermal treatment method using PVP as capping agent. The samples were sintered in flowing O₂ at 980°C for 24 hour. In addition, the effect of alkali metals (M = Ca and K) substitutions in Ba site of Y-123 and Y-358 on the microstructure and superconducting properties were systematically investigated using X-rays diffraction (XRD), field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDX), resistivity behaviour (ρ -T), temperature dependence of resistance measurement, and alternating current susceptibility (AC) and electron spin resonance (ESR) techniques.

From XRD results, the Y-123 and Y-358 showed orthorhombic crystal structure besides small amount of secondary phased such as Y-211. In the case of Y-123, the orthorhombicity and crystallite size changed differently with Ca and K substitutions. For Ca substituted Y-358, the orthorhombicity and crystallites size increases up to x = 0.01 and 0.02 respectively and then decreases. The intensity of XRD peaks changed unsystematically with K substitution in Y-358, however it shows improvement at x = 0.03 and 0.14.

From Field Emission Scanning Electron Microscope (FESEM) micrographs, the grain size of pure Y-358 is larger and more compact compared to Y-123. The grain size was found to be larger when Ba is substituted with either Ca or K than the pure samples in both Y-123 and Y-358. For both Y-123 and Y-358 samples, the grains become much finer, almost with different shape and well-connected as K contents increases.

Both Y-123 and Y-358 samples exhibited good metallic behaviour in the normal state and one step transition. The Y-123 and Y-358 showed critical temperature $T_{c(R=zero)}$ at 87 and 92 K and onset of superconducting transition $T_{c \ (onset)}$ at 93 K and 98 K, respectively. The $T_{c(R=zero)}$ for Ca substituted Y-123 and Y-358 was decreased. The changing of lattice parameters in Y-123 and Y-358 structure due to Ca substitution may disturb the oxygen content and hence affect T_c . The $T_{c(R=zero)}$ was increased as K substitution in Y-123 increased. In general Y-123 and Y-358 samples with initial Ca and K substitution show sharper superconducting transition (ΔT_c) than pure, which could be due to good microstructural morphology and better crystallinity.

The AC susceptibility measurement show that for the Ca substituted Y-123 and Y-358 samples a decrease in diamagnetism onset temperature $T_{c-\text{onset}}$, was observed from real part (χ') which exhibited two-step transitions related to the superconducting intra and intergrain coupling. The $T_{c-\text{onset}}$ decreased in the case of Ca substituted samples and increased in the case of K substituted samples. This decrease is mainly due to the decrease and increase of hole concentration respectively. The intergranular critical current density, J_{cm} , of pure Y-123 and Y-358, 34.4 A cm⁻² and 34.7 A cm⁻² respectively, increased to 35 Acm⁻² at (x=0.08) and 36.3 Acm⁻² at (x=0.2) for Ca substituted Y-123 and Y-358, respectively and K to 35 Acm⁻² at (x=0.1) and 38.8 Acm⁻² at (x=0.12) for Ca substituted Y-123 and Y-358, respectively, which could be due the improvement of the grain boundary and the hence the grains' coupling. On the other hand, Josephson current, I_o , and Josephson energy, E_j decreased and increased with the Ca and K concentration respectively due to degrading and coupling between the grain connectivity.

From electron spin resonance (ESR), the Ca and K substituted in Y-123 and Y-358 showed ESR spectra consisted of two peaks. The *g*-factors increased with increment of Ca and K content in both Y-123 and Y-358 samples, which could be due to changes in the oxygen ordering in Y-123 and Y-358.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

MIKROSTRUKTUR DAN SIFAT SUPERKONDUKTOR SISTEM Y-BA (Ca / K) -Cu-O (Y-123 DAN Y-358) YANG DISINTESIS DENGAN MENGGUNAKAN KAEDAH RAWATAN HABA

Oleh

MUSTAFA MOUSA ALI DIHOM

Mei 2018

Pengerusi : Profesor Abdul Halim Shaari, PhD Fakulti : Sains

Terdapat kekurangan laporan mengenai kelakuan superkonduktor Y3Ba5Cu8O18- δ (Y-358) superkonduktor yang dimiliki oleh keluarga Y-Ba-Cu-O. Di samping itu, peranan logam alkali, Ca dan K, penggantian pada tapak Ba terhadap sifat mikrostruktur superkonduktor Y-Ba-Cu-O tidak difahami dengan baik. Dalam kajian ini, bahan pukal Y-358 dan Y2Ba3Cu8O18- δ (Y-132) superkonduktor telah disintesis oleh teknik baru berdasarkan kaedah rawatan haba menggunakan PVP sebagai ejen pengehadapan. Sampel-sampel telah disinter dengan mengalirkan O2 pada 980 °C selama 24 jam. Selain itu, kesan penggantian logam alkali (M = Ca dan K) di tapak Ba Y-123 dan Y-358 terhadap sifat-sifat mikrostruktur dan superkonduktor disiasat secara sistematik dengan menggunakan spektrum pembelaun sinar-X (XRD), spektroskopi penyebaran tenaga sinar-X (EDX), mikroskop elektron pengimbasan pelepasan medan (FESEM), kelakuan resistiviti (ρ -T), kebergantungan suhu pengukuran rintangan, dan teknik resonans spektrum elektron (AC) dan resonan spin elektron (ESR).

Dari hasil XRD, Y-123 dan Y-358 memperlihatkan struktur kristal ortorombik selain sejumlah kecil fasa menengah seperti Y-211. Dalam Y-123, saiz ortorombik dan kristalit berubah secara berbeza dengan penggantian Ca dan K. Bagi Ca digantikan Y-358, saiz ortorombik dan kristalit meningkat sehingga x = 0.01 dan 0.02 masing-masing dan kemudian berkurangan. Keamatan puncak XRD berubah secara sistematik dengan penggantian K dalam Y-358, namun ia menunjukkan peningkatan pada x = 0.03 dan 0.14.

Dari mikrograf pengimbasan pelepasan elektron mikroskop (FESEM), saiz bijirin tulen Y-358 lebih besar dan lebih kompak berbanding dengan Y-123. Saiz bijian didapati lebih besar

Apabila Ba digantikan dengan Ca atau K daripada sampel tulen di kedua-dua Y-123 dan Y-358. Untuk kedua-dua sampel Y-123 dan Y-358, biji-bijian menjadi lebih halus, hampir dengan bentuk yang berbeza dan terhubung dengan baik apabila kandungan K meningkat.

Kedua-dua sampel Y-123 dan Y-358 mempamerkan sifat logam yang baik dalam keadaan normal dan peralihan satu langkah. Y-123 dan Y-358 menunjukkan suhu kritikal Tc(R=zero) pada 87 K dan 92 K dan permulaan superconducting transition Tc (onset) pada 93 K dan 98 K, masing-masing. Tc(R=zero) untuk Ca digantikan Y-123 dan Y-358 telah menurun. Perubahan parameter kekisi dalam struktur Y-123 dan Y-358 disebabkan oleh penggantian Ca boleh mengganggu kandungan oksigen dan seterusnya menjejaskan Tc. Tc(R=zero meningkat apabila penggantian K dalam Y-123 meningkat. Secara umum sampel Y-123 dan Y-358 dengan pengubahsuaian Ca dan K menunjukkan peralihan mensuperkonduksi lebih tajam (\Box Tc) daripada tulen, yang boleh disebabkan oleh morfologi mikrostruktur yang baik dan kristalografi yang lebih baik.

Pengukuran kerentanan AC menunjukkan bahawa untuk Ca menggantikan sampel Y-123 dan Y-358, penurunan pada suhu awal diamagnetisme Tc (onset), diperhatikan dari bahagian sebenar (χ ') yang memperlihatkan peralihan dua langkah yang berkaitan dengan intra dan inter butiran superkonduktor gandingan. Tc (onset) berkurangan dalam kes sampel Ca yang digantikan dan meningkat dalam kes sampel K yang digantikan. Penurunan ini adalah disebabkan oleh penurunan dan peningkatan penumpuan lubang masing-masing. Ketumpatan arus kritikal inter butiran, Jcm, tulen Y-123 dan Y-358, 34.4 Acm-2 dan 34.7 Acm-2 masing-masing, meningkat kepada 35 Acm-2 pada (x = 0.08) dan 36.3 Acm-2 pada (x = 0.2) untuk Ca digantikan masing-masing Y-123 dan Y-358 dan K hingga 35 Acm-2 pada (x = 0.1) dan 38.8 Acm-2 pada (x = 0.12) untuk Ca digantikan Sempadan butiran dan gabungan butiran. Sebaliknya, tenaga Arus Josephson, Io, dan Josephson, Ej menurun dan meningkat dengan penumpuan Ca dan K masing-masing kerana direndahkan dan gandingan antara gabungan butiran.

C

Dari resonans spin elektron (ESR), Ca dan K yang digantikan dalam Y-123 dan Y-358 menunjukkan spektrum ESR terdiri daripada dua puncak. Faktor g meningkat dengan peningkatan kandungan Ca dan K dalam kedua-dua sampel Y-123 dan Y-358, yang mungkin disebabkan oleh perubahan dalam susunan oksigen di dalam Y-123 dan Y-358.

ACKNOWLEDGEMENTS

In the name of Allah, Most Gracious, Most Merciful. All praise be to Allah, the Supreme Creator, Nourisher and Sustainer of the universe. We beseech the Almighty to bestow His choicest blessings on our illustrious Master, Nabi Muhammad (peace be upon Him), on His pure family, His noble companions and all believers in every era.

I am indebted to my supervisor, Professor Dr. Abdul Halim Shaari for most of all, believing in me. For all the patience, guidance, advice, ideas, critics, encouragement and continuous discussion, my deepest gratitude goes to you. I also express my gratitude to me co-supervisor Associate Professor Dr. Chen Soo Kien and Dr Rabaah Syahidah Azis for their comments, suggestions and guidance throughout this work. I would also like to extend my most sincere thanks to Prof. Dr Roslan Abd Shukor for great discussion and the permission to use his lab facilities.

A special thank you to my friend Dr. Hussein Baqiah for the help and knowledge given throughout my study. I am extremely grateful to Dr. Naif Al-Hada and lab mates, for their kind help and understanding regarding this work. Also, I would like to take this opportunity to thank the members and staff in the Physics Department for providing an environment and platform to conduct this study.

To my parents, brother, sisters, their love and support keep me going, and last but not least, to my wife, sons and my daughters, thank you for love continuous support, encouragement, and understanding.

I certify that a Thesis Examination Committee has met on 15 May 2018 to conduct the final examination of Mustafa Mousa Dihom on his thesis entitled "Microstructure and Superconducting Properties of Y-Ba (Ca/K)-Cu-O (Y-123 and Y-358) Systems Synthesized Using Thermal Treatment Method" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Khamirul Amin bin Matori, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Sidek bin Hj. Ab Aziz, PhD Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Halimah binti Mohamed Kamari, PhD

Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Cheikhrouhou Abdelwaheb, PhD

Professor University of Sfax Tunisia (External Examiner)

RUSLI HAJI ABDULLAH, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 30 July 2018

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of Supervisory Committee are as follows:

Abdul Halim Shaari, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Chen Soo Kien, PhD Associate Professor Faculty of Science

Universiti Putra Malaysia (Member)

Rabaah Syahidah Azis, PhD

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Member)

ROBIAH BINTI YUNUS, PhD

Professor and Dean School of Graduate Studies, Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature:	
orginature.	-

Date: ____

Name and Matric No.: Mustafa Mousa Ali Dihom (GS40479)

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of the second seco
Chairman of
Supervisory
Committee: Professor Dr. Abdul Halim Shaari

Signature: _______ Name of Member of Supervisory Committee: Associate Professor Dr. Chen Soo Kien

Signature:_____ Name of Memberof Supervisory Committee: Dr. Rabaah Syahidah Azis

TABLE OF CONTENTS

Page

ABSTRACT		i
ABSTRAK	ii	i
ACKNOWLEDGEMENTS		/
APPROVAL	V	i
DECLARATION	vii	i
LIST OF TABLES	xii	i
LIST OF FIGURES	XV	i
LIST OF ABBREVIATIONS AND SYMBOLS	xxi	i
CHAPTER		
1 INTRODUCTION		L

INTI	RODUCTION	1
1.1	Background of the study	1
1.2	Y-Ba-Cu-O (YBCO) family	1
1.3	Role of chemical substitution	2
1.4	Synthesis of YBCO	3
1.5	Statement of the problem	4
1.6	Objectives of the study	4
1.7	Significance of the study	5
1.8	Scope of the research work	5
1.9	Outline of the thesis	5
LITH	ERATURE REVIEW	7
2.1	Introduction	7

2

Introduction	
Yttrium Barium Copper Oxide (YBCO)	7
Crystal structure of Y-123	7
Crystal structure of Y-358	9
Studies on YBCO superconducting materials	10
Synthesis of YBCO Superconducting materials	10
2.6.1 Effect of various synthesis methods on properties of	
YBCO Superconducting materials	14
2.6.1.1 Pure Y-123	14
2.6.1.2 Pure Y-358	16
2.6.1.3 Doping in YBCO Superconductor	20
2.6.1.4 Effect of substitution of Ca in Y-123	20
2.6.1.5 Effect of substitution of Ca in Y-358	22
2.6.1.6 Effect of substitution of K in Y-123	23
2.6.1.7 Effect of substitution with different element	
at various site of Y-123 and Y-358	24
	 Yttrium Barium Copper Oxide (YBCO) Crystal structure of Y-123 Crystal structure of Y-358 Studies on YBCO superconducting materials Synthesis of YBCO Superconducting materials 2.6.1 Effect of various synthesis methods on properties of YBCO Superconducting materials 2.6.1.1 Pure Y-123 2.6.1.2 Pure Y-358 2.6.1.3 Doping in YBCO Superconductor 2.6.1.4 Effect of substitution of Ca in Y-123 2.6.1.5 Effect of substitution of Ca in Y-358 2.6.1.6 Effect of substitution of K in Y-123 2.6.1.7 Effect of substitution with different element at various site of Y-123 and Y-358

Х

3	THE	ORY AND MODEL OF SUPERCONDUCTORS	34
	3.1	Introduction	34
	3.2	Origin of Superconductivity	34
		3.2.1 What causes superconductivity?	35
	3.3	Cooper-pair wave function	35
	3.4	BCS Theory and Copper Pairs	37
	3.5	Coherence Length	38
	3.6	Type I Superconductors materials	39
		3.6.1 The Meissner Effect	40
	3.7	Type II Superconductors	43
		3.7.1 Mixed state	44
		3.7.2 Vortex structure	45
		3.7.3 Flux pinning, creep and flow mechanism in type II	47
	2.0	superconductors	4/
	3.8	Basic properties of the superconducting state	48
		3.8.1 Zero resistance	48
		3.8.2 Flux Quantization	49
		3.8.3 Proximity effect	50
	2.0	3.8.4 Josephson Effect	51
	3.9	High-Temperature Superconductivity (HTSC)	51
		3.9.1 Mechanism of High Temperature Superconductivity	52
		2.0.2 Pseudo gap	54
		2.0.4 Croin Alignment	50 56
		2.0.5 Effects of Doning	50 56
		2.0.6 Structural Defects	50 57
		2.0.7 CuO Planes as Conduction Levers	51
		2.0.8 Owner Vecencies	51
	2 10	5.9.8 Oxygen vacancies	51
	5.10	Application of superconductors	38
4	EXPI	ERIMENTAL PROCEDURE	59
	4.1	Introduction	59
	4.2	Sample Preparation	59
	4.3	Formation mechanism	62
		4.3.1 Calcium substitution in Barium site in Y-Ba-Cu-O	62
		4.3.2 Potassium substitution in Barium site in Y-Ba-Cu-O	63
	4.4	Calcination	64
	4.5	Sintering process	64
	4.6	X-ray Diffraction Analysis	66
	4.7	Microstructure analysis	67
	4.8	DC Electrical Resistance Measurement	67
	4.9	Alternating Current Susceptibility	68
	4.10	Electron spin resonance spectroscopy (ESR)	70
	4.11	Experimental Errors	72

 \bigcirc

5	RESU	TS AND DISCU	SSIONS	73
	5.1	ntroduction		73
	5.2	K-ray diffraction (XRD)	73
		5.2.1 Calcium su	bstitution in Barium site in Y-123	73
		2.2 Potassium	substitution in Barium site in Y-123	79
		.2.3 Calcium su	bstitution in Barium site in Y-358	83
		.2.4 Potassium	substitution in Barium site in Y-358	89
	5.3	Field Emission Sca	nning Electron Microscope (FESEM)	93
		5.3.1 Calcium su	bstitution in Barium site in Y-123	93
		.3.2 Potassium	substitution in Barium site in Y-123	96
		.3.3 Calcium su	bstitution in Barium site in Y-358	99
		.3.4 Potassium	substitution in Barium site in Y-358	103
	5.4	Energy Dispersive	X-ray spectroscopy of YBCO	106
		.4.1 Pure Y-123	and Y-358	106
		.4.2 Calcium su	bstitution in Barium site in Y-123 and Y-358	110
		.4.3 Potassium	substitution in Barium site in Y-123 and	
		Y-358		113
	5.5	Resistance Measur	ement	113
		5.1 Calcium su	bstitution in Barium site in Y-123	113
		5.2 Potassium	substitution in Barium site in Y-123	120
		5.5.3 Calcium su	bstitution in Barium site in Y-358	126
		5.4 Potassium	substitution in Barium site in Y-358	133
	5.6	AC Susceptibility	Analysis	139
		6.1 Calcium su	bstitution in Barium site in Y-123	139
		6.2 Potassium	substitution in Barium site in Y-123	148
		6.3 Calcium su	bstitution in Barium site in Y-358	154
		6.4 Potassium	substitution in Barium site in Y-358	161
	5.7	ESR spectra analys	sis	167
		7.1 Calcium a	nd Potassium substitution in Barium site in	
		Y-123		167
		7.2 Calcium a	nd Potassium substitution in Barium site in	
		Y-358		170
	CON			1.7.4
0	CON	LUSION AND FU	TURE DIRECTIONS	1/4
	6.1	Conclusion	W/	1/4
	6.2	buggestion for Fut	ure work	1/6
REFE	RENC	2		177
APPE	NDICE	,		196
BIOD	ATA O	STUDENT		205
LIST	OF PU	LICATIONS		206

LIST OF TABLES

Table		Page
2.1	Effect of different processing techniques for the preparation of Y-123 from literature	28
2.2	Effect of different processing techniques for the preparation of pure Y-358 from literature	29
2.3	Effect of different processing techniques for the preparation of substitution of Ca in Y-123 from literature	30
2.4	Effect of different processing techniques for the preparation of substitution of Ca in Y-358 from literature	31
2.5	Effect of different processing techniques for the preparation of substitution of K in Y-123 from literature	32
2.6	Effect of different processing techniques for the preparation of substitution with different element at various site of Y-123 and Y-358 from literature	33
3.1	Examples of type-II superconducting materials	44
4.1	Symbols, molecular weights, Source and purity of the compounds used to form the samples	60
5.1	Lattice parameter, orthorhombicity, unit cell volume and Crystallize size calculated using Rietveld refinement method for $Y(Ba_{1-x}Ca_x)_2Cu_3O_{7-\delta}$ with $x = 0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.08, 0.1$ and 0.125	78
5.2	Lattice parameter, orthorhombicity, unit cell volume and Crystallize size calculated using Rietveld refinement method for $Y(Ba_{1-x}K_x)_2Cu_3O_{7-\delta}$ with $x = 0.00, 0.03, 0.05, 0.08, 0.1, 0.125, 0.15, 0.175, 0.20$ and 0. 25	82
5.3	Lattice parameter, orthorhombicity, unit cell volume and Crystallize size calculated using Rietveld refinement method for $Y_3(Ba_{1-x}Ca_x)_5Cu_8O_{18-\delta}$ with $x = 0.00, 0.01, 0.02, 0.03, 0.05, 0.08, 0.10$ and 0. 20	88
5.4	Lattice parameter, orthorhombicity, unit cell volume and Crystallize size calculated using Rietveld refinement method for $Y_3(Ba_{1-x}K_x)_5Cu_8O_{18-\delta}$ with $x = 0.00, 0.03, 0.05, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18$ and 0. 20	92

 5.6 The atomic and weight percentage of the elements present in the sample pure Y-358 5.7 The atomic and weight percentage of the elements present in the Y(Ba_{1-x}Ca_x)₂Cu₃O_{7-δ} with x = 0.04 sample 5.8 The atomic and weight percentage of the elements present in the Y₃(Ba_{1-x}Ca_x)₅Cu₈O_{18-δ} with x = 0.2 sample 5.9 Calculated values of T_{c(onset)} (K), T_{c(R=zero)} (K) and Hole concentrations, p for Y(Ba_{1-x}Ca_x)₂Cu₃O_{7-δ} 5.10 The value of dR/dT peak against temperature and the peak width at half maximium of Y(Ba_{1-x}Ca_x)₂Cu₃O_{7-δ} 5.11 Calculated values of T_{c(onset)} (K), T_{c(R=zero)} (K) and Hole concentrations, p for Y(Ba_{1-x}Ca_x)₂Cu₃O_{7-δ} 5.12 The value of dR/dT peak against temperature and the peak width at half maximium of Y(Ba_{1-x}K_x)₂Cu₃O_{7-δ} 5.13 Calculated values of T_{c(onset)} (K), T_{c(R=zero)} (K) and Hole concentrations, p for Y₃(Ba_{1-x}K_x)₂Cu₃O_{7-δ} 5.14 The value of dR/dT peak against temperature and the peak width at half maximium of Y₃(Ba_{1-x}Ca_x)₅Cu₈O_{18-δ} 5.15 Calculated values of T_{c(onset)} (K), T_{c(R=zero)} (K) and Hole concentrations, p for Y₃(Ba_{1-x}Ca_x)₅Cu₈O_{18-δ} 5.16 The value of dR/dT peak against temperature and the peak width at half maximium of Y₃(Ba_{1-x}Ca_x)₅Cu₈O_{18-δ} 5.17 Summarized data of onset temperature of diamagnetism, T_{c-onset}, phase lock-in temperature, T_{cj} Josephson current, I_o Josephson energy, E_j coupling peak temperature, T_p and critical current density J_c(T_p) for sample Y(Ba_{1-x}Ca_x)₂Cu₃O_{7-δ} with x = 0.00, 0.02, 0.04, 0.05, 0.08 and 0.1 at frequency 295 Hz and applied magnetic field of H_{acc} = 50e 5.18 Summarized data of onset temperature of diamagnetism, T_{c-onset} phase lock-in temperature, T_{cj} Josephson current ticel phase lock in temperature, T_{cj} Josephson current phase lock in temperature, T_{cj} Josephson current the set phase 	5.5	The atomic and weight percentage of the elements present in the sample pure Y-123	109
 5.7 The atomic and weight percentage of the elements present in the Y(Ba_{1-x}Ca_x)₂Cu₃O_{7-δ} with x = 0.04 sample 5.8 The atomic and weight percentage of the elements present in the Y₃(Ba_{1-x}Ca_x)₅Cu₈O_{18-δ} with x = 0.2 sample 5.9 Calculated values of T_{c(onset)} (K), T_{c(R=zero)} (K) and Hole concentrations, p for Y(Ba_{1-x}Ca_x)₂Cu₃O_{7-δ} 5.10 The value of dR/dT peak against temperature and the peak width at half maximium of Y(Ba_{1-x}Ca_x)₂Cu₃O_{7-δ} 5.11 Calculated values of T_{c(onset)} (K), T_{c(R=zero)} (K) and Hole concentrations, p for Y(Ba_{1-x}Ca_x)₂Cu₃O_{7-δ} 5.12 The value of dR/dT peak against temperature and the peak width at half maximium of Y(Ba_{1-x}K_x)₂Cu₃O_{7-δ} 5.13 Calculated values of T_{c(onset)} (K), T_{c(R=zero)} (K) and Hole concentrations, p for Y₃(Ba_{1-x}K_x)₂Cu₃O_{7-δ} 5.14 The value of dR/dT peak against temperature and the peak width at half maximium of Y₃(Ba_{1-x}Ca_x)₅Cu₈O_{18-δ} 5.15 Calculated values of T_{c(onset)} (K), T_{c(R=zero)} (K) and Hole concentrations, p for Y₃(Ba_{1-x}Ca_x)₅Cu₈O_{18-δ} 5.16 The value of dR/dT peak against temperature and the peak width at half maximium of Y₃(Ba_{1-x}K_x)₅Cu₈O_{18-δ} 5.17 Summarized data of onset temperature of diamagnetism, T_{c-onset}, phase lock-in temperature, T_c j, losephson current, L₀, Josephson energy, E_j, coupling peak temperature, T_p and critical current density J_c(T_p) for sample Y(Ba_{1-x}Ca_x)₂Cu₃O_{7-δ} with x = 0.00, 0.02, 0.04, 0.05, 0.08 and 0.1 at frequency 295 Hz and applied magnetic field of H_{ac} = 5 Oe 5.18 Summarized data of onset temperature of diamagnetism, T_{c-onset}, phase lock-in temperature, T_c hosephase neurony L begehase neurony F 	5.6	The atomic and weight percentage of the elements present in the sample pure Y-358	109
5.8 The atomic and weight percentage of the elements present in the $Y_3(Ba_{1-x}Ca_x)_5Cu_8O_{18-\delta}$ with $x = 0.2$ sample 1. 5.9 Calculated values of $T_{c(onset)}$ (K), $T_{c(R=zero)}$ (K) and Hole concentrations, p for $Y(Ba_{1-x}Ca_x)_2Cu_3O_{7-\delta}$ 1. 5.10 The value of dR/dT peak against temperature and the peak width at half maximium of $Y(Ba_{1-x}Ca_x)_2Cu_3O_{7-\delta}$ 12. 5.11 Calculated values of $T_{c(onset)}$ (K), $T_{c(R=zero)}$ (K) and Hole concentrations, p for $Y(Ba_{1-x}Ca_x)_2Cu_3O_{7-\delta}$ 12. 5.12 The value of dR/dT peak against temperature and the peak width at half maximium of $Y(Ba_{1-x}K_x)_2Cu_3O_{7-\delta}$ 12. 5.13 Calculated values of $T_{c(onset)}$ (K), $T_{c(R=zero)}$ (K) and Hole concentrations, p for $Y_3(Ba_{1-x}Ca_x)_5Cu_8O_{1-\delta}$ 12. 5.14 The value of dR/dT peak against temperature and the peak width at half maximium of $Y_3(Ba_{1-x}Ca_x)_5Cu_8O_{1-\delta}$ 13. 5.15 Calculated values of $T_{c(onset)}$ (K), $T_{c(R=zero)}$ (K) and Hole concentrations, p for $Y_3(Ba_{1-x}Ca_x)_5Cu_8O_{1-\delta}$ 14. 5.16 The value of dR/dT peak against temperature and the peak width at half maximium of $Y_3(Ba_{1-x}Ca_x)_5Cu_8O_{1-8-\delta}$ 15. 5.17 Summarized data of onset temperature of diamagnetism, $T_{c-onset}$, phase lock-in temperature, T_{c_j} losephson current, I_{o_j} Josephson energy, E_{j_j} coupling peak temperature, T_p and critical current density $J_c(T_p)$ for sample $Y(Ba_{1-x}Ca_x)_2Cu_3O_{7-\delta}$ with $x = 0.00, 0.02, 0.04, 0.05, 0.08$ and 0.1 at frequency 295 Hz and applied magnetic field of $H_{ac} = 5$ Oe 14. 5.18 Summarized data of onset temperature of diamagnetism, $T_{c-onset}$, phase lock-in temperature, T_p and critical current density $J_c(T_p)$ for sample $Y(Ba_{1-x}Ca_x)_2Cu_3O_{7-\delta}$ with $x = 0.00, 0.02, 0.04, 0.05, 0.08$ and 0.1 at frequency 295 Hz and applied magnetic field of $H_{ac} = 5$ Oe 14.	5.7	The atomic and weight percentage of the elements present in the $Y(Ba_{1-x}Ca_x)_2Cu_3O_{7-\delta}$ with $x = 0.04$ sample	112
 5.9 Calculated values of T_{c(onset)} (K), T_{c(R=zero)} (K) and Hole concentrations, p for Y(Ba_{1-x}Ca_x)₂Cu₃O_{7-δ} 5.10 The value of dR/dT peak against temperature and the peak width at half maximium of Y(Ba_{1-x}Ca_x)₂Cu₃O_{7-δ} 5.11 Calculated values of T_{c(onset)} (K), T_{c(R=zero)} (K) and Hole concentrations, p for Y(Ba_{1-x}K_x)₂Cu₃O_{7-δ} 5.12 The value of dR/dT peak against temperature and the peak width at half maximium of Y(Ba_{1-x}K_x)₂Cu₃O_{7-δ} 5.13 Calculated values of T_{c(onset)} (K), T_{c(R=zero)} (K) and Hole concentrations, p for Y₃(Ba_{1-x}K_x)₂Cu₃O_{7-δ} 5.14 The value of dR/dT peak against temperature and the peak width at half maximium of Y₃(Ba_{1-x}Ca_x)₅Cu₈O_{18-δ} 5.15 Calculated values of T_{c(onset)} (K), T_{c(R=zero)} (K) and Hole concentrations, p for Y₃(Ba_{1-x}K_x)₅Cu₈O_{18-δ} 5.16 The value of dR/dT peak against temperature and the peak width at half maximium of Y₃(Ba_{1-x}Ka_x)₅Cu₈O_{18-δ} 5.16 The value of dR/dT peak against temperature and the peak width at half maximium of Y₃(Ba_{1-x}Ka_x)₅Cu₈O_{18-δ} 5.17 Summarized data of onset temperature of diamagnetism, T_{c-onset}, phase lock-in temperature, T_c and critical current density J_c(T_p) for sample Y(Ba_{1-x}Ca_x)₂Cu₃O_{7-δ} with x = 0.00, 0.02, 0.04, 0.05, 0.08 and 0.1 at frequency 295 Hz and applied magnetic field of H_{ac} = 5 Oe 5.18 Summarized data of onset temperature of diamagnetism, T_{c-onset}, phase lock in temperature, T_c had critical current density J_c(T_p) for sample Y(Ba_{1-x}Ca_x)₂Cu₃O_{7-δ} with x = 0.00, 0.02, 0.04, 0.05, 0.08 and 0.1 at frequency 295 Hz and applied magnetic field of H_{ac} = 5 Oe 	5.8	The atomic and weight percentage of the elements present in the $Y_3(Ba_{1-x}Ca_x)_5Cu_8O_{18-\delta}$ with $x = 0.2$ sample	112
 5.10 The value of <i>dR/dT</i> peak against temperature and the peak width at half maximium of Y(Ba_{1-x}Ca_x)₂Cu₃O_{7-δ} 5.11 Calculated values of <i>T_{c(onset)}</i> (K), <i>T_{c(R=zero)}</i> (K) and Hole concentrations, <i>p</i> for Y(Ba_{1-x}K_x)₂Cu₃O_{7-δ} 5.12 The value of <i>dR/dT</i> peak against temperature and the peak width at half maximium of Y(Ba_{1-x}K_x)₂Cu₃O_{7-δ} 5.13 Calculated values of <i>T_{c(onset)}</i> (K), <i>T_{c(R=zero)}</i> (K) and Hole concentrations, <i>p</i> for Y₃(Ba_{1x}Ca_x)₅Cu₈O_{18-δ} 5.14 The value of <i>dR/dT</i> peak against temperature and the peak width at half maximium of Y₃(Ba_{1-x}Ca_x)₅Cu₈O_{18-δ} 5.15 Calculated values of <i>T_{c(onset)}</i> (K), <i>T_{c(R=zero)}</i> (K) and Hole concentrations, <i>p</i> for Y₃(Ba_{1-x}K_x)₅Cu₈O_{18-δ} 5.15 Calculated values of <i>T_{c(onset)}</i> (K), <i>T_{c(R=zero)}</i> (K) and Hole concentrations, <i>p</i> for Y₃(Ba_{1-x}K_x)₅Cu₈O_{18-δ} 5.15 Calculated values of <i>T_{c(onset)}</i> (K), <i>T_{c(R=zero)}</i> (K) and Hole concentrations, <i>p</i> for Y₃(Ba_{1-x}K_x)₅Cu₈O_{18-δ} 5.16 The value of <i>dR/dT</i> peak against temperature and the peak width at half maximium of Y₃(Ba_{1-x}K_x)₅Cu₈O_{18-δ} 5.17 Summarized data of onset temperature of diamagnetism, <i>T_{c-onset}</i>, phase lock-in temperature, <i>T_{cj}</i> Josephson current, <i>I_o</i>, Josephson energy, <i>E_j</i> coupling peak temperature, <i>T_p</i> and critical current density <i>J_c(T_p)</i> for sample Y(Ba_{1-x}Ca_x)₂Cu₃O_{7-δ} with <i>x</i> = 0.00, 0.02, 0.04, 0.05, 0.08 and 0.1 at frequency 295 Hz and applied magnetic field of <i>H_{ac} =</i> 5 Oe 5.18 Summarized data of onset temperature of diamagnetism, <i>T_{c-onset}</i>, phase lock in temperature, <i>T_v</i> Josephson current <i>L</i> Josephson energy. <i>E</i> 	5.9	Calculated values of $T_{c(\text{onset})}$ (K), $T_{c(\text{R}=\text{zero})}$ (K) and Hole concentrations, p for Y(Ba _{1-x} Ca _x) ₂ Cu ₃ O _{7-δ}	119
 5.11 Calculated values of T_{c(onset)} (K), T_{c(R=zero)} (K) and Hole concentrations, p for Y(Ba_{1-x}K_x)₂Cu₃O_{7-δ} 5.12 The value of dR/dT peak against temperature and the peak width at half maximium of Y(Ba_{1-x}K_x)₂Cu₃O_{7-δ} 5.13 Calculated values of T_{c(onset)} (K), T_{c(R=zero)} (K) and Hole concentrations, p for Y₃(Ba_{1-x}Ca_x)₅Cu₈O_{18-δ} 5.14 The value of dR/dT peak against temperature and the peak width at half maximium of Y₃(Ba_{1-x}Ca_x)₅Cu₈O_{18-δ} 5.15 Calculated values of T_{c(onset)} (K), T_{c(R=zero)} (K) and Hole concentrations, p for Y₃(Ba_{1-x}K_x)₅Cu₈O_{18-δ} 5.16 The value of dR/dT peak against temperature and the peak width at half maximium of Y₃(Ba_{1-x}Ka_x)₅Cu₈O_{18-δ} 5.17 Summarized data of onset temperature of diamagnetism, T_{c-onset}, phase lock-in temperature, T_p and critical current density J_c(T_p) for sample Y(Ba_{1-x}Ca_x)₂Cu₃O_{7-δ} with x = 0.00, 0.02, 0.04, 0.05, 0.08 and 0.1 at frequency 295 Hz and applied magnetic field of H_{ac} = 5 Oe 5.18 Summarized data of onset temperature of diamagnetism, T_{c-onset}, phase lock in temperature, T_v Loconbean current L Loconbean current E 	5.10	The value of dR/dT peak against temperature and the peak width at half maximium of $Y(Ba_{1-x}Ca_x)_2Cu_3O_{7-\delta}$	120
 5.12 The value of <i>dR/dT</i> peak against temperature and the peak width at half maximium of Y(Ba_{1-x}K_x)₂Cu₃O_{7.6} 5.13 Calculated values of <i>T_c(onset)</i> (K), <i>T_c(R=zero)</i> (K) and Hole concentrations, <i>p</i> for Y₃(Ba_{1x}Ca_x)₅Cu₈O_{18.6} 5.14 The value of <i>dR/dT</i> peak against temperature and the peak width at half maximium of Y₃(Ba_{1-x}Ca_x)₅Cu₈O_{18.6} 5.15 Calculated values of <i>T_c(onset)</i> (K), <i>T_c(R=zero)</i> (K) and Hole concentrations, <i>p</i> for Y₃(Ba_{1-x}Ca_x)₅Cu₈O_{18.6} 5.16 Calculated values of <i>T_c(onset)</i> (K), <i>T_c(R=zero)</i> (K) and Hole concentrations, <i>p</i> for Y₃(Ba_{1-x}Ka_x)₅Cu₈O_{18.6} 5.16 The value of <i>dR/dT</i> peak against temperature and the peak width at half maximium of Y₃(Ba_{1-x}Ka_x)₅Cu₈O_{18.6} 5.17 Summarized data of onset temperature of diamagnetism, <i>T_c</i>-onset, phase lock-in temperature, <i>T_c</i>, Josephson current, <i>I_o</i>, Josephson energy, <i>E_j</i>, coupling peak temperature, <i>T_p</i> and critical current density <i>J_c(T_p)</i> for sample Y(Ba_{1-x}Ca_x)₂Cu₃O₇₋₈ with <i>x</i> = 0.00, 0.02, 0.04, 0.05, 0.08 and 0.1 at frequency 295 Hz and applied magnetic field of <i>H_{ac}</i> = 5 Oe 5.18 Summarized data of onset temperature of diamagnetism, <i>T_c</i>-onset, phase lock in temperature, <i>T_v</i> Josephson current <i>L</i> Josephson energy, <i>E</i> 	5.11	Calculated values of $T_{c(onset)}$ (K), $T_{c(R=zero)}$ (K) and Hole concentrations, <i>p</i> for Y(Ba _{1-x} K _x) ₂ Cu ₃ O _{7-δ}	126
 5.13 Calculated values of T_{c(onset)} (K), T_{c(R=zero)} (K) and Hole concentrations, p for Y₃(Ba_{1x}Ca_x)₅Cu₈O_{18-δ} 5.14 The value of dR/dT peak against temperature and the peak width at half maximium of Y₃(Ba_{1-x}Ca_x)₅Cu₈O_{18-δ} 5.15 Calculated values of T_{c(onset)} (K), T_{c(R=zero)} (K) and Hole concentrations, p for Y₃(Ba_{1-x}Ka_x)₅Cu₈O_{18-δ} 5.16 The value of dR/dT peak against temperature and the peak width at half maximium of Y₃(Ba_{1-x}Ka_x)₅Cu₈O_{18-δ} 5.17 Summarized data of onset temperature of diamagnetism, T_{c-onset}, phase lock-in temperature, T_p and critical current density J_c(T_p) for sample Y(Ba_{1-x}Ca_x)₂Cu₃O_{7-δ} with x = 0.00, 0.02, 0.04, 0.05, 0.08 and 0.1 at frequency 295 Hz and applied magnetic field of H_{ac} = 5 Oe 5.18 Summarized data of onset temperature of diamagnetism, T_{c-onset}, phase lock in temperature, T_y Lecenberg current L Lecenberg current F 	5.12	The value of dR/dT peak against temperature and the peak width at half maximium of Y(Ba _{1-x} K _x) ₂ Cu ₃ O _{7-\delta}	126
 5.14 The value of <i>dR/dT</i> peak against temperature and the peak width at half maximium of Y₃(Ba_{1-x}Ca_x)₅Cu₈O_{18-δ} 5.15 Calculated values of <i>T_{c(onset)}</i> (K), <i>T_{c(R=zero)}</i> (K) and Hole concentrations, <i>p</i> for Y₃(Ba_{1-x}K_x)₅Cu₈O_{18-δ} 5.16 The value of <i>dR/dT</i> peak against temperature and the peak width at half maximium of Y₃(Ba_{1-x}Ka_x)₅Cu₈O_{18-δ} 5.17 Summarized data of onset temperature of diamagnetism, <i>T_{c-onset}</i>, phase lock-in temperature, <i>T_{cj}</i>, Josephson current, <i>I_o</i>, Josephson energy, <i>E_j</i>, coupling peak temperature, <i>T_p</i> and critical current density <i>J_c(T_p)</i> for sample Y(Ba_{1-x}Ca_x)₂Cu₃O_{7-δ} with <i>x</i> = 0.00, 0.02, 0.04, 0.05, 0.08 and 0.1 at frequency 295 Hz and applied magnetic field of <i>H_{ac}</i> = 5 Oe 5.18 Summarized data of onset temperature of diamagnetism, <i>T_{c-onset}</i>, phase lock in temperature. <i>T_v</i> Josephson current <i>L</i> Josephson current <i>L</i> Josephson current <i>L</i> 	5.13	Calculated values of $T_{c(onset)}$ (K), $T_{c(R=zero)}$ (K) and Hole concentrations, p for Y ₃ (Ba _{1x} Ca _x) ₅ Cu ₈ O _{18-δ}	132
 5.15 Calculated values of T_{c(onset)} (K), T_{c(R=zero)} (K) and Hole concentrations, p for Y₃(Ba_{1-x}K_x)₅Cu₈O_{18-δ} 5.16 The value of dR/dT peak against temperature and the peak width at half maximium of Y₃(Ba_{1-x}Ka_x)₅Cu₈O_{18-δ} 5.17 Summarized data of onset temperature of diamagnetism, T_{c-onset}, phase lock-in temperature, T_{cj}, Josephson current, I_o, Josephson energy, E_j, coupling peak temperature, T_p and critical current density J_c(T_p) for sample Y(Ba_{1-x}Ca_x)₂Cu₃O_{7-δ} with x = 0.00, 0.02, 0.04, 0.05, 0.08 and 0.1 at frequency 295 Hz and applied magnetic field of H_{ac} = 5 Oe 5.18 Summarized data of onset temperature of diamagnetism, T_{c-onset}, phase lock in temperature, T_y Josephson current L. Josephson current, F_y 	5.14	The value of dR/dT peak against temperature and the peak width at half maximium of Y ₃ (Ba _{1-x} Ca _x) ₅ Cu ₈ O _{18-δ}	133
 5.16 The value of <i>dR/dT</i> peak against temperature and the peak width at half maximium of Y₃(Ba_{1-x}Ka_x)₅Cu₈O_{18-δ} 5.17 Summarized data of onset temperature of diamagnetism, <i>T</i>_{c-onset}, phase lock-in temperature, <i>T</i>_{cj}, Josephson current, <i>I</i>_o, Josephson energy, <i>E</i>_j, coupling peak temperature, <i>T</i>_p and critical current density <i>J</i>_c(<i>T</i>_p) for sample Y(Ba_{1-x}Ca_x)₂Cu₃O_{7-δ} with <i>x</i> = 0.00, 0.02, 0.04, 0.05, 0.08 and 0.1 at frequency 295 Hz and applied magnetic field of <i>H</i>_{ac} = 5 Oe 5.18 Summarized data of onset temperature of diamagnetism, <i>T</i>_{c-onset}, phase lock in temperature, <i>T</i>_c. Josephson current, <i>L</i>. Josephson correct, <i>L</i>. 	5.15	Calculated values of $T_{c(onset)}$ (K), $T_{c(R=zero)}$ (K) and Hole concentrations, <i>p</i> for Y ₃ (Ba _{1-x} K _x) ₅ Cu ₈ O _{18-δ}	138
 5.17 Summarized data of onset temperature of diamagnetism, T_{c-onset}, phase lock-in temperature, T_{cj}, Josephson current, I_o, Josephson energy, E_j, coupling peak temperature, T_p and critical current density J_c(T_p) for sample Y(Ba_{1-x}Ca_x)₂Cu₃O_{7-δ} with x = 0.00, 0.02, 0.04, 0.05, 0.08 and 0.1 at frequency 295 Hz and applied magnetic field of H_{ac} = 5 Oe 5.18 Summarized data of onset temperature of diamagnetism, T_{c-onset}, phase lock in temperature, T_v, Josephson current, I_v, Josephson current, I_v 	5.16	The value of dR/dT peak against temperature and the peak width at half maximium of Y ₃ (Ba _{1-x} Ka _x) ₅ Cu ₈ O _{18-δ}	139
5.18 Summarized data of onset temperature of diamagnetism, $T_{\text{c-onset}}$, phase look in temperature $T_{\text{c-losenbean current}}$.	5.17	Summarized data of onset temperature of diamagnetism, $T_{c-onset}$, phase lock-in temperature, T_{cj} , Josephson current, I_o , Josephson energy, E_{j} , coupling peak temperature, T_p and critical current density $J_c(T_p)$ for sample Y(Ba _{1-x} Ca _x) ₂ Cu ₃ O _{7-δ} with $x = 0.00$, 0.02, 0.04, 0.05, 0.08 and 0.1 at frequency 295 Hz and applied magnetic field of $H_{ac} = 5$ Oe	147
coupling peak temperature, T_{p} and critical current density $J_c(T_p)$ for sample Y(Ba _{1-x} K _x) ₂ Cu ₃ O _{7-δ} with $x = 0.00, 0.02, 0.04, 0.05, 0.08$ and 0.1 at frequency 295 Hz and applied magnetic field of $H_{ac} = 5$ Oe	5.18	Summarized data of onset temperature of diamagnetism, $T_{c-onset}$, phase lock-in temperature, T_{cj} , Josephson current, I_o , Josephson energy, $E_{j,c}$ coupling peak temperature, T_p and critical current density $J_c(T_p)$ for sample Y(Ba _{1-x} K _x) ₂ Cu ₃ O _{7-δ} with $x = 0.00, 0.02, 0.04, 0.05, 0.08$ and 0.1 at frequency 295 Hz and applied magnetic field of $H_{ac} = 5$ Oe	153

C

- 5.19 Summarized data of onset temperature of diamagnetism, $T_{c-onset}$, phase lock-in temperature, T_{cj} , Josephson current, I_o , Josephson energy, E_j , coupling peak temperature, T_p and critical current density $J_c(T_p)$ for sample Y₃(Ba_{1-x}Ca_x)₅Cu₈O_{18- $\delta}$ with x = 0.00, 0.02, 0.05and 0.2 at frequency 295 Hz and applied magnetic field of $H_{ac} = 5$ Oe}
- 5.20 Summarized data of onset temperature of diamagnetism, $T_{c\text{-onset}}$, phase lock-in temperature, T_{cj} , Josephson current, I_o , Josephson energy, $E_{j,c}$ coupling peak temperature, T_p and critical current density $J_c(T_{pm})$ for sample Y₃(Ba_{1-x}K_x)₅Cu₈O_{18- δ} with x = 0.00, 0.03, 0.08, 0.12 and 0.16 at frequency 295 Hz and applied magnetic field of *Hac* = 5 Oe
- 5.21 Calculated g-values, ESR linewidth (ΔB_{PP}) and oxygen content, y for sample Y(Ba_{1-x}Ca_x)₂Cu₃O_{7- δ} with x = 0.00, 0.01, 0.03, 0.05, 0.08 and 0.125
- 5.22 Calculated g-values, ESR linewidth (ΔB_{PP}) and oxygen content, y for sample Y(Ba_{1-x}K_x)₂Cu₃O_{7- δ} with x = 0.00, 0.03, 0.08, 0.125, 0.175 and 0.25
- 5.23 Calculated g-values, ESR linewidth (ΔB_{PP}) and oxygen content, y for sample $Y_3(Ba_{1-x}Ca_x)_5Cu_8O_{18-\delta}$ with x = 0.00, 0.02, 0.08, 0.05, 0.10 and 0.20
- 5.24 Calculated *g*-values, ESR linewidth (ΔB_{PP}) and oxygen content, y for sample $Y_3(Ba_{1-x}K_x)_5Cu_8O_{18-\delta}$ with x = 0.00, 0.03, 0.08, 0.12, 0.16 and 0.20

173

160

166

169

169

173

LIST OF FIGURES

Figure

- 2.1 The structure of YBCO (a) orthorhombic structure ($a_0 = 3.823$ Å, $b_0 = 3.885$ Å, $c_0 = 11.7$ Å) (b) tetragonal structure ($a_0 = b_0 = 3.86$ Å, $c_0 = 11.7$ Å)
- 2.2 The idealized structure of Y-123 shows evolution from the perovskite structure (a) Stacking of 3 perovskite units; (b) Shift of the origin; (c) Removal of some of the oxygen to the give correct chemical composition.
- 2.3 Proposed crystal structure of Y-358 with five CuO₂ planes I to V and three CuO chains I to III
- 3.1 Schematic illustration of the Cooper-pair wave function in conventional superconductors. The diameter of a pair is around 100-1000nm, while the wavelength is about 1nm. So, the diameter of a pair is infact equal to hundreds of wavelengths (only a few shown are in this sketch). The frequency of oscillation is of the order of 10^{15} Hz (f =2E_F/h)
- 3.2 Schematic representation of the probability distribution of a Cooper pair in relative coordinates. The maximum probability is located between two electrons bound by a net attractive force
- 3.3 Classical description of the coupling of a Cooper pair (Khachan, 2003) 38
- 3.4 Type-I superconductor (a) B a function of temperature (b) The magnetic field within the material (B) as the function of applied magnetic field (H)
- 3.5 (a) In a perfect conductor the flux field when demagnetizing factor is nearly zero for a slab of finite length (b) and when it is 1/2 for a cylinder in transverse field
- 3.6 (a) Pattern of the exterior applied before the cooling is trapped so that dB/dt = 0 inside; (b) in a metal superconductor the flux is always expelled so that B = 0 inside
- 3.7 A superconductive disk, cooled by liquid nitrogen on the bottom levitates the magnet above. A current is induced by the floating magnet, leading to a repulsion of a magnetic field, in the superconductor, and levitation of the two magnetic fields to the magnet
- 3.8 Variation of (a) B as with temperature and (b) The magnetic field within the material (B) with magnetic field (H) in a type-II superconductor

9

10

36

36

40

41

42

44

42

3.9	The mixed state, showing normal cores and encircling supercurrent vortices. The vertical lines represent the flux threading the cores. The surface current maintains the bulk diamagnetism	45
3.10	Comparison between flux penetration behavior in type-I and type-II superconductors having the same thermodynamic critical field, <i>Hc</i> .	46
3.11	The structure of single vortex	47
3.12	Flux-flow mechanisms. Lorentz force is generated by the presence of current in a magnetic field, which tilts the staircase, allowing lines of flux to easily hop out of their pinning wells	48
3.13	Current voltage characteristic of Josephson junction, DC current flows without applied voltage up to a critical current, ic	51
3.14	Timeline of superconducting materials	54
3.15	Phase diagram of high temperature superconductors. p represents doping, for Anti ferro magnetically ordered phase, SC superconducting phase, and pseudo gap state	55
4.1	Flow chart for samples preparation	61
4.2	Suggested mechanism of the interaction between Ca substitution in YBCO and PVP	62
4.3	Suggested mechanism of the interaction between K substitution in YBCO and PVP	63
4.4	(a -b): A characteristic temperature-time profile for pre-calcination and calcination as measured in the furnace	65
4.5	A characteristic temperature – time profile for sintering as measured in the furnace	66
4.6	Bragg's law x-ray reflection	67
4.7	The four point probe technique	68
4.8	Schematic views of Cold Console and its main components	70
4.9	Induction of the spin state energies as function of the magnetic field B_0	71
4.10	The EPR experiment	72
5.1	X-ray diffraction pattern of pure Y-123	74
5.2	X-ray diffraction pattern for Y(Ba _{1-x} Ca _x) ₂ Cu ₃ O _{7-δ_1} with $x = 0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.08, 0.1$ and 0.125	76

5.3	Lattice parameters and orthorhombicity of pattern for $Y(Ba_{1-x}Ca_x)_2Cu_3O_{7-\delta}$ with $x = 0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.08, 0.1$ and 0.125	77
5.4	X-ray diffraction pattern for Y(Ba _{1-x} K _x) ₂ Cu ₃ O _{7-δ_1} with $x = 0.00, 0.03, 0.05, 0.08, 0.1, 0.125, 0.15, 0.175, 0.2$ and 0.25	80
5.5	Lattice parameters and orthorhombicity of pattern for $Y(Ba_{1-x}K_x)_2Cu_3O_{7-\delta}$ with $x = 0.00, 0.03, 0.05, 0.08, 0.1, 0.125, 0.15, 0.175, 0.2$ and 0.25	81
5.6	X-ray diffraction pattern of pure Y-358 and Y-123	84
5.7	X-ray diffraction pattern for $Y_3(Ba_{1-x}Ca_x)_5Cu_8O_{18-\delta}$, with $x = 0.00, 0.01, 0.02, 0.03, 0.05, 0.08, 0.1$ and 0.2	86
5.8	Lattice parameters and orthorhombicity of pattern for $Y_3(Ba_{1-x}Ca_x)_5Cu_8O_{18-\delta}$ with $x = 0.00, 0.01, 0.02, 0.03, 0.05, 0.08, 0.1$ and 0.2	87
5.9	X-ray diffraction pattern for $Y_3(Ba_{1-x}K_x)_5Cu_8O_{18-\delta}$, with $x = 0.00, 0.03, 0.05, 0.08, 0.1, 0.12, 0.14, 0.16$ and 0.2	90
5.10	Lattice parameters and orthorhombicity of pattern for $Y_3(Ba_{1-x}K_x)_5Cu_8O_{18-\delta}$ with $x = 0.00, 0.02, 0.03, 0.05, 0.08, 0.10, 0.12, 0.14, 0.16$ and 0.20	91
5.11	FESEM micrograph of $Y(Ba_{1-x}Ca_x)_2Cu_3O_{7-\delta}$ fractured surfaces with (x = 0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.08, 0.1 and 0.125) samples at 5000 X magnification	96
5.12	FESEM micrograph of $Y(Ba_{1-x}K_x)_2Cu_3O_{7-\delta}$ fractured surfaces with (<i>x</i> = 0.00,0.03, 0.05, 0.08, 0.1, 0.125, 0.15, 0. 175, 0. 20 and 0.25) samples at 5000 X magnification	99
5.13	FESEM images of the microstructures of pure Y-358 and Y-123	100
5.14	FESEM micrograph of $Y_3(Ba_{1-x}Ca_x)_5Cu_8O_{18-\delta}$ fractured surfaces with (<i>x</i> = 0.00, 0.01, 0.02, 0.03, 0.05, 0.08, 0.1 and 0.2) samples at 5000 X magnification	102
5.15	FESEM micrograph of $Y_3(Ba_{1-x}K_x)_5Cu_8O_{18-\delta}$ fractured surfaces with (<i>x</i> = 0.03, 0.05, 0.08, 0.1, 0.15, 0.14, 0.16, 0.18 and 0.2) samples at 5000 X magnification	105
5.16	(a) EDX spectrum, (b, c. d) EDX peaks of each element present in the pure Y-123 sample for spectrum 1, spectrum 2 and spectrum 3 respectively	107

5.17	(a) EDX spectrum (b, c. d) EDX peaks of each element present in the pure Y-358 sample for spectrum 1, spectrum 2, and spectrum 3 respectively	108
5.18	(a) EDX spectrum (b, c. d) EDX peaks of each element present in the $Y(Ba_{1-x}Ca_x)_2Cu_3O_{7-\delta}$ with $x = 0.04$ sample for spectrum 1, spectrum 2 and spectrum 3 respectively	110
5.19	(a) EDX spectrum (b, c. d) EDX peaks of each element present in the $Y_3(Ba_{1-x}Ca_x)_5Cu_8O_{18-\delta}$ with $x = 0.2$ sample for spectrum 1, spectrum 2 and spectrum 3, spectrum 4 respectively	111
5.20	Resistance as a function of temperature for pure Y-123	114
5.21	Comparison of R–T curves of Y(Ba _{1-x} Ca _x) ₂ Cu ₃ O _{7-δ} with $x = 0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.08, 0.1$ and 0.125	118
5.22	Comparison of $T_{c(R=zero)}$ and $T_{c(onset)}$ curves of $Y(Ba_{1-x}Ca_x)_2Cu_3O_{7-\delta}$ with $x = 0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.08, 0.1$ and 0.125	119
5.23	Comparison of R–T curves of Y(Ba _{1-x} K _x) ₂ Cu ₃ O _{7-δ} with $x = 0.00, 0.03, 0.05, 0.08, 0.1, 0.125, 0.15, 0.175, 0.2$ and 0.25	125
5.24	Comparison of $T_{c(R=zero)}$ and $T_{c(onset)}$ curves of Y(Ba _{1-x} K _x) ₂ Cu ₃ O _{7-δ} with $x = 0.00, 0.03, 0.05, 0.08, 0.1, 0.125, 0.15, 0.175, 0.2$ and 0.25	125
5.25	Comparison of R-T curves of pure Y-123 and Y-358	127
5.26	Comparison of R–T curves of $Y_3(Ba_{1-x}Ca_x)_5Cu_8O_{18-\delta}$ with $x = 0.00$, 0.01, 0.02, 0.03, 0.05, 0.08, 0.1 and 0.2	131
5.27	Comparison of $T_{c(R=zero)} - T_{c \ (onset)}$ curves of Y ₃ (Ba _{1-x} Ca _x) ₅ Cu ₈ O _{18-δ} with $x = 0.00, 0.01, 0.02, 0.03, 0.05, 0.08, 0.1$ and 0.2	132
5.28	Comparison of R–T curves of $Y_3(Ba_{1-x}K_x)_5Cu_8O_{18-\delta}$ with $x = 0.03$, 0.05, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18 and 0.2	137
5.29	Comparison of $T_{c(R=zero)}$ and $T_{c(onset)}$ curves of $Y_3(Ba_{1-x}K_x)_5Cu_8O_{18-\delta}$ with $x=0.00, 0.03, 0.05, 0.08, 0.1, 0.12, 0.14, 0.16$ and 0.2	138
5.30	AC susceptibility of pure Y-123 at frequency 295 Hz and applied magnetic field of $H_{ac} = 5$ Oe	140
5.31	AC susceptibility of Y(Ba _{1-x} Ca _x) ₂ Cu ₃ O _{7-δ} with $x = 0.00, 0.02, 0.04, 0.05, 0.08$ and 0.1 at frequency 295 Hz and applied magnetic field of $H_{ac} = 5$ Oe	144
5.32	Normalized AC susceptibility of $Y(Ba_{1-x}Ca_x)_2Cu_3O_{7-\delta}$ with $x = 0.00$, 0.02, 0.04, 0.05, 0.08 and 0.1 at frequency 295 Hz and applied magnetic field of $H_{ac} = 5$ Oe	145

5.33 (a) Real part and (b) Imaginary part of $Y(Ba_{1-x}Ca_x)_2Cu_3O_{7-\delta}$ with x = 0.00, 0.02, 0.04, 0.05, 0.08 and 0.1 at frequency 295 Hz and applied magnetic field of $H_{ac} = 5$ Oe 146 5.34 AC susceptibility of $Y(Ba_{1-x}K_x)_2Cu_3O_{7-\delta}$ with x = 0.00, 0.03, 0.08,0.1 and 0.15 at frequency 295 Hz and applied magnetic field of $H_{ac} = 5$ 150 Oe 5.35 (a) Real part and (b) Imaginary part of $Y(Ba_{1-x}K_x)_2Cu_3O_{7-\delta}$ with x = 0.00, 0.03, 0.08, 0.1 and 0.15 at frequency 295 Hz and applied 151 magnetic field of $H_{ac} = 5$ Oe 5.36 Normalized AC susceptibility of $Y(Ba_{1-x}K_x)_2Cu_3O_{7-\delta}$ with x = 0.00, 0.03, 0.08, 0.1 and 0.15 at frequency 295 Hz and applied magnetic field of $H_{\rm ac} = 5$ Oe 152 5.37 AC susceptibility of Y-358 and Y-123 at frequency 295 Hz and applied magnetic field of $H_{ac} = 5$ Oe 155 5.38 AC susceptibility of $Y_3(Ba_{1-x}Ca_x)_5Cu_8O_{18-\delta}$ with x = 0.00, 0.02, 0.05and 0.2 at frequency 295 Hz and applied magnetic field of $H_{ac} = 5$ Oe 158 5.39 Normalized AC susceptibility of $Y_3(Ba_{1-x}Ca_x)_5Cu_8O_{18-\delta}$ with x = 0.00, 0.02, 0.05 and 0.2 at frequency 295 Hz and applied magnetic field of $H_{\rm ac} = 5 \, \mathrm{Oe}$ 158 5.40 (a) Real part and (b) Imaginary part of $Y_3(Ba_{1-x}Ca_x)_5Cu_8O_{18-\delta}$ with x = 0.00, 0.02, 0.05 and 0.2 at frequency 295 Hz and applied magnetic field of $H_{ac} = 5$ Oe. 159 5.41 AC susceptibility of $Y_3(Ba_{1-x}K_x)_5Cu_8O_{18-\delta}$ with x = 0.00, 0.03, 0.08,012 and 0.16 at frequency 295 Hz and applied magnetic field of $H_{ac} = 5$ Oe 163 5.42: Normalized AC susceptibility of $Y_3(Ba_{1-x}K_x)_5Cu_3O_{18-\delta}$ with x = 0.00, 0.03, 0.08, 0.12 and 0.16 at frequency 295 Hz and applied magnetic 164 field of $H_{ac} = 5$ Oe 5.43 (a) Real part and (b) Imaginary part of $Y_3(Ba_{1-x}Ca_x)_5Cu_8O_{18-\delta}$ with x = 0.00, 0.03, 0.08, 0.12 and 0.16 at frequency 295 Hz and applied magnetic field of $H_{ac} = 5$ Oe 165 5.44 Shows ESR spectra patterns for x = 0.00, 0.01, 0.03, 0.05, 0.08 and 0.125 of the Ca substituted $Y(Ba_{1-x}Ca_x)_2Cu_3O_{7-\delta}$ samples measured at room temperature 168 5.45 ESR spectra patterns for x = 0.00, 0.03, 0.08, 0.125, 0.175 and 0.25 of the K substituted $Y(Ba_{1-x}K_x)_2Cu_3O_{7-\delta}$ samples measured at room temperature 168

- 5.46 Shows ESR spectra patterns for pure Y-358 and Y-123samples measured at room temperature
- 5.47 ESR spectra patterns for x = 0.00, 0.02, 0.04, 0.05, 0.10 and 0.20 of the Ca substituted $Y_3(Ba_{1-x}Ca_x)_5Cu_8O_{18-\delta}$ samples measured at room temperature
- 5.48 ESR spectra patterns for x = 0.00, 0.03, 0.08, 0.12, 0.16 and 0.2 of the K substituted $Y_3(Ba_{1-x}K_x)_5Cu_8O_{18-\delta}$ samples measured at room temperature

171

172

LIST OF ABBREVIATIONS AND SYMBOLS

HTSC	High Temperature Superconductor	
LTSC	Low Temperature Superconductor	
YBCO	Yttrium Barium Copper Oxide	
Y-123	Family member in YBa ₂ Cu ₃ O _{7-δ}	
Y-124	Family member in YBa ₂ Cu ₄ O _{7-δ}	
Y-358	Family member in Y ₃ Ba ₅ Cu ₈ O _{18-δ}	
Ca	Calcium	
Ba	Barium	
К	Potassium	
REBCO	Rear-earth Barium Cooper Oxide	
RE	Rare-earth	
T_C	Critical Temperature (K)	
T _c (R=zero)	Zero resistance temperature	
T _c (onset)	Onset of superconducting transition	
Tc max	Maximum critical temperature	
ΔTc	Delta critical temperature	
°C	Degrees Celsius	
T_p	Coupling peak temperature	
К	Kelvin	
Т	Temperature in Kelvin scale	
PG	Pseudogap	
<i>T</i> *	Pseudogap temperature	
J _C	Critical Current Density (Acm ⁻²)	
J	Current Density (Acm ⁻²)	
J_m	inter-grain current density	
J_g	intra-grain currents with density	
R &D	Research and Development	
SQUID	Superconducting quantum interference devices	
XRD	X-ray diffraction	
FESEM	Field emission scanning electron microscope	
EDX	Energy Dispersion X-ray	

7

	AC	Susceptibility measurement
	ESR	Electron Spin Resonance
	EPR	Electron paramagnetic Resonance
	AAS	Atomic absorption spectrometer
	GL	Ginzburg-Landau theory
	ρ	Resistivity
	А	Ampere
	Ι	Current
	R	Resistance
	AC	Alternating current
	DC	Direct Current, in opposition to alternative current
	V	Voltage
	BCS	Bardeen, Cooper and Schrieffer theory
	ZFC	Zero Field Cool
	X	Magnification
	BSCCO	One of the three forms of the superconductor above.
	В	Magnetic Field
	Н	Magnetic Field
	He	Magnetic field applied
	Нс	Critical field
	H _{ac}	Applied field
	М	Magnetization
	Hc2	Upper critical magnetic field
	Hc1	Lower critical magnetic field
	U	Voltage (V)
	wt.	Weight
	nm	Nanometer
	mm	Millimeter
	μm	Micrometer
	h	Houre
	min	Minute
	sec	Second
	Hz	Hertz

g		Gram
w	1	Width of a superconduting tape (mm).
3		Permittivity of medium (F/m).
8()	Permittivity of vacuum (8.854 x 10-12 F/m).
μ	0	Vacuum permeability (4 x π x 10-7 H/m)
ρ		Resistivity (Ω .m).
ψ	r	Order parameter
φ		Phase of the order parameter
τ		Time constant (s)
a,	<i>b,c</i> - axis	Lattice parameter
V	7	Unit cell volume
Р		Hole concentration
x		Amount of weight percent added
θ		Angle of diffraction
ڋ		Coherence lelength
δ		Delta
=		Equal
\leq		Less than or equal to
\geq		Greater than or equal to
>		Bigger than
Å		Angstrom (Unit of length equal to 10 ⁻¹⁰ m)
IC	CSD	Inorganic Crystal Structure Database
к		Ginzburg-Landau constant
a	c	Alternate current
de	c	direct current

CHAPTER 1

INTRODUCTION

1.1 Background of the study

High temperature superconductivity (HTSC), based on cuprate system, was discovered by Bednorz and Muller in 1986 which introduces a new era for superconductivity research area of interest (Keimer et al., 2015; Maple, 1998). Since that time many efforts have been devoted to understanding nature of superconductivity, find new materials and to make these materials ready for the uses in technology application (Chu et al., 2015). Currently, more than 200 members of copper-based oxides based superconductors were found by self-doping or doping into the parent materials of some copper based oxides (Chu et al., 2015). BiSr₂Ca₂Cu₃O₁₀ and YBa₂Cu₃O₇ (Y-123) systems appear to be the most candidate for superconductor's technology. The Y-123 is more favourable for superconducting application advantage this is attributed to its physical robustness and superior superconducting behaviour in a higher magnetic field (Maple, 1998). The great trend in superconductivity field is motivated by the promise possible uses of it in the near future for electric power transmission without losses and also in the construction of quantum high-power generators. In addition, superconductivity phenomenon is involved to develop quantum computers (Tsai, 2010).

1.2 Y-Ba-Cu-O (YBCO) family

The Yttrium barium copper oxide (Y-Ba-Cu-O) was the first material showing superconductivity above 77 K (boiling point of nitrogen) (Bednorz & Müller, 1986). Several stoichiometry formula were synthesized where superconducting properties depend on the number of CuO chains and CuO₂ planes (Hackl, 2011). Currently, Y-Ba-Cu-O family include YBa₂Cu₃O₇₋₈ (Y-123), YBa₂Cu₄O₈ (Y-124), Y₂Ba₄Cu₇O₁₅ (Y-247), and $Y_3Ba_5Cu_8O_x$ (Y-358). Y-123 has one CuO chain and two CuO₂ planes with 91 K critical temperature T_c . Y-124 has one double CuO chain and two CuO₂ planes with $T_c = 80$ K while Y-247 has a mixture of single and double CuO chains with a mix of two CuO₂ planes and exhibiting T_c (30 – 90) K depending on its oxygen content (Slimani et al., 2014). The phases mentioned above were previously identified as secondary phases in Y-123 system, hence it is difficult to obtain it in a single phase (Chu et al., 2015). Recently, Y-358 compound was firstly prepared by Aliabadi et al. with $T_c = 98$ K which was confirmed to be attributed to the strong correlation interaction within layered copper oxides (Bednorz & Müller, 1988; Lee et al., 2006). Y-358 is similar to that of Y-123, but with two additional CuO chains and three additional CuO₂ planes (Mazaheri et al., 2015). There is a discrepancy in the literature regarding structure properties of Y-358 phase. While some group have claimed that it has same lattice parameters like Y-123 (Topal et al., 2011; Udomsamuthirun et al., 2010), other reported that the lattice parameters a and b are

same to Y-123 while c lattice parameter three time that of in Y-123 (Aliabadi et al., 2009). Due to the similarity of the two phases, Y-123 and Y-358, further characterization is needed to shed light on the physical and superconducting behavior of Y-358 phase.

1.3 Role of chemical substitution

Chemical substitution strongly affects the structure, physical and superconducting properties of cuprate superconductors. These oxides, as in the example of Y-123, consists of active conducting block $[(CuO_2) Y (CuO_2)]$ separated by [(BaO) (CuO)](BaO)] that can be considered as charge reservoir that controls the carrier into the conducting layer. Doping can be done by partially replacing one ion by another with different valence or by changing oxygen content and self-doping. Superconductivity was induced in antiferromagnetic insulating La₂CuO₄ by increasing charge carriers in CuO₂ layer as a result of doping of La site with Ba. In Self-doping, increasing the oxygen content (δ), the holes are brought into the CuO₂ planes and change the structure from tetragonal YBa₂Cu₃O₆ (antiferromagnetic phase) to orthorhombic YBa₂Cu₃O_{6+ δ} (Y-123 superconducting phase). On the other hand, doping of Y, Ba, or Cu by univalent or divalent elements led to changes in its structure and electronic properties. Various research works on substitutions in oxide superconducting materials were of immense importance, as variations in critical transition temperature were usually observed (M. Sahoo & Behera, 2014; Talantsev et al., 2014). Thus, the doping can basically vary the concentration of the hole in a controlled manner and influence the materials' superconducting properties. Many research activities were mainly devoted to explore substitution effects at Y site (Awana et al., 1994; Fisher et al., 1993; Guan et al., 1996; Tallon & Flower, 1993). The concentration of charge carrier and effects of charge transfer from Cu-O chains to the conducting layers CuO_2 in Y-123 take place by Ca^{2+} partial substitution for Y^{3+} . An enhanced T_c is observed as the Ca²⁺ ion replaces the trivalent Y^{3+} ion (Delorme et al., 2002). The Ca ionic radius is slightly greater than that of Y, so a hole is created in the CuO_2 plane by the substitution, and increases the concentration of electron hole per unit Cu-O (Haibin & Welch, 2005). In general, superconductivity is induced by Oxygen in Ca-free Y-123 and Ca does likewise in oxygen-deficient Y-123. $\delta = 6.92$ is found to be the optimal doping for oxygen in Y-123 is, with a T_c of about 90 K. The superconducting T_c can be suppressed by alkaline earth metals substitution at Y site (Feng et al., 2001; Nishizaki et al., 2005). Specifically, the temperature range of 90 to 80 K has been a subject of vast importance and is reported to raise the critical current density, J_c , of the material, which is an important parameter for applications Krabbes et al. (2006), and is dependant on the number of pinning centers per unit volume in the superconducting phase (Campbell, 1996). The current carrying capability of Y-123 across its grain boundaries is improved by 35 percent calcium substitution. Doping lowers its 91 K critical temperature T_c to a level uncomfortably close to that of the liquid nitrogen coolant, 77 K. Up to now, two variants of YBCO systems that can accommodate calcium without T_c loss were discovered namely, Y₂CaBa₄Cu₇O_{16- δ} ($T_c \sim 96$ K) and Y₃CaBa₄Cu₈O_{18- δ} ($T_c \sim 99$ K). Like other types of HTSC, these two types of the Y-

123 superconducting system have their problems of poor mechanical properties and brittle nature as well (Mellekh et al., 2006).

Among the cationic substitutions in Y-123, potassium substitution for barium has gain more interest (Felner & Barbara, 1988). The potassium ionic radius (1.33 Å) is close to that of Ba (1.35 Å), which makes it an ideal substituent for Ba in Y-123. The potassium substitution for Ba in Y-123 has been performed by some groups. While some groups reported that T_c decreases with increasing potassium doping (Mukherjee et al., 1992; Wu et al., 2000), some other groups have claimed it increases up to 124 K using KOH (Beales et al., 1992) or 135 K using K₂CO₃ as the source of potassium (Khan, 1988). Thus the effect of potassium addition on superconductivity in YBCO system is still controversial.

The compound substitution on Y-358 phase is still not common till recently. It was observed that doping with Ca into Y358 phase reduced T_c significantly without affecting the orthorhombic structure (Ayas et al., 2011). The studies of superconducting properties of the Ca and K-doped in Y-358, especially in its polycrystalline state, are limited or have not been studied and reported yet. Therefore, in this research, our aims are to investigate the effect of Ca and K substituted at the Ba-site for the Y-123 and Y-358 phases, according to structural, superconducting and electrical properties. Thermal treatment technique was carried out to prepare the materials. The findings are discussed based on XRD, FESEM, electrical measurements, magnetic and ESR spectra.

1.4 Synthesis of YBCO

Various synthesis methods have been employed to prepare Y-123 with the aim of improving the morphology and superconducting properties. Frequently, these ceramics were produced by the solid-state reaction and wet chemical methods (Yeoh & Abd-Shukor, 2008). These methods have many advantages and disadvantages as will be extensively discussed in the following chapter. In the route of the solid state synthesis, the reaction of the reactants takes place in the solid state method to obtain the end product. Of all the techniques, the solid-state technique is the most widely used when it comes to the synthesis of a vast number of oxide, ceramic materials, boride, carbide, and nitride. However, this method has some drawbacks such as difficulty to obtain homogenous oxide and the need of several steps of grinding and annealing process. Wet chemical based methods have been extensively used to fabricate superconductors in order to obtain the good quality product (Yeoh & Abd-Shukor, 2008). These methods yield an excellent homogeneous oxide and smaller size precursors in comparison with traditional solid state reaction method. Recently, thermal treatment has emerged as a new method to synthesize fine particles oxides. This method is based on an aqueous solution of metals nitrates and polymer such as polyvinyl pyrrolidone (PVP) that acts as a capping agent without the addition of other chemicals. Several oxides nanoparticles have been successfully prepared using

this method (Al-Hada et al., 2016; Al-Hada et al., 2014; Naseri et al., 2011). However, there is a lack in the literature on superconductor synthesis using the thermal treatment method. It is expected that by using this method, good quality Y-Ba-Cu-O based materials could be obtained.

1.5 Statement of the problem

YBCO family has wider range potential application compared to other materials HTSC and thus, they become a major research field (Maple, 1998). However, J_c value are limited basically by their insufficient flux pinning properties (Vinu et al., 2009). This is caused by their poor flux pinning properties and grain boundaries (Larbalestier et al., 1991; Mannhart et al., 2000). Although the J_c for single YBCO crystals is very high, the value is very low for polycrystals; it only allows a small current to pass while maintaining superconductivity. Also, another problem with Y-123 compound is that the content of oxygen is not stable (Choudhary et al., 2004). The above mentioned issues can be overcome by elemental doping or substitution in YBCO materials synthesized by new method (Anjela et al., 2000; Berenov et al., 2002; Celebi et al., 2000; Daniels et al., 2000; Mohan et al., 2007; A Veneva et al., 1996). So far, synthesis of Y-123 and Y-358 using thermal treatment method has not yet been performed. While the role of alkali metals (Ca, K) substituting in Ba-site on the morphology, structural superconducting behaviour of Y-123 and Y-358 systems is not well known yet. Therefore the aim of this work is to study the effect of Ca and K substitution on barium site in both Y-123 and Y-358 systems prepared using thermal treatment method. The ultimate hope is to shed more light on the critical temperature, grain boundary, critical current density, critical magnetic field, AC susceptibility, resistivity, by using X-ray Diffraction (XRD), FESEM analysis, four point probe method, AC susceptibility and ESR spectra.

1.6 Objectives of the study

Our research has been designed based on the following objectives:

- 1. To synthesize single phase Y-123 and Y-358 superconducting ceramics using thermal treatment method with PVP as capping agent.
- 2. To synthesize single phase of Y-123 and Y-358 substituted with Ca, K at Ba site via thermal treatment method with PVP as capping agent.
- 3. To determine the differences between the properties of bulk of Y-123 and bulk Y-358 superconducting ceramics.
- 4. To investigate the effect of (Ca, K) substitutions at Ba-site on the microstructural, electrical, magnetic and superconducting properties of Y-123 and Y-358 superconductors.

1.7 Significance of the study

Technological advances demand more complex portable devices with various functions. This includes efforts to fabricate HTSC materials, production of long superconducting wires and cables with higher J_c , superconducting magnets. Electric power networks which include transformers, generators, fault-current limiters, motors, and magnetic energy storage and superconducting quantum interference (SQUID) devices are among the significant issues. Due to the HTSC strong impact potentials on business and society, a new technology needs to be developed in Research and Development by scientists and engineers toward fabricating YBCO materials which should be less expensive and better than other systems. The outcome of this research will add to the knowledge and understanding of the subject and ought to shed more light on scientific and technological issues which will help in the development of synthesis of YBCO materials for wide range of applications.

1.8 Scope of the research work

The study will investigate the effect of doping of calcium Ca and potassium K in barium site, with an aim to find higher T_c value in the high temperature of bulk Y-123 and Y-358 superconducting materials that will be carried out using thermal treatment method only. By so doing, the findings of this study can be compared with previous results as an effort to complement the work of other researchers. The bulk Y-123 and Y-358 will be prepared based on composition with a stoichiometric formula $Y(Ba_{1-x}Ca_x)_2Cu_3O_{7-\delta}$, $Y(Ba_{1-x}K_x)_2Cu_3O_{7-\delta}$, $Y_3(Ba_{1-x}Ca_x)_5Cu_8O_{18-\delta}$ and $Y_3(Ba_{1-x}K_x)_5Cu_8O_{18-\delta}$ for x = (0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.8, 0.1, 0.125),(0.00, 0.03, 0.05, 0.08, 0.1, 0.125, 0.15, 0.175, 0.2, 0.25), (0.00, 0.01, 0.02, 0.03, 0.03, 0.05, 0.08, 0.1, 0.125, 0.15, 0.175, 0.2, 0.25), (0.00, 0.01, 0.02, 0.03, 0.03, 0.05, 0.03, 0.05, 0.03, 0.05, 0.03, 0.05, 0.03, 0.05, 0.03, 0.05,0.05, 0.08, 0.1, 0.2) and (0.00, 0.03, 0.05, 0.08, 0.1, 0.12, 0.14, 0.16 0.20) respectively. The synthesized powder and the sintered samples will be characterized using X-ray diffraction (XRD), Field emission scanning electron microscope (FESEM)/dispersive X-ray analysis (EDX). The electric properties are studied by using four point probe measurements and the magnetic properties will also be studied by AC susceptibility measurement. The spin properties are studied by Spin Electron Resonance (ESR) signals.

1.9 Outline of the thesis

This work is reported in 6 chapters. The first chapter describes a short review of the historical developments of superconductivity. This chapter also gives the statement of the problem, background of the study, objectives, significance, and scope of the study, motivation, and outline of the research work. Chapter 2 deals with detailed literature review. It contains background information to assist in understanding the aims and results of this investigation, and also present previous reports by other researchers with which these results can be compared. Chapter 3 describes the theory of superconductivity and the properties of HTSC. Then, chapter 4, the methodology

of sample preparation and characterization techniques related to this research work are described. In Chapter 5 gives the results and discussion of the structure, morphological, AC susceptibility and superconducting properties of YBCO (123) and YBCO (358) substitution within Ca and K in the Ba site are presented. Lastly, Chapter 6 gives the conclusion derived from the research and suggestion for future work.

REFERENCES

- Aksan, M., Kizilaslan, O., Aksan, E., & Yakinci, M. (2012). Thermoelectric power and thermal conductivity study of the Y₃Ba₅Cu₈O_x system. *Physica B: Condensed Matter*, 407(14), 2820-2824.
- Akyol, M., Ayaş, A. O., Akça, G., Çetin, S. K., & Ekicibil, A. (2015). Effect of Ca doping on thermally activated flux flow in the Y₃Ba₅Cu₈O₁₈ superconductor. *Bulletin of Materials Science*, 38(5), 1231-1237.
- Al-Hada, N. M., Saion, E., Kamari, H. M., Flaifel, M. H., Shaari, A. H., Talib, Z. A., Kharazmi, A. (2016). Structural, morphological and optical behaviour of PVP capped binary (ZnO)_{0.4}(CdO)_{0.6} nanoparticles synthesised by a facile thermal route. *Materials Science in Semiconductor Processing*, 53, 56-65.
- Al-Hada, N. M., Saion, E. B., Shaari, A. H., Kamarudin, M. A., Flaifel, M. H., Ahmad, S. H., & Gene, A. (2014). A facile thermal-treatment route to synthesize the semiconductor CdO nanoparticles and effect of calcination. *Materials Science in Semiconductor Processing*, 26, 460-466.
- Alecu, G. (2004). Crystal structures of some high-temperature superconductors. *Romanian Reports in Physics*, 56(3), 404-412.
- Alhassan, W. A. A., & Ismail, H. G. (2014). Determination of energy gap copper oxide by four probe methods. *Intern. J. Ren. Ener. Technol. Res, 3*, 1-8.
- Aliabadi, A., Farshchi, Y. A., & Akhavan, M. (2009). A new Y-based HTSC with T_c above 100K. *Physica C: Superconductivity*, 469(22), 2012-2014.
- Allen, P. B., Bedard, F., Belitz, D., Crow, J., Ferrell, R., Lynn, J., Wang, C. (2012). *High temperature superconductivity*: Springer Science & Business Media.
- Amado, J., & Sarmago, R. (2015). AC Magnetic Susceptibility and Morphological Development of YBCO HTS Formed from Y: Ba: Cu= 1: 2: 3 and 3: 5: 8. Journal of Superconductivity and Novel Magnetism, 28(12), 3455-3461.
- Amoretti, G., Buluggiu, E., Vera, A., Calestani, G., & Matacotta, F. (1988). On theg \simeq 2 ESR resonance in YBa₂Cu₃O_{7-y} high-T_c superconductor. *Zeitschrift für Physik B Condensed Matter*, 72(1), 17-23.
- Anjela, V., Sakai, N., Ogasawara, K., Seo, S.-J., & Murakami, M. (2000). Effect of KClO₃ addition on the physical properties of YBCO HTSC. *Physica B: Condensed Matter*, 284, 1029-1030.
- Antal, V., Kaňuchová, M., Šefčiková, M., Kováč, J., Diko, P., Eisterer, M., Chaud, X. (2009). Flux pinning in Al doped TSMG YBCO bulk superconductors. *Superconductor Science and Technology*, 22(10), 105001.

- Arlina, A., Halim, S., Kechik, M. A., & Chen, S. (2015). Superconductivity in Bi– Pb–Sr–Ca–Cu–O ceramics with YBCO as additive. *Journal of Alloys and Compounds*, 645, 269-273.
- Attaf, S., Mosbah, M., Vecchione, A., & Fittipaldi, R. (2012). The influence of doping with Ca and Mg in YBa₂Cu₃O_{7-δ} ceramic. Paper presented at the EPJ Web of Conferences.
- Awana, V., Tulapurkar, A., Malik, S., & Narlikar, A. (1994). Role of Ca in enhancing the superconductivity of YBa₂Cu₃O_{7- y}. *Physical Review B*, *50*(1), 594.
- Awano, M., Takao, Y., Kani, K., & Takagi, H. (1992). Synthesis and properties of powdered oxide superconductor by the mist pyrolysis method. *Journal of Chemical Engineering of Japan*, 25(5), 508-514.
- Ayas, A. O., Ekicibil, A., Çetin, S. K., Coskun, A., Er, A. O., Ufuktepe, Y., Kıymaç, K. (2011). The structural, superconducting and transport properties of the compounds Y3Ba5Cu8O18 and Y₃Ba₅Ca₂Cu₈O₁₈. J. Supercond. Nov. Magn, 24(7), 2243-2252.
- Ayaş, A. O., Ekicibil, A., Çetin, S. K., Coşkun, A., Er, A. O., Ufuktepe, Y., Kıymaç, K. (2011). The structural, superconducting and transport properties of the compounds Y₃Ba₅Cu₈O₁₈ and Y₃Ba₅Ca₂Cu₈O₁₈. *Journal of Superconductivity and Novel Magnetism*, 24(8), 2243-2252.
- Azzouz, F. B., Zouaoui, M., Mani, K., Annabi, M., Van Tendeloo, G., & Salem, M.
 B. (2006). Structure, microstructure and transport properties of B-doped YBCO system. *Physica C: Superconductivity and its applications*, 442(1), 13-19.
- Bahgat, A., Shaisha, E., & Saber, M. (2007). Study of microstructure and magnetic properties in copper oxide superconducting systems through AC magnetic susceptibility. *Physica B: Condensed Matter*, 399(1), 70-76.
- Barakat, M. M., Abou-Aly, A., Awad, R., Aly, N., & Ibrahim, S. (2015). Mechanical properties of Y_{3-x} Nd_xBa _{5- x}Ca _xCu ₈O _{18- δ} samples. *Journal of Alloys and Compounds*, 652, 158-166.
- Barakat, M. M. E., Awad, R., Abou-Aly, A. I., Roumié, M., Aly, N., & Ibrahim, S. (2015). Determination of Stoichiometry and Superconducting Properties of Y_{3-x}Nd_xBa_{5-x}Ca_xCu₈O_{18-δ} Samples. *Journal of Superconductivity and Novel Magnetism*, 28(2), 453-458.
- Barboux, P., Campion, I., Daghish, S., Livage, J., Genicon, J., Sulpice, A., & Tournier, R. (1992). Synthesis of YBa₂Cu₃O_{6+x} from coprecipitated hydroxides. *Journal of Non-Crystalline Solids*, 147, 704-710.
- Barboux, P., Tarascon, J.-M., Greene, L., Hull, G., & Bagley, B. (1988). Bulk and thick films of the superconducting phase YBa₂Cu₃O_{7-y} made by controlled

precipitation and sol-gel processes. *Journal of Applied Physics*, 63(8), 2725-2729.

- Basov, D., Timusk, T., Dabrowski, B., & Jorgensen, J. (1994). c-axis response of YBa₂Cu₄O₈: A pseudogap and possibility of Josephson coupling of CuO₂ planes. *Physical Review B*, 50(5), 3511.
- Beales, T., Thorp, J., & Al-Hawery, A. (1992). A 124 K transition in YBa₂Cu₃O_{7-x} measured by an inductance-probe method. *Journal of Materials Science Letters*, 11(4), 192-193.
- Bean, C. P. (1964). Magnetization of high-field superconductors. *Reviews of Modern Physics*, *36*(1), 31.
- Bednorz, J. G., & Müller, K. A. (1986). Possible highT_c superconductivity in the Ba- La- Cu- O system. Zeitschrift für Physik B Condensed Matter, 64(2), 189-193.
- Bednorz, J. G., & Müller, K. A. (1988). Perovskite-type oxides—the new approach to high-T_c superconductivity. *Reviews of Modern Physics*, 60(3), 585.
- Behera, G. (2016). Structural, Magnetic and Dielectric Investigation of Iron Tellurate Fe₂TeO₆. National Institute of Technology Rourkela
- Benzi, P., Bottizzo, E., & Rizzi, N. (2004). Oxygen determination from cell dimensions in YBCO superconductors. *Journal of Crystal Growth*, 269(2), 625-629.
- Berenov, A., Farvacque, C., Qi, X., MacManus-Driscoll, J., MacPhail, D., & Foltyn, S. (2002). Ca doping of YBCO grain boundaries. *Physica C: Superconductivity*, 372, 1059-1062.
- Beyers, R., & Shaw, T. (1989). The Structure of $Y_1Ba_2Cu_3O_{7-\delta}$ and its Derivatives. Solid State Physics, 42, 135-212.
- Bhattacharya, D., Pathak, L., Mishra, S., Sen, D., & Chopra, K. (1990). Pyrophoric synthesis technique for multicomponent high-temperature superconductors. *Applied Physics Letters*, *57*(20), 2145-2147.
- Blanco-Gutiérrez, V., Torralvo-Fernández, M., & Alario-Franco, M. (2017). Particle size effect on the superconducting properties of YBa₂Cu₃O_{7-x} particles. *Dalton Transactions*, *46*(35), 11698-11703.
- Bolat, S., & Kutuk, S. (2012). Fabrication of the New Y₃Ba₅Cu₈O_y Superconductor Using Melt–Powder–Melt–Growth Method and Comparison with YBa2Cu3O7– x. Journal of Superconductivity and Novel Magnetism, 25(4), 731-738.
- Böttger, G., Schwer, H., Kaldis, E., & Bente, K. (1997). Ca doping of YBa₂Cu₃O _{7-σ} single crystals: structural aspects. *Physica C: Superconductivity*, 275(3), 198-204.

- Campbell, A. (1996). Factors limiting current densities in oxide superconductors. *Physica B: Condensed Matter, 216*(3), 266-268.
- Campbell, A., & Evetts, J. (1972). Flux vortices and transport currents in type II superconductors. *Advances in Physics*, 21(90), 199-428.
- Capponi, J., Chaillout, C., Hewat, A., Lejay, P., Marezio, M., Nguyen, N., Tournier, R. (1987). Structure of the 100 K superconductor Ba₂YCu₃O₇ between (5÷ 300) K by neutron powder diffraction. *EPL (Europhysics Letters)*, 3(12), 1301.
- Cava, R., Batlogg, B., Van Dover, R., Murphy, D., Sunshine, S., Siegrist, T., Espinosa, G. (1987). Bulk superconductivity at 91 K in single-phase oxygendeficient perovskite Ba₂YCu₃O_{9-δ}. *Physical Review Letters*, 58(16), 1676.
- Cava, R., Hewat, A., Hewat, E., Batlogg, B., Marezio, M., Rabe, K., Rupp, L. (1990). Structural anomalies, oxygen ordering and superconductivity in oxygen deficient Ba₂YCu₃O_x. *Physica C: Superconductivity*, 165(5), 419-433.
- Celebi, S., Ozturk, A., Karaca, I., & Kolemen, U. (2000). The effect of potassium doping on resistive transitions and transport critical current of bulk YBCO high-Tc superconductors. *Turkish Journal of Physics*, 24(4), 567-576.
- Chakravarty, S., Sudbo, A., ANDERSON, P., & Strong, S. (1993). Interlayer tunneling and gap anisotropy in high-temperature superconductors. *Science*, 261(5119), 337-340.
- Chen, D. X., Goldfarb, R. B., Nogues, J., & Rao, K. (1988). Magnetic susceptibility of sintered and powdered Y-Ba-Cu-O. *Journal of Applied Physics*, 63(3), 980-983.
- Choi, C. Q. (2008). Iron Exposed as High-Temperature Superconductor. Scientific American, lune.
- Choudhary, D., Salunkhe, M., & Kulkarni, D. (2004). Synthesis and ac susceptibility of YCa₂Cu₃O_{7-δ}. *Solid state sciences*, 6(12), 1337-1339.
- Chu, C. W., Deng, L. Z., & Lv, B. (2015). Hole-doped cuprate high temperature superconductors. *Physica C: Superconductivity and its Applications*, 514, 290-313. doi:http://dx.doi.org/10.1016/j.physc.2015.02.047
- Clem, J. R. (1988). Granular and superconducting-glass properties of the high-temperature superconductors. *Physica C: Superconductivity*, 153, 50-55.
- Conder, K. (2001). Oxygen diffusion in the superconductors of the YBaCuO family: isotope exchange measurements and models. *Materials Science and Engineering: R: Reports, 32*(2), 41-102.

- Coombs, T., Cansiz, A., & Campbell, A. (2002). A superconducting thrust-bearing system for an energy storage flywheel. *Superconductor Science and Technology*, 15(5), 831.
- Coppa, N., Kebede, A., Schwegler, J., Perez, I., Salomon, R., Myer, G., & Crow, J. (1990). Preparation of YBa₂Cu₃O_{7-x} using barium hydroxide flux. *Journal of Materials Research*, 5(12), 2755-2758.
- Cullity, B. D. (2001). SR Stock Elements of X-ray diffraction. Prentice-Hall, Inc.
- Daniels, G. A., Gurevich, A., & Larbalestier, D. C. (2000). Improved strong magnetic field performance of low angle grain boundaries of calcium and oxygen overdoped YBa₂Cu₃O_x. *Applied Physics Letters*, 77(20), 3251-3253.
- De Gennes, P. (1966). Superconducting of Metals and Alloys: Benjamin, New York.
- Delorme, F., Harnois, C., Monot-Laffez, I., & Marinel, S. (2002). Ca doping of TSMTG-YBa₂Cu₃O_{7-δ}/Y₂BaCuO₅ composites. *Physica C: Superconductivity*, 382(4), 415-421.
- Devereaux, T., Einzel, D., Stadlober, B., Hackl, R., Leach, D., & Neumeier, J. (1994). Electronic Raman scattering in high-T_c superconductors: A probe of d_{x2-y2} pairing. *Physical Review Letters*, 72(3), 396.
- Deville, A., Gaillard, B., Noël, H., Potel, M., Gougeon, P., & Levet, J. (1989). ESR of YBa₂Cu₃O₇ single crystals: on the nature of the magnetic centres. *Journal de Physique*, *50*(17), 2357-2374.
- Dias, F. T., Oliveira, C. P. d., Vieira, V. d. N., Silva, D., Mesquita, F., Almeida, M. L. d., Pureur, P. (2014). Magnetic irreversibility and zero resistance in granular Y358 superconductor. Paper presented at the Journal of Physics: Conference Series.
- Dihom, M., Halim, S., Chen, S., Hamadneh, I., Gebrel, Z., Yunus, W. M., Daud, W. (2003). Study on the superconducting properties of Mn substituted YBCO. *Solid State Science and Technology*, 11(1), 59-65.
- Ding, H., Yokoya, T., Campuzano, J., & Takahashi, T. (1996). M, Randeria, MR Norman, T. Mochiku, K. Kadowaki and J. Giapintzakis. Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors

Letters to Nature, 382, 51.

Ekicibil, A., Cetin, S. K., Ayaş, A. O., Coşkun, A., Fırat, T., & Kıymac, K. (2011). Exploration of the superconducting properties of Y₃Ba₅Cu₈O₁₈ with and without Ca doping by magnetic measurements. *Solid State Sciences*, 13(11), 1954-1959.

- Enisz, M., Kristof-Mako, E., & Oravetz, D. (2007). Phase transformation in doped Y–Ba–Cu–O superconductors obtained by different melt processing techniques. *Journal of the European Ceramic Society*, 27(2), 1105-1111.
- Farbod, M., & Zargar Shoushtari, M. (2006). Potassium substitution effects in YBa₂Cu₃O_{7-δ} delta superconductor. *Iranian Journal of Physics Research*, 6(3), 237-237.
- Felner, I., & Barbara, B. (1988). Vacuum annealing treatment effects on structure and superconductivity in RBa₂Cu₃O_{7- δ} and YBa_{2-x}K_xCu₃O_{7- δ}. *Solid State Communications*, 66(2), 205-210.
- Felner, I., Kowitt, M., Lehavi, Y., Ben-Dor, L., Wolfus, Y., Barbara, B., & Nowik, I. (1988). The effect of substituting potassium for barium on the superconductivity of RBa₂Cu₃O₇ (R= Y and Eu). *Physica C: Superconductivity*, 153, 898-899.
- Feng, Y., Pradhan, A., Zhao, Y., Wu, Y., Koshizuka, N., & Zhou, L. (2001). Improved flux pinning in Y_xHo_{1-x}Ba₂Cu₃O_y fabricated by powder melting process. *Superconductor Science and Technology*, 14(4), 224.
- Fisher, B., Genossar, J., Kuper, C., Patlagan, L., Reisner, G., & Knizhnik, A. (1993). Effects of substituting calcium for yttrium on the properties of YBa₂Cu₃O_{7-δ}. *Physical Review B*, 47(10), 6054.
- Ford, P. J., & Saunders, G. A. (2004). The rise of the superconductors: CRC Press.
- Fröhlich, H. (1950). Theory of the superconducting state. I. The ground state at the absolute zero of temperature. *Physical Review*, 79(5), 845.
- Fujii, H., Ozawa, K., Nakane, T., & Yamaguchi, H. (2005). Preparation and characterization of YBa2Cu3Oz particles by the metal chelate decomposition method. *Superconductor Science and Technology*, 18(9), 1163.
- Gencer, F., & Abell, J. (1991). The growth of YBa₂Cu₃O_{7-δ} single crystals with the aid of NaCl-KCl flux. *Journal of Crystal Growth*, *112*(2), 337-342.
- Ginzburg, V. (1950). Zh. VL Ginzburg and LD Landau. On the theory of superconductivity. Zh. Eksp. Teor. Fiz, 20, 1064.
- Giri, R., Awana, V., Singh, H., Tiwari, R., Srivastava, O., Gupta, A., Kishan, H. (2005). Effect of Ca doping for Y on structural/microstructural and superconducting properties of YBa₂Cu₃O_{7-δ}. *Physica C: Superconductivity and its Applications*, 419(3), 101-108.
- Grebtsova, O., Domashneva, E., Kurtin, E., & Budanov, A. (1992). Plasma chemical synthesis of oxides in the Y-Ba-Cu-O system. *Powder Metallurgy and Metal Ceramics*, *31*(10), 822-825.

- Guan, W., Chen, J., & Cheng, S. (1996). Ion-size effect on transport properties in R_{0.9}Ca_{0.1}Ba₂Cu₃O_{7-δ} systems (R= Tm, Ho, Gd, and Nd). *Physical Review B*, 54(5), 3580.
- Guner, S. B., Celik, S., & Tomakin, M. (2017). The investigation of magnetic levitation performances of single grain YBCO at different temperatures. *Journal of Alloys and Compounds*, 705, 247-252.
- Hackl, R. (2011). Superconductivity in copper-oxygen compounds. Zeitschrift für Kristallographie Crystalline Materials, 226(4), 323-342.
- Haibin, S., & Welch, D. O. (2005). The effects of space charge, dopants, and strain fields on surfaces and grain boundaries in YBCO compounds. *Superconductor Science and Technology*, 18, 24-34.
- Hamadneh, I., Rosli, A., Abd-Shukor, R., Suib, N., & Yahya, S. (2008). Superconductivity of REBa2Cu3O7- δ (RE= Y, Dy, Er) ceramic synthesized via coprecipitation method. Paper presented at the Journal of Physics: Conference Series.
- Hazelton, D. W., Selvamanickam, V., Duval, J. M., Larbalestier, D. C., Markiewicz, W. D., Weijers, H. W., & Holtz, R. L. (2009). Recent developments in 2G HTS coil technology. *IEEE Transactions on Applied Superconductivity*, 19(3), 2218-2222.
- Hidayah, H., Yahya, S., Azhan, H., Azman, K., Hawa, J., & Norazidah, A. (2012). *Effect of Ca Substitution at Y-Site of YB₂C₃O₇ Superconductor Prepared via Co-Precipitation Method.* Paper presented at the Advanced Materials Research.
- Housecroft, C., & Sharpe, A. (2008). Inorganic chemistry, 3: 729: ISBN. Hull, J. R. (2000). Superconducting bearings. *Superconductor Science and Technology*, *13*(2), R1.
- Inoue, K., Sakai, N., Murakami, M., & Hirabayashi, I. (2006). Effect of potassium addition on YBa₂Cu₃O_x superconductors. *Physica C: Superconductivity and its Applications*, 445, 128-132.
- Itoh, T., & Uchikawa, H. (1988). Preparation of the superconductor YBa₂Cu₃O_x from an aqueous solution of acetic acid containing metal ions. *Journal of Materials Science Letters*, 7(7), 693-694.
- Jahanzeb, A., Travers, C. M., Celik-Butler, Z., Butler, D. P., & Tan, S. G. (1997). A semiconductor YBaCuO microbolometer for room temperature IR imaging. *IEEE Transactions on Electron Devices*, 44(10), 1795-1801.
- Jean, J.-H. (1989). Preparation of YBa₂Cu₃O_{7-x} powder through the alcohol dehydration process. *Journal of Materials Science Letters*, 8(7), 751-752.

- Jiang, Y., Pei, R., Xian, W., Hong, Z., & Coombs, T. (2008). The design, magnetization and control of a superconducting permanent magnet synchronous motor. *Superconductor Science and Technology*, 21(6), 065011.
- Jorgensen, J., Beno, M., Hinks, D. G., Soderholm, L., Volin, K., Hitterman, R., Zhang, K. (1987). Oxygen ordering and the orthorhombic-to-tetragonal phase transition in YBa₂Cu₃O_{7-x}. *Physical Review B*, *36*(7), 3608.
- Jorgensen, J., Veal, B., Paulikas, A. P., Nowicki, L., Crabtree, G., Claus, H., & Kwok, W. (1990). Structural properties of oxygen-deficient YBa₂Cu₃O_{7-δ}. *Physical Review B*, 41(4), 1863.
- Kamarulzaman, M., Halim, S., Adam, M., & Faisal, M. (2010). *Structure and Superconductivity in YBa2Cu307-delta with Additives of Nano-Sm₂O₃*. Paper presented at the American Institute of Physics Conference Series.
- Kamat, R., Rao, T. V., Pillai, K., Vaidya, V., & Sood, D. (1991). Preparation of high grade YBCO powders and pellets through the glycerol route. *Physica C: Superconductivity*, 181(4-6), 245-251.
- Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S., & Zaanen, J. (2015). From quantum matter to high-temperature superconductivity in copper oxides. *Nature*, *518*(7538), 179-186. doi:10.1038/nature14165
- Khachan, J., and Bosi, S. (2003). *Superconductivity*. Brookhaven National Laboratory, University of California, Santa Barbara.
- Khan, Y. (1988). High-temperature superconductivity ($T_c \text{ onset} \approx 135$ K) in $K_{0.2}Ba_{0.5}Y_{0.3}CuO_{3-z}$. Journal of materials science letters, 7(1), 53-55.
- Kittel, C. (1986). Introduction to Solid State Physics, 6th edn., translated by Y. Uno, N. Tsuya, A. Morita and J. Yamashita, (Maruzen, Tokyo, 1986) pp, 124-129.
- Kittel, C., McEuen, P., & McEuen, P. (1996). Introduction to solid state physics (Vol. 8): Wiley New York.
- Koblischka-Veneva, A., Koblischka, M. R., & Murakami, M. (2001). Magnetooptical and microstructural investigations on KClO₃ - doped YBCO HTSC. *Physica C: Superconductivity*, 357, 201-204.
- Kong, P. C., & Lau, Y. (1990). Plasma synthesis of ceramic powders. *Pure and Applied Chemistry*, 62(9), 1809-1816.
- Kontoulis, I., Turrillas, X., Meisels, R., Bungre, S., & Steele, B. (1989). Increase of the O—T transition tempreature by potassium doping of YBa₂Cu₃O_{7-δ}. *Journal of the Less Common Metals*, *150*, 139-145.
- Kordas, G., Moore, G. A., Jorgensen, J., Rotella, F., Hitterman, R., Volin, K., & Faber, J. (1991). Structure evolution during thermal processing of high-Tc ceramic superconductors produced using sol–gel techniques. *Journal of Materials Chemistry*, 1(2), 175-180.

- Krabbes, G., Fuchs, G., Canders, W.-R., May, H., & Palka, R. (2006). *High temperature superconductor bulk materials: fundamentals, processing, properties control, application aspects:* John Wiley & Sons.
- Kruaehong, T. (2014). Electrical properties and crystal structure of Y123, Y358 and Y257/Y211 composite bulk superconductors. *International Journal of Physical Sciences*, 9(16), 360-367.
- Kuang, M.-Q., Wu, S.-Y., Yuan, H.-K., Wang, L.-D., Duan, S.-K., Kuang, A.-L., & Li, G.-Q. (2017). Pseudogap of Ortho-III YBa₂Cu₃O_{7-x} from Cu EPR investigation. *Journal of Alloys and Compounds*, 690, 169-175.
- Kumar, P., Pillai, V., Bates, S., & Shah, D. (1993). Preparation of YBa₂Cu₃O_{7-x} superconductor by coprecipitation of nanosize oxalate precursor powder in microemulsions. *Materials Letters*, *16*(2), 68-74.
- Kutuk, S., Bolat, S., Terzioglu, C., & Altintas, S. (2015). An investigation of magnetoresistivity properties of an Y₃Ba₅Cu₈O_y bulk superconductor. *Journal of Alloys and Compounds*, 650, 159-164.
- Landau, L. D., & Ginzburg, V. (1950). On the theory of superconductivity. *Zh. Eksp. Teor. Fiz.*, 20, 1064.
- Larbalestier, D., Babcock, S., Cai, X., Field, M., Gao, Y., Heinig, N., Zhang, N. (1991). Electrical transport across grain boundaries in bicrystals of YBa₂Cu₃O₇₋₈. *Physica C: Superconductivity*, 185, 315-320.
- Laugier, J., & Bochu, B. (2000). CHECKCELL: a software performing automatic cell/space group determination. *Collaborative Computational Project*(14).
- Lebrat, J.-P., & Varma, A. (1991). Combustion synthesis of the YBa₂Cu₃O_{7-x} superconductor. *Physica C: Superconductivity*, 184(4), 220-228.
- Lee, P. A., Nagaosa, N., & Wen, X.-G. (2006). Doping a Mott insulator: Physics of high-temperature superconductivity. *Reviews of Modern Physics*, 78(1), 17.
- Leggett, A. J. (2006). What DO we know about high T_c? *Nature Physics*, 2(3), 134-136.
- Leventouri, T., Soifer, G., Calamiotou, M., Perdikatsis, V., & Liarokapis, E. (1995). Ca doped YBCO on the Ba site. *Journal of Superconductivity*, 8(5), 625-626.
- Lin, S.-C., Li, D. X., Semiat, R., Richardson, J. T., & Luss, D. (1993). SHS of YBa₂Cu₃O_{6+ x} using large copper particles. *Physica C: Superconductivity*, 218(1-2), 130-136.
- Liu, L., Dong, C., Zhang, J., & Li, J. (2002). The microstructure study of Co-doped YBCO system. *Physica C: Superconductivity*, *377*(3), 348-356.

- Liu, R.-S., Wang, W., Chang, C., & Wu, P. (1989). Synthesis and characterization of high-T_c superconducting oxides by the modified citrate gel process. *Japanese Journal of Applied Physics*, 28(12A), L2155.
- Liyanawaduge, N., Kumar, A., Kumar, S., Karunarathne, B., & Awana, V. (2012). The Role of Ca in Superconducting and Magnetic Properties of $Y_{1-x}Ca_x$ Ba₂Cu₃O_{7- δ} (x= 0.0–0.30). *Journal of Superconductivity and Novel Magnetism*, 25(1), 31-37.
- Loram, J., Mirza, K., Cooper, J., & Liang, W. (1993). Electronic specific heat of YBa₂Cu₃O_{6+x} from 1.8 to 300 K. *Physical Review Letters*, 71(11), 1740.
- Lortz, R., Tomita, T., Wang, Y., Junod, A., Schilling, J., Masui, T., & Tajima, S. (2006). On the origin of the double superconducting transition in overdoped YBa₂Cu₃O_x. *Physica C: Superconductivity*, 434(2), 194-198.
- Luo, J. S., Michel, D., & Chevalier, J. P. (1992). Metallurgical Route to High-T_c Superconducting Ceramics. *Journal of the American Ceramic Society*, 75(2), 282-289.
- Maeda, H., Tanaka, Y., Fukutomi, M., & Asano, T. (1988). A new high-Tc oxide superconductor without a rare earth element. *Japanese Journal of Applied Physics*, 27(2A), L209.
- Maisuradze, A., Shengelaya, A., Kochelaev, B., Pomjakushina, E., Conder, K., Keller, H., & Müller, K. (2009). Probing the Yb³⁺ spin relaxation in Y_{0.98}Yb_{0.02}Ba₂Cu₃O_x by electron paramagnetic resonance. *Physical Review B*, 79(5), 054519.
- Mannhart, J., Bielefeldt, H., Goetz, B., Hilgenkamp, H., Schmehl, A., Schneider, C., & Schulz, R. (2000). Doping induced enhancement of the critical currents of grain boundaries in high-T_c superconductors. *Physica C: Superconductivity*, 341, 1393-1396.
- Maple, M. B. (1998). High-temperature superconductivity. *Journal of Magnetism* and Magnetic Materials, 177, 18-30. doi:http://dx.doi.org/10.1016/S0304-8853(97)00999-2
- Maxwell, E. (1950). Isotope effect in the superconductivity of mercury. *Physical Review*, 78(4), 477.
- Mazaheri, M., Ghasemi, S., & Heidarpour, A. (2015). An Approach to Synthesis a New Superconductor Belonging to the YBCO Family: Y₂Ba₅Cu₇O_x. *Journal of Superconductivity and Novel Magnetism*, 28(9), 2637-2640.
- McIntyre, P. C., Cima, M. J., Ng, M. F., Chiu, R. C., & Rhine, W. E. (1990). Texture development in Ba₂YCu₃O_{7-x} films from trifluoroacetate precursors. *Journal of Materials Research*, *5*(12), 2771-2779.

- Meingast, C., Kraut, O., Wolf, T., Wühl, H., Erb, A., & Müller-Vogt, G. (1991). Large a-b anisotropy of the expansivity anomaly at T_c in untwinned YBa₂Cu₃O_{7-δ}. *Physical Review Letters*, 67(12), 1634.
- Meingast, C., Wolf, T., Kläser, M., & Müller-Vogt, G. (1996). Uniaxial pressure dependence of T_c in (Y_{1-y}Ca_y)₁Ba₂Cu₃O_x single crystals via high-resolution thermal expansion. *Journal of Low Temperature Physics*, 105(5-6), 1391-1396.
- Mellekh, A., Zouaoui, M., Azzouz, F. B., Annabi, M., & Salem, M. B. (2006). Nano-Al₂O₃ particle addition effects on YBa₂Cu₃O_y superconducting properties. *Solid State Communications*, 140(6), 318-323.
- Mendoza, E., Puig, T., Varesi, E., Carrillo, A., Plain, J., & Obradors, X. (2000). Critical current enhancement in YBCO–Ag melt-textured composites: influence of microcrack density. *Physica C: Superconductivity*, 334(1), 7-14.
- Misra, S. K., & Misiak, L. E. (1989). An EPR investigation of the high-T_c superconductor YBa_{1.9}Na_{0.1}Cu₃O_{7-δ}. Journal of Physics: Condensed Matter, 1(47), 9499.
- Mohan, R., Singh, K., Kaur, N., Bhattacharya, S., Dixit, M., Gaur, N., Singh, R. (2007). Calcium and oxygen doping in YBa₂Cu₃O_y. *Solid State Communications*, 141(11), 605-609.
- Monthoux, P., Balatsky, A., & Pines, D. (1992). Weak-coupling theory of hightemperature superconductivity in the antiferromagnetically correlated copper oxides. *Physical Review B*, 46(22), 14803.
- Mourachkine, A. (2002). High-temperature superconductivity in cuprates: the nonlinear mechanism and tunneling measurements (Vol. 125): Springer Science & Business Media.
- Mourachkine, A. (2004). *Room-temperature superconductivity*: Cambridge Int Science Publishing.
- Mukherjee, P., Simon, A., Sarma, M., & Damodaran, A. (1992). Oriented grain growth in YBa₂Cu₃O₇₋₈ by alkali metals (Li, Na & K) substitution. *Solid State Communications*, 81(3), 253-256.
- Naik, S. P. K., Santosh, M., & Raju, P. S. (2017). Structural and Thermal Validations of Y₃Ba₅Cu₈O₁₈ Composites Synthesized via Citrate Sol-Gel Spontaneous Combustion Method. *Journal of Superconductivity and Novel Magnetism*, 1-8.
- Naseri, M. G., Saion, E. B., Hashim, M., Shaari, A. H., & Ahangar, H. A. (2011). Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method. *Solid State Communications*, *151*(14), 1031-1035.

- Nedkov, I., & Veneva, A. (1994). Alkali metals impurities influence on the magnetic and electrical properties of YBCO. *Journal of Applied Physics*, 75(10), 6726-6728.
- Neumeier, J., & Zimmermann, H. (1993). Pressure dependence of the superconducting transition temperature of YBa₂Cu₃O₇ as a function of carrier concentration: A test for a simple charge-transfer model. *Physical Review B*, 47(13), 8385.
- Nishio, T., Itoh, Y., Ogasawara, F., Suganuma, M., Yamada, Y., & Mizutani, U. (1989). Superconducting and mechanical properties of YBCO-Ag composite superconductors. *Journal of materials science*, *24*(9), 3228-3234.
- Nishizaki, T., Maeda, M., Sato, T., & Kobayashi, N. (2005). Vortex phase diagram in impurity doped YBa₂Cu₃O_y single crystals. *Physica C: Superconductivity*, 426, 18-22.
- Noe, M., & Steurer, M. (2007). High-temperature superconductor fault current limiters: concepts, applications, and development status. *Superconductor Science and Technology*, 20(3), R15.
- Norazidah, A., Azhan, H., Azman, K., Hidayah, H., & Hawa, J. (2012). Superconducting Properties of Calcium Substitution in Barium Site of Porous YBa₂Cu₃O₇ Ceramics. Paper presented at the *Advanced Materials Research*.
- Norman, N., Greenwood, N., & Earnshaw, A. (1997). *Chemistry of the Elements*. Butter worth-Heinemann, Earnshaw, Alan.
- Novikov, N., Borovinskaya, I., & Merzhanov, A. (1975). Thermodynamic analysis of reactions of self-propagating high-temperature synthesis. *Combustion processes in Chemical Technology and Metallurgy*, 174-188.
- Nur-Akasyah, J., Nur-Shamimie, N., & Abd-Shukor, R. (2017). Effect of CdTe Addition on the Electrical Properties and AC Susceptibility of YBa₂Cu₃O_{7-δ} Superconductor. *Journal of Superconductivity and Novel Magnetism*, 30(12), 3361-3365.
- Oka, T., Kanayama, H., Fukui, S., Ogawa, J., Sato, T., Ooizumi, M., Yabuno, R. (2008). Application of HTS bulk magnet system to the magnetic separation techniques for water purification. *Physica C: Superconductivity*, 468(15), 2128-2132.
- Otamiri, J., & Andersson, A. (1990). Preparation of YBa₂Cu₃O_{6+x} by a formic acid method. *Journal of Materials Research*, *5*(07), 1388-1391.
- Owens, F. J., & Poole, C. P. (2002). The new superconductors: Springer.
- Park, S., Kim, H., Park, B., Han, Y., Jun, B.-H., Lee, J., & Kim, C.-J. (2011). Effects of calcium doping on the superconducting properties of top-seeded melt

growth processed Y_{1.5}Ba_{2-x}Ca_xCu₃O_y superconductors. *Physica C: Superconductivity*, 471(21), 880-883.

- Pathak, L., Mishra, S. K., Bhattacharya, D., & Chopra, K. (2004). Synthesis and sintering characteristics of Y-Ba-Cu-oxide superconductors. *Materials Science and Engineering: B*, 110(2), 119-131.
- Pechoniy, A., Glinchuk, M., Miheev, V., & Babich, I. (1990). ESR and magnetic susceptibility of localized cu magnetic moments in YBco-ceramics. *Phase Transitions: A Multinational Journal*, 29(2), 105-114.
- Peleckis, G., Tõnsuaadu, K., Baubonyte, T., & Kareiva, A. (2002). Sol-gel chemistry approach in the preparation of precursors for the substituted superconducting oxides. *Journal of Non-Crystalline Solids*, 311(3), 250-258.
- Pickett, W. (2006). High temperature superconductors at optimal doping. Iranian Journal of Physics Research, 6(3), 221-221.
- Poole Jr, C., Farach, H., & Creswick, R. (1995). Superconductivity Academic. New York, 60.
- Poole Jr, C. P. (2000). Models and theories *Handbook of Superconductivity*: Academic Press San Diego.
- Pramanik, P., Biswas, S., Singh, C., Bhattacharya, D., Dey, T., Sen, D., Chopra, K. (1988). Coprecipitation method for preparation of superconducting YBa₂Cu₃O_x compounds. *Materials Research Bulletin*, 23(12), 1693-1698.
- Presland, M., Tallon, J., Buckley, R., Liu, R., & Flower, N. (1991). General trends in oxygen stoichiometry effects on T_c in Bi and Tl superconductors. *Physica C: Superconductivity*, *176*(1), 95-105.
- Ramli, A. B. (2015). Structural and electrical properties of YBCO added with Nd₂O₃, Gd₂O₃ and Sm₂O₃ nanoparticles. Selangor, Malaysia: Universiti Putra Malaysia.
- Rani, P., Jha, R., & Awana, V. (2013). AC Susceptibility study of superconducting YBa₂Cu₃O₇: Ag_x bulk composites (x= 0.0–0.20): The role of intra and intergranular coupling. *Journal of Superconductivity and Novel Magnetism*, 26(7), 2347-2352.
- Rao, C. N. R., & Gopalakrishnan, J. (1997). New Directions In Solid State Chemistry. Edition en anglais: Cambridge University Press.
- Ravi, S., & Bai, V. S. (1994). ac-susceptibility study of the 110-K superconducting phase of Bi-Sr-Ca-Cu-O. *Physical Review B*, 49(18), 13082.
- Ray, P. J. (2015). *Structural Investigation of La_{2-x}Sr_xCuO₄*. Faculty of Science University of Copenhagen.

- Reynolds, C., Serin, B., Wright, W., & Nesbitt, L. (1950). Superconductivity of isotopes of mercury. *Physical Review*, 78(4), 487.
- Roaa F. AL-MASOODI, & Al-SHAKARCHI, E. K. (2015). New High Temperature Superconductor Phase of Y-Ba-Cu-O System. *International Journal of* Advanced Research in Physical Science (IJARPS), 2(7), 33-39.
- Rose-Innes, A., & Rhoderick, E. (1978). *Introduction to superconductor*: Pergamon Press Inc., New York.
- Rose-Innes, A. C. (2012). Introduction to superconductivity: Elsevier.
- Ruckenstein, E., Narain, S., & Wu, N.-L. (1989). Reaction pathways for the formation of the YBa₂Cu₃O_{7-x} compound. *Journal of Materials Research*, 4(02), 267-272.
- Sahoo, M. (2015). Study of Structure and Electrical Transport Property in Composite and Doped Systems of YBa₂Cu₃O_{7-δ} Superconductor. National Institute of Technology, Rourkela Odisha (India)-769008.
- Sahoo, M., & Behera, D. (2014). Effect of Ti Doping on Structural and Superconducting Property of YBa₂Cu₃O_{7-y} High T_c Superconductor. *Journal* of Superconductivity and Novel Magnetism, 27(1), 83-93. doi:10.1007/s10948-013-2269-2
- Salama, K., Selvamanickam, V., Gao, L., & Sun, K. (1989). High current density in bulk YBa₂Cu₃O_x superconductor. *Applied Physics Letters*, 54(23), 2352-2354.
- Salavati-Niasari, M., & Alikhanzadeh-Arani, S. (2012). Synthesis and characterization of high-temperature ceramic YBCO nanostructures prepared from a novel precursor. *Journal of Nanostructures*, 1(1), 62-68.
- Schuller, I. K., & Jorgensen, J. (1989). Structure of High T_c Oxide Superconductors. *MRS Bulletin*, 14(01), 27-30.
- Sedky, A. (2016). Mechanical and Transport Properties of Argon Annealed Y_{1-x} Ca_x: 123 Superconductors. *Journal of Superconductivity and Novel Magnetism*, 1-10.
- Sedky, A., & Abu-Ziad, B. (2010). New investigation for T_c depression by Ca in $Y_{1-x}Ca_x$: 123 superconducting systems. *Physica C: Superconductivity*, 470(17), 659-668.
- Setaka, R., Komatsu, W., Shibata, T., & Nakajima, M. (1988). Preparation of a single crystalline powder of superconducting YBa₂Cu₃O_{7-x} by the gas phase solidification method. *Japanese Journal of Applied Physics*, 27(11A), L2100.
- Sharma, D., Kumar, R., & Awana, V. (2013). DC and AC susceptibility study of sol-gel synthesized $Bi_2Sr_2CaCu_2O_{8+\delta}$ superconductor. *Ceramics International*, 39(2), 1143-1152.

- Sheahen, T. P. (2002). Flux Pinning. Introduction to High-Temperature Superconductivity, 263-289.
- Shi, Y., Hasan, T., Babu, N. H., Torrisi, F., Milana, S., Ferrari, A. C., & Cardwell, D. A. (2012). Synthesis of YBa₂Cu₃O_{7-δ} and Y₂BaCuO₅ nanocrystalline powders for YBCO superconductors using carbon nanotube templates. ACS Nano, 6(6), 5395-5403.
- Sichelschmidt, J., Elschner, B., Loidl, A., & Kochelaev, B. (1995). EPR study of the dynamic spin susceptibility in heavily doped YBa₂Cu₃O_{6+δ}. *Physical Review B*, *51*(14), 9199.
- Siegal, M., Clem, P., Dawley, J., Ong, R., Rodriguez, M., & Overmyer, D. (2002). All solution-chemistry approach for YBa₂Cu₃O_{7-d}-coated conductors. *Applied Physics Letters*, 80(15), 2710-2712.
- Sleight, A. (1988). Chemistry of high-temperature superconductors. *Science*, 242(4885), 1519-1527.
- Slimani, Y., Hannachi, E., Ben Salem, M., Hamrita, A., Ben Salem, M., & Ben Azzouz, F. (2015)a. Fluctuation induced magneto-conductivity of Y₃Ba₅Cu₈O_{18±x} and YBa₂Cu₃O_{7-d}. *Modern Physics Letters B*, 29(34), 1550227.
- Slimani, Y., Hannachi, E., Hamrita, A., Salem, M. B., Zouaoui, M., Salem, M. B., & Azzouz, F. B. (2015)b. Energy Dissipation Mechanisms in Polycrystalline Superconductor Y₃Ba₅Cu₈O_y. *Journal of Superconductivity and Novel Magnetism*, 28(2), 487-492.
- Slimani, Y., Hannachi, E., Salem, M. B., Hamrita, A., Varilci, A., Dachraoui, W., Azzouz, F. B. (2014). Comparative study of nano-sized particles CoFe₂O₄ effects on superconducting properties of Y-123 and Y-358. *Physica B: Condensed Matter, 450*, 7-15.
- Song, H., Brownsey, P., Zhang, Y., Waterman, J., Fukushima, T., & Hazelton, D. (2013). 2G HTS coil technology development at SuperPower. *IEEE Transactions on Applied Superconductivity*, 23(3), 4600806-4600806.
- Srinivasan, K., George Thomas, C., & Padaikathan, P. (2011). Fluorine Doping Effect in the New Superconducting Y₃Ba₅Cu₈O_y Compound. *Journal of Minerals and Materials Characterization and Engineering*, 10(14), 1277.
- Suan, M. S. M., Johan, M. R., & Siang, T. C. (2012). Synthesis of Y₃Ba₅Cu₈O₁₈ superconductor powder by auto-combustion reaction: effects of citratenitrate ratio. *Physica C: Superconductivity*, 480, 75-78.
- Tachiwaki, T., Suzuki, M., Okajima, H., Koizumi, S., Ito, T., & Hiraki, A. (1993). Preparation of fine powders for electronic materials by freeze-drying. *Applied surface science*, 70, 751-754.

- Talantsev, E. F., Strickland, N. M., Wimbush, S. C., Storey, J. G., Tallon, J. L., & Long, N. J. (2014). Hole doping dependence of critical current density in YBa2Cu3O7–δ conductors. *Applied Physics Letters*, 104(24), 242601. doi:10.1063/1.4883483
- Tallon, J., Bernhard, C., Shaked, H., Hitterman, R., & Jorgensen, J. (1995). Generic superconducting phase behavior in high-T_c cuprates: T_c variation with hole concentration in YBa₂Cu₃O_{7-δ}. *Physical Review B*, *51*(18), 12911.
- Tallon, J., & Flower, N. (1993). Stoichiometric YBa₂Cu₃O₇ is overdoped. *Physica C: Superconductivity*, 204(3), 237-246.
- Tallon, J., Williams, G., & Loram, J. (2000). Factors affecting the optimal design of high-T_c superconductors—the pseudogap and critical doping. *Physica C: Superconductivity*, 338(1), 9-17.
- Tanna, V. L. (2006). Design and analysis of the superconducting current feeder system for the International Thermonuclear Experimental Reactor (ITER): FZKA.
- Tavana, A., & Akhavan, M. (2010). How T_c can go above 100 K in the YBCO family. *The European Physical Journal B*, 73(1), 79-83.
- Terzioglu, C., Yilmazlar, M., Ozturk, O., & Yanmaz, E. (2005). Structural and physical properties of Sm-doped Bi_{1.6}Pb_{0.4}Sr₂Ca_{2-x}Sm_xCu₃O_y superconductors. *Physica C: Superconductivity and its Applications, 423*(3), 119-126.
- Tinkham, M. (1996). Introduction to superconductivity: Courier Corporation.
- Topal, U., Akdogan, M., & Ozkan, H. (2011). Electrical and structural properties of RE3Ba5Cu8O18 (RE= Y, Sm and Nd) superconductors. Journal of Superconductivity and Novel Magnetism, 24(7), 2099-2102.
- Townsend, P., & Sutton, J. (1962). Investigation by electron tunneling of the superconducting energy gaps in nb, ta, sn, and pb. *Physical Review*, 128(2), 591.
- Tranquada, J., Heald, S., Moodenbaugh, A., & Xu, Y. (1988). Mixed valency, hole concentration, and T_c in YBa₂Cu₃O_{6+x}. *Physical Review B*, *38*(13), 8893.
- Tripathi, R. B., & Johnson, D. W. (1991). Influence of Lead in the Processing of High-Temperature 2223 Bi– Sr– Ca– Cu– O Superconductor. *Journal of* the American Ceramic Society, 74(1), 247-249.
- Tsai, J.-S. (2010). Toward a superconducting quantum computer. *Proc Jpn Acad Ser B Phys Biol Sci*, 86(4), 275-292.
- Tsuda, M., Kojima, T., Yagai, T., & Hamajima, T. (2007). Vibration characteristics in magnetic levitation type seismic isolation device composed of multiple

HTS bulks and permanent magnets. *IEEE Transactions on Applied Superconductivity*, 17(2), 2059-2062.

- Tumanov, Y., & Sigailo, A. (1991). Plasma synthesis of disperse oxide materials from disintegrated solutions. *Materials Science and Engineering: A*, 140, 539-548.
- Tuyn, W., & Onnes, H. K. (1926). The disturbance of supra-conductivity by magnetic fields and currents. The hypothesis of Silsbee. *Journal of the Franklin Institute*, 201(4), 379-410.
- Udomsamuthirun, P., Kruaehong, T., Nilkamjon, T., & Ratreng, S. (2009). The possible superconductivity at 109 K in YBaCuO materials. *arXiv preprint arXiv:0911.4524*.
- Udomsamuthirun, P., Kruaehong, T., Nilkamjon, T., & Ratreng, S. (2010). The new superconductors of YBaCuO materials. *Journal of Superconductivity and Novel Magnetism*, 23(7), 1377-1380.
- Varma, H., Warrier, K. G., & Damodaran, A. D. (1990). Metal Nitrate-Urea Decomposition Route for Y-Ba-Cu-O Powder. *Journal of the American Ceramic Society*, 73(10), 3103-3105.
- Varshney, D., Yogi, A., Dodiya, N., & Mansuri, I. (2011). Alkaline Earth (Ca) and Transition Metal (Ni) Doping on The Transport Properties Of Y_{1-x}Ca_xBa₂ (Cu_{1-y}Ni_y)₃O_{7-δ} Superconductors. *Journal of Modern Physics, 2011*.
- Veneva, A., Iordanov, I., Toshev, L., Stoyanova-Ivanova, A., & Gogova, D. (1998). A study of the effect of KClO₃ addition on the AC susceptibility and microstructure of high-temperature (T_c onset at 105 K) YBCO ceramic superconductors. *Physica C: Superconductivity*, 308(3), 175-184.
- Veneva, A., Petrov, D., Dittrich, P., & Naughton, M. (1996). AC susceptibility and microstructure of alkali doped polycrystalline YBCO HTSC materials. *Physica C: Superconductivity*, 271(3), 230-234.
- Vinu, S., Sarun, P. M., Shabna, R., Biju, A., Guruswamy, P., & Syamaprasad, U. (2009). Influence of sintering temperature on microstructure, critical current density and pinning potential of superconducting Bi_{1.6}Pb_{0.5}Sr_{1.8}Dy _{0.2}Ca_{1.1}Cu 2.1O_{8+δ} ceramics. *Solid State Sciences*, 11(6), 1150-1155.
- Wang, D., Sun, A., Shi, P., Zhang, M., & Ma, S. (2014). Exploring the Phase Formation and Microstructure of a New Y-Based HTSC Nanopowder. *Journal of Superconductivity and Novel Magnetism*, 27(10), 2365-2369.
- Wang, J., Wang, S., Zeng, Y., Huang, H., Luo, F., Xu, Z., Ren, Z. (2002). The first man-loading high temperature superconducting Maglev test vehicle in the world. *Physica C: Superconductivity*, 378, 809-814.

- Warren , W., Jr, Walstedt, R., Brennert, G., Cava, R., Tycko, R., Dabbagh, G. (1989). Cu spin dynamics and superconducting precursor effects in planes above T_c in YBa₂Cu₃O_{6.7}. *Physical review letters*, 62(10), 1193.
- Warrier, K. G. K., Varma, H. K., Mani, T. V., & Damodaran, A. D. (1992). Rapid method for the preparation of 123 superconductor using microwaves. *Journal* of the American Ceramic Society, 75(7), 1990-1992.
- Weber, C., Reis, C., Dada, A., Masuda, T., & Moscovic, J. (2005). Overview of the underground 34.5 kV HTS power cable program in Albany, NY. *IEEE Transactions on Applied Superconductivity*, 15(2), 1793-1797.
- Werfel, F., Floegel-Delor, U., Rothfeld, R., Goebel, B., Wippich, D., & Riedel, T. (2004). Modelling and construction of a compact 500 kg HTS magnetic bearing. *Superconductor Science and Technology*, 18(2), S19.
- Wu, M. K., Ashburn, J. R., Torng, C., Hor, P. H., Meng, R. L., Gao, L., Chu, C. (1987). Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. *Physical Review Letters*, 58(9), 908.
- Wu, X., Wang, F., Liu, J., Jiang, S., & Gao, J. (1999). Effects on structure and superconductivity for La and Ca codoping in YBa₂Cu₃O_y cuprates. *Physica C: Superconductivity*, 320(3), 206-212.
- Wu, X., Wang, F., Nie, S., Liu, J., Yang, L., & Jiang, S. (2000). Structure and superconductivity in YBa₂Cu₃O_y with additives of NaNO₃ and NaCl. *Physica C: Superconductivity*, 339(2), 129-136.
- Xin, Y., Gong, W., Niu, X., Cao, Z., Zhang, J., Tian, B., Zhang, Y. (2007). Development of saturated iron core HTS fault current limiters. *IEEE Transactions on Applied Superconductivity*, 17(2), 1760-1763.
- Xu, X., Guo, J., Wang, Y., & Sozzi, A. (2002). Synthesis of nanoscale superconducting YBCO by a novel technique. *Physica C: Superconductivity*, 371(2), 129-132.
- Yeoh, L. M., & Abd-Shukor, R. (2008). The study on various wet chemistry techniques on $YBa_2Cu_3O_{7-\delta}$ superconducting oxides powder preparation. *Journal of Non-Crystalline Solids*, 354(34), 4043-4048. doi:http://dx.doi.org/10.1016/j.jnoncrysol.2008.05.052
- Yurek, G., Vander Sande, J., Wang, W., & Rudman, D. (1987). Direct synthesis of a metal/superconducting oxide composite by oxidation of a metallic precursor. *Journal of The Electrochemical Society*, 134(10), 2635-2636.
- Zachariah, M. R., & Huzarewicz, S. (1991). Aerosol processing of YBaCuO superconductors in a flame reactor. *Journal of Materials Research*, 6(02), 264-269.

- Zhao, Y., Zhang, H., Zhang, T., Sun, S., Chen, Z., & Zhang, Q. (1988). Doping effect of Sr or Ca on single phased YBa₂Cu₃O_{7-y}. *Physica C: Superconductivity*, *152*(5), 513-517.
- Zhou, D., Izumi, M., Miki, M., Felder, B., Ida, T., & Kitano, M. (2012). An overview of rotating machine systems with high-temperature bulk superconductors. *Superconductor Science and Technology*, 25(10), 103001.
- Zhu, H., Lau, Y., & Pfender, E. (1990). RF plasma synthesis of YBa₂Cu₃O_{7-x} powders. *Journal of Superconductivity*, *3*(2), 171-175.

