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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirement for the degree of Doctor of Philosophy

SECOND DERIVATIVE BLOCK METHODS FOR SOLVING FIRST
AND HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS

By

MOHAMMED YOUSIF TURKI

September 2018

Chair:Professor Fudziah Binti Ismail, PhD
Faculty: Science

Traditionally, higher order ordinary differential equations (ODEs) are solved by
reducing them to an equivalent system of first order ODEs. However, it is more
cost effective if they can be solved directly by numerical methods. Block methods
approximate the solutions of the ODEs at more than one point at one time step, hence
faster solutions can be obtained. It is rather well-known too that a more accurate
numerical results can be obtained by having extra derivatives in the method. Based on
these arguments, we are focused on developing block methods with extra derivatives
for solving first, second and third ODEs. The study in the thesis consists of three parts.

The first part of the thesis described the derivation of two and three point implicit
and semi implicit block methods with second derivative for solving first order ODEs.
Absolute stability for both implicit and semi implicit second derivative block methods
are also presented. Numerical results clearly show that the new proposed methods
are more efficient in terms of accuracy and computational time when compared with
well-known existing methods.

The second part of the thesis is focused on the derivation of two and three point
implicit and semi implicit second derivative block methods for directly solving second
order ODEs. The zero-stability of the new methods are also given. The numerical
results revealed that the new methods are more accurate as compared to the existing
methods and it is also illustrated that the new second derivative block methods require
less computational time when solving second order ODEs.
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Finally, the last part of the thesis concerned with the construction of two and three
point implicit and semi implicit second derivative block multistep methods for directly
solving third order ODEs. The zero-stability for the new methods are also presented.
Numerical results show that new methods are more efficient than the existing methods.

In conclusion, accurate and required less computational time have potential to be a
good tools for solving first, second and third order ODEs respectively.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH JENIS RUNGE-KUTTA UNTUK MENYELESAIKAN
PERSAMAAN PEMBEZAAN BIASA PERINGKAT KETIGA DAN MASALAH

AYUNAN PERINGKAT PERTAMA

Oleh

MOHAMMED YOUSIF TURKI

September 2018

Pengerusi: Professor Fudziah Binti Ismail, PhD
Fakulti: Sains

Secara tradisinya, persamaan pembezaan biasa (PPB) peringkat yang lebih tinggi
dapat diselesaikan dengan menurunkan ke sistem PPB peringkat pertama yang setara.
Bagaimanapun, adalah lebih kos efektif jika ia dapat diselesaikan secara langsung oleh
kaedah berangka. Kaedah blok menghampiri penyelesaian PPB pada lebih daripada
satu titik pada satu langkah, maka penyelesaian yang lebih cepat dapat diperolehi.
Umum mengetahui bahawa hasil berangka yang lebih tepat boleh diperolehi dengan
mempunyai terbitan tambahan dalam kaedah tersebut. Berdasarkan hujah-hujah ini,
kami memberi tumpuan kepada membangunkan kaedah blok dengan terbitan tambahan
untuk menyelesaikan PPB peringkat pertama, kedua dan ketiga. Kajian dalam tesis
terdiri daripada tiga bahagian.

Bahagian pertama tesis menerangkan bagaimana menerbitkan kaedah tersirat dan semi
tersirat blok dua dan tiga titik dengan dengan terbitan kedua untuk menyelesaikan
PPB peringkat pertama. Kestabilan mutlak untuk kedua-dua kaedah tersirat dan
semi tersirat blok dengan terbitan kedua juga dipersembahkan. Keputusan berangka
menunjukkan dengan jelas bahawa kaedah baru yang dicadangkan, lebih cekap dari
segi ketepatan dan masa pengiraan apabila dibandingkan dengan kaedah sedia ada.

Bahagian kedua tesis memberi tumpuan kepada cara menerbitkan kaedah tersirat
dan semi tersirat blok dua dan tiga titik dengan terbitan kedua untuk menyelesaikan
secara langsung PPB peringkat kedua. Kestabilan sifar kaedah baru juga diberikan.
Keputusan berangka mendedahkan bahawa kaedah baru lebih cekap dibandingkan
dengan kaedah yang sedia ada dan ia juga menggambarkan bahawa kaedah blok
dengan terbitan kedua yang baru adalah lebih tepat dan cekap apabila menyelesaikan
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PPB peringkat kedua.

Akhir sekali, bahagian akhir tesis adalah berkenaan dengan pembinaan kaedah tersirat
dan semi tersirat blok dua dan tiga titik untuk menyelesaikan secara langsung PPB
peringkat ketiga. Kestabilan sifar untuk kaedah baru juga dibentangkan. Hasil
berangka menunjukkan bahawa kaedah baru lebih berkesan daripada kaedah yang
sedia ada.

Kesimpulannya, kaedah dan kod baru yang dibangunkan berdasarkan kaedah yang ter-
hasil ini sesuai untuk menyelesaikan PPB peringkat pertama, kedua dan ketiga masing-
masingnya.

iv



© C
OPYRIG

HT U
PM

ACKNOWLEDGEMENTS

Firstly, All praise is to Allah the lord of the world, The Beneficent, The Merciful
who in His infinite mercy gives me life, good health, strength, hope, guidance and
perseverance to pursue this program to the successful completion. May Allah’s
Mercy and Peace be upon our noble prophet Muhammad Rasulillah Sallallahu Alaihi
Wasallam, his family and companions. My deepest appreciation and gratitude goes
to the chairman of the supervisory committee, Prof. Dr. Fudziah Binti Ismail for
her invaluable assistance, advice and guidance throughout the duration of the studies.
This work would not have been completed without her help that I received in various
aspects of the research.

I am also grateful to the member of the supervisory committee, Associate Prof. Dr. No-
razak bin Senu and Associate Professor Dr. Zarina Bibi Ibrahim. I aslo wish to express
my thanks to my friends especially Firas Adel Fawzi and Kasim Abbas Hussain during
my study in Universiti Putra Malaysia. Moreover, I would like to thank all staffs of
the Department of Mathematics. I thank AL-Anbar University and Ministry of Higher
Education and Scientific Research in Iraq for providing me scholarship and support me.

My biggest thanks goes to my mother, brothers ( Hutheifa, Mohaned, and Muaath),
and sisters for their patience, encouragement and for supporting me along.

Finally, I cannot put into words how much I appreciate the continuous support, under-
standing and patience of my kind wife, Tiba , and beloved daughter, Rinad.

v



© C
OPYRIG

HT U
PM



© C
OPYRIG

HT U
PM

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been 
accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The 
members of the Supervisory Committee were as follows:

Fudziah Binti Ismail, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Norazak Bin Senu, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Zarina Bibi Bt Ibrahim, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

vii



© C
OPYRIG

HT U
PM

Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at

any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Uni-

versiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research)
Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-

Chancellor (Research and Innovation) before thesis is published (in the form of writ-
ten, printed or in electronic form) including books, journals, modules, proceedings,
popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learn-
ing modules or any other materials as stated in the Universiti Putra Malaysia (Re-
search) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly

integrity is upheld as according to the Universiti Putra Malaysia (Graduate Stud-
ies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research)
Rules 2012. The thesis has undergone plagiarism detection software.

Signature: Date:

Name and Matric No: Mohammed Yousif Turki (GS40424)

viii



© C
OPYRIG

HT U
PM

Declaration by Members of Supervisory Committee

This is to confirm that:
• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate

Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman of Supervisory Committee
Professor Dr. Fudziah Binti Ismail

Signature:
Name of Member of Supervisory Committee
Associate Professor Dr. Norazak Bin Senu

Signature:
Name of Member of Supervisory Committee
Associate Professor Dr. Zarina Bibi Bt Ibrahim

ix



© C
OPYRIG

HT U
PM

TABLE OF CONTENTS

Page

ABSTRACT i

ABSTRAK iii

ACKNOWLEDGEMENTS v

APPROVAL vi

DECLARATION viii

LIST OF TABLES xiv

LIST OF FIGURES xix

LIST OF ABBREVIATIONS xxiv

CHAPTER
1 INTRODUCTION 1

1.1 Ordinary Differential Equations 1
1.2 The Initial Value Problems to ODEs 1
1.3 Existence and Uniqueness 2
1.4 Linear Multistep Method 2
1.5 Problem Statement 5
1.6 Scope of Study 5
1.7 Objectives of the Study 6
1.8 Outline of Thesis 6

2 LITERATURE REVIEW 8
2.1 Introduction 8
2.2 Block Methods to Ordinary Differetial Equations 8
2.3 Numerical Methods with Second Derivative 10

3 2-POINT AND 3- POINT SECOND DERIVATIVE BLOCK METHODS FOR
SOLVING FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS 12
3.1 Introduction 12
3.2 Derivation of the Methods 13

3.2.1 Derivation of 2-Point Implicit Block Method 13
3.2.2 Derivation of 2-Point Semi Implicit Block Method 15
3.2.3 Derivation of 3-Point Implicit Block Method 15
3.2.4 Derivation of 3-Point Semi Implicit Block Method 17

3.3 The Order and Error Constant of the Methods 17
3.3.1 2-Point Implicit Block Method 18
3.3.2 2-Point Semi Implicit Block Method 19
3.3.3 3-Point Implicit Block Method 20
3.3.4 3-Point Semi Implicit Block Method 22

x



© C
OPYRIG

HT U
PM

3.4 Zero-Stability of the Methods 24
3.4.1 Zero-Stability of 2-Point Implicit Block Method 24
3.4.2 Zero-Stability of 2-Point Semi Implicit block method 24
3.4.3 Zero-Stability of 3-Point Implicit Block Method 25
3.4.4 Zero-Stability of 3-Point Semi Implicit Block Method 26

3.5 Consistency and Convergence of the Methods 27
3.6 Absolute Stability 27
3.7 Implementation of the New Methods 33

3.7.1 Implementation of 2-Point Implicit Block Method 33
3.7.2 Implementation of 2-Point Semi Implicit Block Method 34
3.7.3 Implementation of 3-Point Implicit Block Method 34
3.7.4 Implementation of 3-Point Semi Implicit Block Method 35

3.8 Problems Tested 36
3.9 Numerical Experiments 37

3.9.1 Numerical Results for 2-Point Implicit Block Method 37
3.9.2 Numerical Results for 2-Point Semi Implicit Block Method 47
3.9.3 Numerical Results for 3-Point Implicit Block Method 56
3.9.4 Numerical Results for 3-Point Semi Implicit Block Method 65
3.9.5 Numerical Results for the New Block Methods 74

3.10 Conclusion 78

4 2-POINT AND 3- POINT SECOND DERIVATIVE BLOCK METHODS
FOR SOLVING GENERAL SECOND ORDER ORDINARY DIFFEREN-
TIAL EQUATIONS 79
4.1 Introduction 79
4.2 Derivation of the Methods 79

4.2.1 Derivation of 2-Point Implicit Block Method 79
4.2.2 Derivation of 2-Point Semi Implicit Block Method 82
4.2.3 Derivation of 3-Point Implicit Block Method 83
4.2.4 Derivation of 3-Point Semi Implicit Block Method 84

4.3 Order and Error Constant of the Methods 86
4.3.1 2-Point Implicit Block Method 86
4.3.2 2-Point Semi Implicit Block Method 88
4.3.3 3-Point Implicit Block Method 89
4.3.4 3-Point Semi Implicit Block Method 91

4.4 Zero-Stability of the Methods 93
4.4.1 Zero-Stability of 2-Point Implicit Block Method 93
4.4.2 Zero-Stability of 2-Point Semi Implicit Block Method 95
4.4.3 Zero-Stabe of 3-Point Implicit Block Method 96
4.4.4 Zero-Stability of 3-Point Semi Implicit block method 98

4.5 Consistency and Convergence of the Methods 99
4.6 Implementation of the New Methods 99

4.6.1 Implementation of 2-Point Implicit Block Method 100
4.6.2 Implementation of 2-Point Semi Implicit Block Method 101
4.6.3 Implementation of 3-Point Implicit Block Method 101
4.6.4 Implementation of 3-Point Semi Implicit Block Method 103

4.7 Problems Tested 105

xi



© C
OPYRIG

HT U
PM

4.8 Numerical Experiments 107
4.8.1 Numerical Results for 2-Point Implicit Block Method 107
4.8.2 Numerical Results for 2-Point Semi Implicit Block Method 115
4.8.3 Numerical Results for 3-Point Implicit Block Method 123
4.8.4 Numerical Results for 3-Point Semi Implicit Block Method 132
4.8.5 Numerical Results for the New Block Methods 140

4.9 Conclusion 144

5 2-POINT AND 3- POINT SECOND DERIVATIVE BLOCK METHODS
FOR SOLVING GENERAL THIRD ORDER ORDINARY DIFFERENTIAL
EQUATIONS 145
5.1 Introduction 145
5.2 Derivation of the Methods 145

5.2.1 Derivation of 2-Point Implicit Block Method 145
5.2.2 Derivation of 2-Point Semi Implicit Block Method 149
5.2.3 Derivation of 3-Point Implicit Block Method 150
5.2.4 Derivation of 3-Point Semi Implicit Block Method 152

5.3 Order and Error Constant of the Methods 154
5.3.1 2-Point Implicit Block Method 154
5.3.2 2-Point Semi Implicit Block Method 156
5.3.3 3-Point Implicit Block Method 158
5.3.4 3-Point Semi Implicit Block Method 161

5.4 Zero-Stability of the Methods 164
5.4.1 Zero-Stability of 2-Point Implicit block method 164
5.4.2 Zero-Stability of 2-Point Semi Implicit block method 166
5.4.3 Zero-Stability of 3-Point Implicit block method 168
5.4.4 Zero-Stability of 3-Point Semi Implicit block method 171

5.5 Consistency and Convergence of the Methods 174
5.6 Implementation of the New Methods 174

5.6.1 Implementation of 2-Point Implicit Block Method 174
5.6.2 Implementation of 2-Point Semi Implicit Block Method 176
5.6.3 Implementation of 3-Point Implicit Block Method 178
5.6.4 Implementation of 3-Point Semi Implicit Block Method 180

5.7 Problems Tested 182
5.8 Numerical Experiments 184

5.8.1 Numerical Results for 2-Point Implicit Block Method 184
5.8.2 Numerical Results for 2-Point Semi Implicit Block Method 194
5.8.3 Numerical Results for 3-Point Implicit Block Method 203
5.8.4 Numerical Results for 3-Point Semi Implicit Block Method 214
5.8.5 Numerical Results for the New Block Methods 222

5.9 Conclusion 225

6 CONCLUSION AND FUTURE WORK 226
6.1 Conclusion 226
6.2 Future work 227

xii



© C
OPYRIG

HT U
PM

BIBLIOGRAPHY 228
BIODATA OF STUDENT 233
LIST OF PUBLICATIONS 235

xiii



© C
OPYRIG

HT U
PM

LIST OF TABLES

Table Page

3.1 38

3.2 Numerical Results for Solving Problem 3.1 39

3.3 Numerical Results for Solving Problem 3.2 39

3.4 Numerical Results for Solving Problem 3.3 40

3.5 Numerical Results for Solving Problem 3.4 40

3.6 Numerical Results for Solving Problem 3.5 41

3.7 Numerical Results for Solving Problem 3.6 41

3.8 Numerical Results for Solving Problem 3.7 42

3.9 Numerical Results for Solving Problem 3.8 42

3.10 47

3.11 Numerical Results for solving Problem 3.1 48

3.12 Numerical Results for solving Problem 3.2 48

3.13 Numerical Results for solving Problem 3.3 49

3.14 Numerical Results for solving Problem 3.4 49

3.15 Numerical Results for solving Problem 3.5 50

3.16 Numerical Results for solving Problem 3.6 50

3.17 Numerical Results for solving Problem 3.7 51

3.18 Numerical Results for solving Problem 3.8 51

3.19 56

3.20 Numerical Results for Solving Problem 3.1 57

3.21 Numerical Results for Solving Problem 3.2 57

3.22 Numerical Results for Solving Problem 3.3 58

3.23 Numerical Results for Solving Problem 3.4 58

xiv



© C
OPYRIG

HT U
PM

3.24 Numerical Results for Solving Problem 3.5 59

3.25 Numerical Results for Solving Problem 3.6 59

3.26 Numerical Results for Solving Problem 3.7 60

3.27 Numerical Results for Solving Problem 3.8 60

3.28 65

3.29 Numerical Results for Solving Problem 3.1 66

3.30 Numerical Results for Solving Problem 3.2 66

3.31 Numerical Results for Solving Problem 3.3 67

3.32 Numerical Results for Solving Problem 3.4 67

3.33 Numerical Results for Solving Problem 3.5 68

3.34 Numerical Results for Solving Problem 3.6 68

3.35 Numerical Results for Solving Problem 3.7 69

3.36 Numerical Results for Solving Problem 3.8 69

4.1 107

4.2 Numerical Results for Solving Problem 4.1 108

4.3 Numerical Results for Solving Problem 4.2 109

4.4 Numerical Results for Solving Problem 4.3 109

4.5 Numerical Results for Solving Problem 4.4 110

4.6 Numerical Results for Solving Problem 4.5 110

4.7 Numerical Results for Solving Problem 4.6 111

4.8 Numerical Results for Solving Problem 4.7 111

4.9 116

4.10 Numerical Results for Solving Problem 4.1 116

4.11 Numerical Results for Solving Problem 4.2 117

4.12 Numerical Results for Solving Problem 4.3 117

xv



© C
OPYRIG

HT U
PM

4.13 Numerical Results for Solving Problem 4.4 118

4.14 Numerical Results for Solving Problem 4.5 118

4.15 Numerical Results for Solving Problem 4.6 119

4.16 Numerical Results for Solving Problem 4.7 119

4.17 124

4.18 Numerical Results for Solving Problem 4.1 125

4.19 Numerical Results for Solving Problem 4.2 125

4.20 Numerical Results for Solving Problem 4.3 126

4.21 Numerical Results for Solving Problem 4.4 126

4.22 Numerical Results for Solving Problem 4.5 127

4.23 Numerical Results for Solving Problem 4.6 127

4.24 Numerical Results for Solving Problem 4.7 128

4.25 132

4.26 Numerical Results for Solving Problem 4.1 133

4.27 Numerical Results for Solving Problem 4.2 133

4.28 Numerical Results for Solving Problem 4.3 134

4.29 Numerical Results for Solving Problem 4.4 134

4.30 Numerical Results for Solving Problem 4.5 135

4.31 Numerical Results for Solving Problem 4.6 135

4.32 Numerical Results for Solving Problem 4.7 136

5.1 185

5.2 Numerical Results for solving Problem 5.1 187

5.3 Numerical Results for solving Problem 5.2 187

5.4 Numerical Results for solving Problem 5.3 188

5.5 Numerical Results for solving Problem 5.4 188

xvi



© C
OPYRIG

HT U
PM

5.6 Numerical Results for solving Problem 5.5 189

5.7 Numerical Results for solving Problem 5.6 189

5.8 Numerical Results for solving Problem 5.7 190

5.9 194

5.10 Numerical Results for solving Problem 5.1 196

5.11 Numerical Results for solving Problem 5.2 196

5.12 Numerical Results for solving Problem 5.3 197

5.13 Numerical Results for solving Problem 5.4 197

5.14 Numerical Results for solving Problem 5.5 198

5.15 Numerical Results for solving Problem 5.6 198

5.16 Numerical Results for solving Problem 5.7 199

5.17 203

5.18 Numerical Results for solving Problem 5.1 206

5.19 Numerical Results for solving Problem 5.2 207

5.20 Numerical Results for solving Problem 5.3 207

5.21 Numerical Results for solving Problem 5.4 208

5.22 Numerical Results for solving Problem 5.5 208

5.23 Numerical Results for solving Problem 5.6 209

5.24 Numerical Results for solving Problem 5.7 209

5.25 214

5.26 Numerical Results for solving Problem 5.1 214

5.27 Numerical Results for solving Problem 5.2 215

5.28 Numerical Results for solving Problem 5.3 215

5.29 Numerical Results for solving Problem 5.4 216

5.30 Numerical Results for solving Problem 5.5 216

5.31 Numerical Results for solving Problem 5.6 217

xvii



© C
OPYRIG

HT U
PM

5.32 Numerical Results for solving Problem 5.7 217

xviii



© C
OPYRIG

HT U
PM

LIST OF FIGURES

Figure Page

3.1 2-point block multistep method. 12

3.2 3-point block multistep method. 13

3.3 Stability region for two point implicit block method 28

3.4 Stability region for two point semi implicit block method 30

3.5 Stability region for three point implicit block method 31

3.6 Stability region for three point semi implicit block method 33

3.7 Comparison of the methods when solving Problem 3.1 43

3.8 Comparison of the methods when solving Problem 3.2 43

3.9 Comparison of the methods when solving Problem 3.3 44

3.10 Comparison of the methods when solving Problem 3.4 44

3.11 Comparison of the methods when solving Problem 3.5 45

3.12 Comparison of the methods when solving Problem 3.6 45

3.13 Comparison of the methods when solving Problem 3.7 46

3.14 Comparison of the methods when solving Problem 3.8 46

3.15 Comparison of the methods when solving Problem 3.1 52

3.16 Comparison of the methods when solving Problem 3.2 52

3.17 Comparison of the methods when solving Problem 3.3 53

3.18 Comparison of the methods when solving Problem 3.4 53

3.19 Comparison of the methods when solving Problem 3.5 54

3.20 Comparison of the methods when solving Problem 3.6 54

3.21 Comparison of the methods when solving Problem 3.7 55

3.22 Comparison of the methods when solving Problem 3.8 55

3.23 Comparison of the methods when solving Problem 3.1 61

xix



© C
OPYRIG

HT U
PM

3.24 Comparison of the methods when solving Problem 3.2 61

3.25 Comparison of the methods when solving Problem 3.3 62

3.26 Comparison of the methods when solving Problem 3.4 62

3.27 Comparison of the methods when solving Problem 3.5 63

3.28 Comparison of the methods when solving Problem 3.6 63

3.29 Comparison of the methods when solving Problem 3.7 64

3.30 Comparison of the methods when solving Problem 3.8 64

3.31 Comparison of the methods when solving Problem 3.1 70

3.32 Comparison of the methods when solving Problem 3.2 70

3.33 Comparison of the methods when solving Problem 3.3 71

3.34 Comparison of the methods when solving Problem 3.4 71

3.35 Comparison of the methods when solving Problem 3.5 72

3.36 Comparison of the methods when solving Problem 3.6 72

3.37 Comparison of the methods when solving Problem 3.7 73

3.38 Comparison of the methods when solving Problem 3.8 73

3.39 Comparison of the methods when solving Problem 3.1 74

3.40 Comparison of the methods when solving Problem 3.2 75

3.41 Comparison of the methods when solving Problem 3.3 75

3.42 Comparison of the methods when solving Problem 3.4 76

3.43 Comparison of the methods when solving Problem 3.5 76

3.44 Comparison of the methods when solving Problem 3.6 77

3.45 Comparison of the methods when solving Problem 3.7 77

3.46 Comparison of the methods when solving Problem 3.8 78

4.1 Comparison of the methods when solving Problem 4.1 112

4.2 Comparison of the methods when solving Problem 4.2 112

xx



© C
OPYRIG

HT U
PM

4.3 Comparison of the methods when solving Problem 4.3 113

4.4 Comparison of the methods when solving Problem 4.4 113

4.5 Comparison of the methods when solving Problem 4.5 114

4.6 Comparison of the methods when solving Problem 4.6 114

4.7 Comparison of the methods when solving Problem 4.7 115

4.8 Comparison of the methods when solving Problem 4.1 120

4.9 Comparison of the methods when solving Problem 4.2 120

4.10 Comparison of the methods when solving Problem 4.3 121

4.11 Comparison of the methods when solving Problem 4.4 121

4.12 Comparison of the methods when solving Problem 4.5 122

4.13 Comparison of the methods when solving Problem 4.6 122

4.14 Comparison of the methods when solving Problem 4.7 123

4.15 Comparison of the methods when solving Problem 4.1 128

4.16 Comparison of the methods when solving Problem 4.2 129

4.17 Comparison of the methods when solving Problem 4.3 129

4.18 Comparison of the methods when solving Problem 4.4 130

4.19 Comparison of the methods when solving Problem4.5 130

4.20 Comparison of the methods when solving Problem 4.6 131

4.21 Comparison of the methods when solving Problem 4.7 131

4.22 Comparison of the methods when solving Problem 4.1 136

4.23 Comparison of the methods when solving Problem 4.2 137

4.24 Comparison of the methods when solving Problem 4.3 137

4.25 Comparison of the methods when solving Problem 4.4 138

4.26 Comparison of the methods when solving Problem 4.5 138

4.27 Comparison of the methods when solving Problem 4.6 139

4.28 Comparison of the methods when solving Problem 4.7 139

xxi



© C
OPYRIG

HT U
PM

4.29 Comparison of the methods when solving Problem 4.1 140

4.30 Comparison of the methods when solving Problem 4.2 141

4.31 Comparison of the methods when solving Problem 4.3 141

4.32 Comparison of the methods when solving Problem 4.4 142

4.33 Comparison of the methods when solving Problem 4.5 142

4.34 Comparison of the methods when solving Problem 4.6 143

4.35 Comparison of the methods when solving Problem 4.7 143

5.1 Comparison of the methods when solving Problem 5.1 190

5.2 Comparison of the methods when solving Problem 5.2 191

5.3 Comparison of the methods when solving Problem 5.3 191

5.4 Comparison of the methods when solving Problem 5.4 192

5.5 Comparison of the methods when solving Problem 5.5 192

5.6 Comparison of the methods when solving Problem 5.6 193

5.7 Comparison of the methods when solving Problem 5.7 193

5.8 Comparison of the methods when solving Problem 5.1 199

5.9 Comparison of the methods when solving Problem 5.2 200

5.10 Comparison of the methods when solving Problem 5.3 200

5.11 Comparison of the methods when solving Problem 5.4 201

5.12 Comparison of the methods when solving Problem 5.5 201

5.13 Comparison of the methods when solving Problem 5.6 202

5.14 Comparison of the methods when solving Problem 5.7 202

5.15 Comparison of the methods when solving Problem 5.1 210

5.16 Comparison of the methods when solving Problem 5.2 210

5.17 Comparison of the methods when solving Problem 5.3 211

5.18 Comparison of the methods when solving Problem 5.4 211

xxii



© C
OPYRIG

HT U
PM

5.19 Comparison of the methods when solving Problem 5.5 212

5.20 Comparison of the methods when solving Problem 5.6 212

5.21 Comparison of the methods when solving Problem 5.7 213

5.22 Comparison of the methods when solving Problem 5.1 218

5.23 Comparison of the methods when solving Problem 5.2 218

5.24 Comparison of the methods when solving Problem 5.3 219

5.25 Comparison of the methods when solving Problem 5.4 219

5.26 Comparison of the methods when solving Problem 5.5 220

5.27 Comparison of the methods when solving Problem 5.6 220

5.28 Comparison of the methods when solving Problem 5.7 221

5.29 Comparison of the methods when solving Problem 5.1 222

5.30 Comparison of the methods when solving Problem 5.2 222

5.31 Comparison of the methods when solving Problem 5.3 223

5.32 Comparison of the methods when solving Problem 5.4 223

5.33 Comparison of the methods when solving Problem 5.5 224

5.34 Comparison of the methods when solving Problem 5.6 224

5.35 Comparison of the methods when solving Problem 5.7 225

xxiii



© C
OPYRIG

HT U
PM

LIST OF ABBREVIATIONS

ODEs Ordinary Differential Equations
IVPs Initial Value Problems
LTE Local Truncation Error
MAXE Maximum Error
New 2PSDBI 2-point implicit block method for first order
New 2PSDBE 2-point semi implicit block method for first order
New 23PSDBI 3-point implicit block method for first order
New 3PSDBE 3-point semi implicit block method for first order
New 2PSDBI(2) 2-point implicit block method for second order
New 2PSDBE(2) 2-point semi implicit block method for second order
New 23PSDBI(2) 3-point implicit block method for second order
New 3PSDBE(2) 3-point semi implicit block method for second order
New 2PSDBI(3) 2-point implicit block method for third order
New 2PSDBE(3) 2-point semi implicit block method for third order
New 23PSDBI(3) 3-point implicit block method for third order
New 3PSDBE(3) 3-point semi implicit block method for third order

xxiv



© C
OPYRIG

HT U
PM

CHAPTER 1

INTRODUCTION

1.1 Ordinary Differential Equations

Ordinary differential equation( ODE) is a differential equation that contains only
ordinary derivatives of one or more unknown functions with respect to a single
independent variable.

The d−th order ODEs can be written as:

y(d) = f
(
x,y, ...,y(d−1)), (1.1)

with initial conditions:
y(a) = y0 and y(i)(a) = ηi, 0 < i≤ d−1, x ∈ [a,b],
while the first order ODEs can be written as:

dy
dx

= f
(
x,y(x)

)
,y(a) = y0 (1.2)

where x ∈ [a,b].
In (1.2), the quantity being differentiated, y is called the dependent variable, while the
quantity with respect to y which is differentiated, x is called the independent variable.

1.2 The Initial Value Problems to ODEs

The initial value problems (IVPs) of system first order differential equation is defined
as:

y′(x) = f(x,y), (1.3)

with initial conditions

y(x0) = y0, y′(x0) = y′0, x ∈ [a,b]

where
y(x) = [y1(x),y2(x), ...,ys(x)]T

f (x,y) = [ f1(x,y), f2(x,y), ..., fs(x,y)]T ,

and y0 is a given vector of initial conditions. The initial value problems (IVPs) of
general second order is defined as:

y′′(x) = f (x,y,y′), (1.4)
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with initial conditions
y(x0) = y0, y′(x0) = y′0,

where f : R×Rd → Rd , and y0, y′0 ∈ Rd .
The initial value problems (IVPs) of general third order is defined as:

y′′′(x) = f (x,y,y′,y′′), (1.5)

with initial conditions

y(x0) = y0, y′(x0) = y′0, y′′(x0) = y′′0 ,

where f : R×Rd → Rd , and y0, y′0, y′′0 ∈ Rd .

1.3 Existence and Uniqueness

The solutions to higher order ODEs can be obtained by reducing the ODEs to the sys-
tems of first order ODEs and direct methods. The following two theorems can be
stated: Theorem 1.1 discusses about the existence and uniqueness of first order ODEs
and Theorem 1.2 guarantees the uniqueness of higher order ODEs.

Theorem 1.1 : Henrici (1962)
Let f (x,y) be defined and continuous ∀ points

(
x,y
)

in a domain D defined by x ∈
[a,b],y ∈ (−∞,∞), containing initial values

(
x0,y0

)
, a and b are finite. Let there exists

a constant L called Lipschitz constant such that for any x ∈ [a,b] and for any pairs
y1,y2 for which

(
x,y1

)
,
(
x,y2

)
are both in D | f

(
x,y1

)
− f
(
x,y2

)
|≤ L | y1−y2 | . Then

for any given number x∈ [a,b], the first order initial vale problem has a unique solution
y(x).

Theorem 1.2 : Wend (1969)
Let D be the region defined by the inequalities x0 ≤ x ≤ x0 + a, | s j − c j |≤ b, j =
0,1...,d−1(a > 0,b > 0). Suppose F(x,s0, ...,sd−1) is defined in D and in addition
(1) F is nonnegative and nondecrensing in each of x,s0, ...,sd−1 in D,
(2) F(x,c0, ...,cd−1)> 0 for x0 ≤ x≤ x0 +a,
(3) ck ≤ 0,k = 1,2, ...,d−1.
then the d-th order intial value problem has aunique solution in D.

1.4 Linear Multistep Method

Linear multistep method of step k is the computational method for determining the
sequence y(x) for a function f (x,y, ...,yd−1) = yd(x) which consists of a linear rela-
tionship between yn+ j, fn+ j, j = 0,1, ..,k.

2
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k

∑
j=0

α j yn+ j = h
k

∑
j=0

β j y′n+ j + ...+hd
k

∑
j=0

γ j fn+ j, (1.6)

where d is the order of the differential equation, α j,β j and γ j are constants and assume
that αk 6= 0. This method is implicit if βk 6= 0 and γk 6= 0 and explicit if βk = 0 and γk = 0

Definition 1.1 ( Gear (1971), Fatunla (1991) and Lambert (1991))
The linear difference operator L associated with the (1.6), is defined by

L[y(x);h] =
k

∑
j=0

α j y(xn + jh)−h
k

∑
j=0

β j y′(xn + jh)− ...−hd
k

∑
j=0

γ j yd(xn + jh),

(1.7)

where d is the order of the differential equation and y(x) is an orbitary function that is
continuous and differentiable on [a,b]. Using the the Taylor series at point x to expand
y(xn + jh) and yd(xn + jh) in (1.7) gives

L[y(x);h] =C0y(x)+C1hy′(x)+ ...+Cphpyp +Cp+1hp+1yp+1 + ...

where

C0 =
k

∑
j=0

α j,

C1 =
k

∑
j=0

( jα j−β j),

.

.

.

Cp =
k

∑
j=0

(
jp

p!
α j−

jp−1

(p−1)!
β j− ...− jp−d

(p−d)!
γ j).

The multistep (1.6) is said to have order p if C0 = C1 = ... = Cp = Cp+1 =
... = Cp+(d−1) = 0,C(p+d) 6= 0. Therefore, C(p+d) is the error constant and

C(p+d)h
(p+d)y(p+d)(xn) is the principal local truncation error at the point xn.

3
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Definition 1.2 ( see Lambert (1991)) The multistep method is said to be consistent if it
has order p > 1. The method is consistent if and only if

k

∑
j=0

α j = 0

and
k

∑
j=0

jα j =
k

∑
j=0

β j

The first and second characteristic polynomials of the linear multistep method are de-
fined as

ρ(ξ ) =
k

∑
j=0

α j ξ
j,

σ(ξ ) =
k

∑
j=0

β j ξ
j.

The multistep method is consistent if and only if ρ(1) = 0 and ρ ′(1) = σ(1). ξ1 is
called the principal root and the following roots ξs,s = 2,3, ..,k, are called spurious
roots. The characteristic polynomial of the method may be written as follows:

π(r, h̄) = ρ(r)− h̄ σ(r) = 0,

where h̄ = hλ and λ = ∂ f
∂y is a complex parameter.

Definition 1.3 ( see Lambert (1991)) The linear multistep method is said to be zero
stable if no root of the first characteristic polynomial ρ(ξ ) has modulus greater than
one, and every root with modulus one is simple.

Definition 1.4 ( see Henrici (1962)) The linear multistep method (1.6) is said to be
zero stable if the root of the first characteristic polynomial ρ(ξ ) has modulus less than
or equal to one, and that the multiplicity of the roots with modulus one be at most two.

Theorem 1.3 : Henrici (1962)
The necessary and sufficient conditions for a method to be convergent are that it be
consistent and zero-stable.

Definition 1.5 ( see Stoer and Bulirsch (1991))
If given x0,x0, ...,xn are (n+1) distinct numbers and f is a function whose values are
given at these numbers, then there exists a unique polynomial P of degree at most n
with property that

4
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f (xi) = P(xi) for each i = 0,1, ..,n.
The Hermite interpolating polynomial P is given by

P(x) =
n

∑
i=0

mi−1

∑
k=0

f (k)(xi)Li,k(x), (1.8)

where Li,k(x) is the generalized Lagrange polynomial which can be defined by

Li,mi−1(x) = `i,mi−1(x), i = 0,1, ...,n,

`i,k(x) =
(x− xi)

k

k!

n

∏
j=0, j 6=i

(
x− x j

xi− x j
)m j, i = 0,1, ...,n,k = 0,1, ...,mi−1.

and recursively for k = mi−2,mi−3, ...,0.

Li,k(x) = `i,k(x)−
mi−1

∑
v=k+1

`
(v)
i,k (xi)Li,v(x).

1.5 Problem Statement

Initial value problems (IVPs) of first, second and third order (ODEs) often arise in
many fields of applied sciences such as mathematics, chemistry, physics, electricity
and nuclear.

The common technique for solving general second and general third order ODEs is
by transforming the problems into a system of first order ODEs and solving it using a
suitable numerical method in the literature. The disadvantage of this techique is that it
needed more computional time.

The aim of this research is to develop efficient numerical methods in terms of accuracy
and computational time for directly solving general second order ODEs and general
third order ODEs.

1.6 Scope of Study

The study focuses on methods for the solution of first, second and third order ODEs
directly using extra derivative block methods.

5
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1.7 Objectives of the Study

The main objective of the thesis are:

• To derive two and three point implicit and semi implicit second derivative block
methods for directly solving first order y′ = f (x,y) ,second order y′′ = f (x,y,y′)
and third order y′′′ = f (x,y,y′,y′′) ODEs by using Hermite interpolating polyno-
mial.

• To establish the order conditions and zero-stability of the methods.

• To perform numerical comparison of the proposed methods with other existing
methods.

1.8 Outline of Thesis

This thesis is divied into six chapters which are organized as follows:

In Chapter 1, an introduction on the ordinary differential equations, basic theory and
definitions of multistep methods are given.

Chapter 2, deals with the review of previous works on numerical methods for solving
the first order, general second order and general third-order ODEs.

Chapter 3, described the derivation of the two and three point implicit and semi
implicit second derivative block multistep methods for solving first order ODEs. The
zero-stable and order of the new methods are also presented. The numerical results
obtained are compared with other well-known existing methods.

In Chapter 4, the derivation of two and three point implicit and semi implicit second
derivative block multistep methods for solving general second order ODEs are given.
The zero-stable and order of the new methods are discussed. Numerical results based
on the methods are presented and compared with existing methods.

In Chapter 5, construction and derivation of two and third point implicit and semi
implicit second derivative block multistep methods for solving general third order
ODEs are explained in detail. The zero-stability and order of the new methods are
obtained. Numerical results are presented and performance of the methods compared
with existing methods are discussed.

6
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Lastly, the summary of the entire thesis, conclusions and future studies are given in
Chapter 6.

7
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