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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Doctor of Philosophy

G-ANGULABILITY OF CONVEX GEOMETRIC GRAPHS

By

NIRAN ABBAS ALI AL-HAKEEM

September 2018

Chairman: Professor Adem Kilicman, PhD 
Faculty: Science

In this thesis, we consider the g-angulation existence problem of a convex
geometric graph G. A triangulation on n points in convex position is a plane
graph on the convex hull in which each face is a triangle except the exterior
face. A g-angulation on n points in convex position is a plane graph in which
each face is a g-cycle except the exterior face. In particular, the g-angulation
is a triangulation if g = 3. We say that Tn is a triangulation of a graph G(V,E)
if E(Tn)⊆ E. On a given graph G, deciding whether G has a triangulation or
not is known as the Triangulation Existence Problem.

Since Triangulation Existence Problem is known to be an NP-complete prob-
lem, we consider the problem on a convex geometric graph G. In order to de-
cide whether G admits a triangulation, we determine necessary and sufficient
conditions on a subgraph F of complete convex graph Kn with |E(F)| ≤ n−1
for which G = Kn−F admits a triangulation. For |E(F)| ≥ n, we investigate
the possibility of placing F in Kn for certain families of graphs F such that G
admits a triangulation. These results are then applied to determine the convex
skewness of G. The skewness of a graph G, denoted sk(G), is the minimum
number of edges to be deleted from G such that the resulting graph is planar.
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Finally, we extend the triangulation existence problem to the g-angulation
existence problem for a convex geometric graph G. For any g≥ 3 we present
a complete characterization of a subgraph F of Kn with |E(F)| ≤ n− 1 for
which G = Kn−F admits a g-angulation. For |E(F)| ≥ n, we investigate
the possibility of placing 2-regular graphs F in Kn such that G admits a g-
angulation and the possibility of placing 3-regular graphs F in Kn such that
G admits a 4-angulation.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KAJIAN KEBOLEH G-ANGULASI GRAF GEOMETRIK
CEMBUNG

Oleh

NIRAN ABBAS ALI AL-HAKEEM

September 2018

Pengerusi: Profesor Professor Adem Kilicman, PhD 
Fakulti: Sains

Tesis ini memberi perhatian kepada masalah kewujudan g-angulasi pada graf
geometrik cembung G. Suatu triangulasi pada n titik dalam kedudukan cem-
bung merupakan graf satah di badan cembung, yang setiap muka adalah segi
tiga kecuali muka luar. Angulasi-g pada n titik dalam kedudukan cembung
merupakan graf satah yang setiap muka merupakan kitaran g, kecuali muka
luar. Khususnya, g-angulasi merupakan triangulasi jika g = 3. Tn boleh diny-
atakan sebagai triangulasi graf G(V,E) jika E(Tn) ⊆ E. Pada suatu graf G
yang diberikan, untuk memutuskan sama ada G mempunyai triangulasi atau
tidak dikenali sebagai Masalah Kewujudan Triangulasi.

Oleh kerana Masalah Kewujudan Triangulasi diketahui sebagai masalah NP,
masalah tersebut dipertimbangkan pada graf geometrik cembung G. Un-
tuk meventukan sama ada G mempunyai triangulasi atan tidak, syorat-syarat
perlu dan mencukupi telah ditentukan pada subgraf F dari graf cembung
lengkap Kn dengan |E(F)| ≤ n− 1, dan G = Kn−F merupakan triangulasi.
Untuk |E(F)| ≥ n, kemungkinan meletak F di dalam Kn bagi keluarga graf
F supaya G merupakan triangulasi disiasat. Keputusan ini kemudiannya di-
gunakan untuk menentukan skewness cembung G. Skewness sesuatu graf G,
yang dilambangkan sebagai sk(G), merupakan bilangan minimum tepi yang

iii

perlu dipadamkan dari G supaya graf yang dihasilkan adalah satah.
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Akhirnya, masalah kewujudan triangulasi dilanjutkan kepada masalah kewu-
judan g-angulasi untuk graf geometrik cembung G. Untuk mana-mana nilai
g ≥ 3, pencirian lengkap telah dibentangkan untuk subgraf F bagi Kn den-
gan |E(F)| ≤ n− 1, yang mana G = Kn−F merupakan g-angulasi. Untuk
|E(F)| ≥ n, kemungkinan meletakkan 2 graf biasa F di dalam Kn supaya G
merupakan g-angulasi dan kemungkinan meletakkan 3 graf biasa F di dalam
Kn supaya G merupakan 4-angulasi juga telah disiasat.

iv
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CHAPTER 1

INTRODUCTION

In this thesis, we review a problem regarding geometric graphs that are plane.
We deal with the decision problem whether a given convex geometric graph
has a g-angulation, which is a very important problem within the field of
graph theory.

One of the basic tasks in computational geometry and its applications is de-
composing simple polygon into simpler components. The most important
simple polygon decomposition is triangulation. For representing geometries
and other information appearing in a huge variety of applications, triangula-
tions are widely used as a basis.

In this chapter, we present some definitions and notations followed by the
problem of triangulating polygon, a description of problems, research objec-
tives, and finally, a review of the obtained results.

1.1 Definitions and Notations

Graphs are mathematical structures used to model pairwise relations between
objects and Graph theory is the study of graphs. The objects (which are
correspond to mathematical abstractions) are called vertices, and each of the
related pairs of vertices is called an edge. If the pairs of vertices of the edge
set are ordered, the graph is referred to as directed graph and otherwise undi-
rected graph.

In the most common sense of the term, a graph is an ordered pair (V,E)
including a set of vertices V together with a set of edges E. In a more gen-
eralized concept, E is a multi-set of unordered pairs of vertices which are
not necessarily distinct. This type of object is called a multigraph or pseu-
dograph. Multigraph allows multiple edges (the edge that has the same end
vertices). Some authors allow multigraphs to have loops (an edge that con-
nects a vertex to itself) while others reserving the term multigraph for the case
with multiple edges and they call the graphs that have loops pseudographs.

1
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The two sets V and E are usually taken to be finite and the graphs are called
finite graphs. It should be noted that many well-known results are not true
(or somewhat different) for infinite graphs because many arguments fail in
the infinite state.

In this thesis, we consider only finite and simple graphs which has no multiple
edges nor loops. The order of G is the number of its vertices and denoted by
n. The size of G is the number of its edges and denoted by m. The vertices
belonging to an edge are called end vertices of the edge.

A graph H = (V ′,E ′) is a subgraph of G = (V,E) if V ′ is a subset of V and all
edges of E ′ are also present in E. A subgraph is called spanning if V ′ =V .

For subset S of vertices of V , the induced subgraph G[S] is the graph whose
vertex set is S and whose edge set consists of all of the edges in E that have
both end vertices in S. The induced subgraph G[S] may also be called the
subgraph induced in G by S.

The deletion of a vertex v in G is to obtain a subgraph induced in G by V −
{v}. Two vertices u and v within V are said to be neighbors of each other, if
uv ∈ E. NG(v) denotes the set of neighbors of v in G, and dG(v) denotes the
degree of v in G which is the size of NG(v). u is adjacent to v if u ∈ NG(v).

A graph in which every vertex has the same degree is called a regular graph.
A complete graph is a graph, in which the vertices are pairwise adjacent. A
vertex which is not incident to any edge is called an isolated vertex.

A path of length ` is a graph with `+1 distinct vertices, call them v0, . . . ,v`,
whose edge set consists of the pairs vivi+1 with 0≤ i≤ `−1. A path is closed,
if v0 = v` and open otherwise. If a path is closed, it is a cycle. The length of a
cycle is the number of vertices in it. The graph is connected if there is a path
in G between any two vertices in G.

For two graphs G1 and G2, if there is a bijection h : V (G1)→V (G2) such that
h(u)h(v) is an edge of G2 if and only if uv is an edge in G1; then G1 and G2
are isomorphic and we write G1 ∼= G2. We use Kn, Pn and Cn for the complete

2
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graphs, paths and cycles with n vertices.

If a graph G can be drawn in the plane without any pair of crossing edges then
G is planar graph; such a drawing is called a planar embedding of G. Planar
embedding of G divides the plane into regions; such regions are called faces
of G. A finite graph has an unbounded face, also called the exterior face or
outer face. A graph with a planar embedding where all vertices are on the
outer face is an outerplanar graph.

A graph H = (V,E ′) is a maximum planar subgraph of a graph G = (V,E) if
H is a planar subgraph of G such that there is no planar subgraph H ′= (V,E ′′)
of G with |E ′′|> |E ′|.

A graph H = (V,E ′) is a maximal planar subgraph of a graph G = (V,E) if H
is a planar subgraph of G such that every graph H ′ ∈{(V,E ′∪{e})| e∈E\E ′}
is nonplanar.

v1

v2 v3
v4

v5

v6v7

G

v1

v2 v3
v4

v5

v6v7

G1

v1

v2

v3

v4

v5

v6v7

G2

v1

v2

v3

v4

v5

v6v7

G3

Figure 1.1: Maximal planar subgraph and Maximum planar subgraph.

In Figure 1.1, G is a nonplanar graph. G1 is a planar subgraph of G but not
a maximal since adding the edge v1v5 to G1 does not destroy the planarity
where G2 ∼= G1∪ v1v5. G2 is a maximal planar subgraphs of G, while G3 is
both a maximal and a maximum planar subgraphs of G.

The skewness of a graph G, denoted by sk(G), is the minimum number of
edges in G whose deletion results in a planar graph.

A subset of the plane is called convex set if and only if for any pair of its
points p,q the line segment pq is completely contained in it. Given a finite

3
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set of points S in the plane, the convex hull CH(S) of a set S is the smallest
convex set that contains S. To be more precise, it is the intersection of all
convex sets that contain S. A set S is in convex position if no point of S lies
in the interior of CH(S).

A set of points S is in general position in the plane if no three points lie on a
common line. A triangulation of a set S of points in general position in the
plane is a partition of CH(S) into triangles whose vertices are all the points
in S.

A geometric graph is a graph whose vertex set is a set of points in general
position in the plane and whose edge set contains straight-line segments. A
convex geometric graph is a geometric graph whose vertex set is a set of
points in convex position. A geometric graph is plane or non-crossing if its
edges do not cross each other.

1.2 Polygon Triangulation

A polygon is a region of the plane bounded by a finite collection of line seg-
ments forming a closed curve. A polygon is simple if its edges cross only in
their end vertices. An n-gon is a polygon with n sides; for example, a triangle
is a 3-gon.

A convex polygon is a simple polygon in which no line segment between two
points on the boundary ever goes outside the polygon. A diagonal is a line
segment between two vertices which does not intersect the polygon.

A planar straight-line graph is a term used for an embedding of a planar
graph in the plane such that its edges are mapped into straight line segments
(Berg et al., 2008). Fáry’s theorem (1948) states that every planar graph has
this kind of embedding. Triangulations may be viewed as special cases of
planar straight-line graphs.

A triangulation of a polygon is a partition of the interior of the polygon into
triangles whose edges are non-crossing diagonals. A polygon with n vertices
can always be triangulated and will have n−2 triangles and will require the
introduction of n−3 diagonals.

4
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In how many ways can a plane convex polygon of n sides be divided into
triangles by diagonals? Leonhard Euler posed this problem in 1751 to the
mathematician Christian Goldbach.

Euler, Goldbach, and Segner proved in 1758 that the number of triangulations
of a convex (n+2)-gon is

1
n+1

(
2n
n

)
.

Recently, this value is called Catalan’s number. Catalan’s name eventually
stuck with the problem, despite his modest contributions which were the ob-
serving that 1

n+1

(2n
n

)
=
(2n

n

)
−
( 2n

n−1

)
and interpreting triangulations as “brack-

eted sequences”.

1.3 Applications of Triangulation

In computational geometry a triangulation of a finite planar set is a well stud-
ied structure (O’Rourke, 1994), (Preparata and Shamos, 1985).

In engineering, the most important applications are (1) mesh generation for
finite element methods (Srinivasan et al., 1992), (Zienkiewicz and Taylor,
1989), (Ho-Le, 1988), (Sapidis and Perucchio, 1989), (Bern and Eppstein,
1992), and (2) scattered data interpolation (Quak and Schumaker, 1990).

Polygons are very convenient for computer representation of the boundary of
the objects from the real world. Computing the triangulation of a polygon is a
fundamental algorithm in computational geometry. Triangulation of a simple
polygon and its applications in geographic information systems and finite
element mesh generation form a significant task in computational geometry .

Triangulations are frequently used in three important fields which are terrain
modeling, finite-element methods, and social science research.

5
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In the first field, samples from a terrain is represented by points, and a bi-
variate interpolating surface is provided by the triangulation, providing an
elevation model of the terrain (see (Cohen and Koss, 1993) and (Silveira,
2009)).

In the second field, the complex domain is subdivided using triangulations
by creating a mesh of triangles, over which a system of differential equations
can be solved more easily (see (Briechle and Hanebeck, 2004), (Esteves et al.,
2006) and (Font-Llagunes and Batlle, 2009)).

In the third field, the concept of triangulation refers to a process by which a
researcher wants to verify a finding by showing that independent measures
of it agree with or, at least, do not contradict it (see (Miles and Huberman,
1994) and (Nordberg, 2009)).

The shapes of the triangles has serious consequences on the result with re-
spect to all these fields. For example, in finite-element methods, since ele-
ments of large aspect ratio can lead to poorly conditioned systems, the aspect
ratio of the triangles is particularly important (see (Byrod et al., 2007)).

Triangulations have also been heavily applied to other application areas such
as pattern recognition, computer graphics, solid modelling and geographic
information systems (Okabe et al., 1999), (Schroeder and Shephard, 1988),
(Wang, 1992), (Wang and Aggarwal, 1986).

In geographical information systems (GIS), triangulations are used to repre-
sent terrain surfaces and relations between geographical objects. Systems for
modeling geological structures in the oil and gas industry use triangulations
for representing surfaces that separate different geological structures, and for
representing properties of these structures.

Computer-aided design (CAD) systems with triangulation features are com-
mon in the manufacturing industry and in particular within the automotive
industry, which has been a driving force for this research for many decades.
We also find applications within engineering fields that simulate physical phe-
nomena using finite element methods (FEM) which use triangulation. Also,
the visualization and computer graphics are among the huge number of ap-

6
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plications that use triangulation.

However, the quadrangulations (4-angulations) of polygons have been inves-
tigated in the computational geometry literature ((Everett et al., 1992), (Kahn
et al., 1983), (Lubiw, 1985), (Sack and Toussaint, 1981), (Sack and Tous-
saint, 1988), (Garcı́a et al., 2009)). In the study of finite element methods and
scattered data interpolation (Lai, 1996), it has been shown that quadrangula-
tions may be more desirable objects than triangulations. These applications
provide new motivation to confine our attention to the study of g-angulations
(triangulations, quadrangulations, pentagulations, etc) of point sets from the
computational geometry point of view.

We first give precise definitions for g-angulation, convex g-angulation and
potentially g-angulable.

Definition 1.1 Let S be a set of n points in general position in the plane.

1. A g-angulation of S is a plane graph in which each face interior to the
convex hull of S is a g-cycle.

2. A convex g-angulation is a g-angulation on S of n points in convex
position in the plane.

When g = 3, g-angulation is usually called a triangulation. We say that G
admits a g-angulation if it contains a spanning plane subgraph in which each
interior face of CH(V (G)) is a g-cycle. That is, G admits a g-angulation
Gn if Gn is a g-angulation of V (G) with E(Gn) ⊆ E(G). Which means a
geometric graph G admits a triangulation if it contains a trianglation on V (G)
as a subgraph.

Definition 1.2 : Let Kn be a convex complete graph with n vertices. F is said
to be potentially g-angulable in Kn where g≥ 3 if there exists a configuration
of F in Kn such that Kn−F admits a g-angulation.

1.4 Problem statement

The g-angulation existence problem is, On a given geometric graph G, de-
cide whether there exists a g-angulation of G. In computational complexity

7
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theory, an NP-complete decision problem is one belonging to both the NP
and the NP-hard complexity classes. The triangulation existence problem is
NP-complete (see (Lloyd, 1977), (Schulz, 2006)).

This thesis considers the following problem.

Problem 1.4.1 On a given convex geometric graph G, decide whether
there exists a g-angulation of G.

1.5 Objectives

The contributions to this thesis are the following research objectives:

1. To find the maximum number of edges can be removed from a convex com-
plete graph so that the resulting graph still contains a convex g-angulation.

2. To characterize Fn such that Kn−Fn admits no g-angulations.

3. To find the necessary and sufficient condition on Fn such that Kn − Fn

admits a g-angulation.

4. To precise the graphs Fn that are potentially g-angulable.

1.6 Organization of Thesis

This thesis falls into six chapters. Since a short introduction of the content is
given at the beginning of each chapter, we shall give only a brief outline of
the thesis.

Chapter 2 is the literature review on triangulation and quadrangulation.

We devote Chapter 3 to consider the triangulation existence problem of a
convex geometric graph Kn−Fn where Fn is a spanning subgraph of a convex
complete graph Kn with |E(Fn)| ≤ n−1. We define two configurations Fn(

∗)
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and Jn(
∗) and show that Kn−Fn(

∗) and Kn−Jn(
∗) admit no triangulation.

If |E(Fn)| ≤ n−2, we show that Kn−Fn admits a triangulation if and only if
Fn 6= Fn(

∗). If |E(Fn)| = n−1, we show that Kn−Fn admits a triangulation
if and only if Fn 6= Jn(

∗). For |E(Fn)| ≥ n, we investigate the possibility of
placing Fn in Kn such that Kn−Fn admits a triangulation for certain families
of graphs Fn. These results are then applied to determine the convex skewness
of the convex graphs of the form Kn−Fn.

Chapter 4 investigates the basic combinatorial property of a given set S of n
points in general position in the plane and states the necessary and sufficient
condition for S to admit a g-angulation. It also determines the number of
edges of the convex g-angulation and the number of the inner faces. Two
results are obtained in this chapter and then applied to get new short proofs
for some well-known results in graph theory.

Chapter 5 extends the problem of Chapter 3 to the g-angulation existence
problem of a convex geometric graph Kn−Fn where Fn is a spanning sub-
graph of a convex complete graph Kn with |E(Fn)| ≤ n− 1. We define two
configurations Fn,g(

∗) and Jn,g(
∗
β
) (β ∈ {1,2, . . . ,2g− 3}) and show that

Kn−Fn,g(
∗) and Kn−Jn,g(

∗
β
) admit no g-angulation. If |E(Fn)| ≤ n−g+1,

we show that Kn−Fn admits a g-angulation if and only if Fn 6= Fn,g(
∗). If

n− g+ 2 ≤ |E(Fn)| ≤ n− 1, we show that Kn−Fn admits a g-angulation if
and only if Fn 6= Jn,g(

∗
β
). For |E(Fn)| ≥ n, we investigate the possibility of

placing (i) 2-regular graphs Fn in Kn such that Kn−Fn admits a g-angulation
(ii) 3-regular graphs Fn in Kn such that Kn−Fn admits a 4-angulation.

In Chapter 6, a summary of the results of the present thesis is presented to-
gether with some open problems.
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fyzikálny Časopis, 5:144–151.

Lai, M. (1996). Scattered data interpolation and approximation by using C1

piecewise cubic polynomials. Computer Aided Geometric Design, 13:81–
88.

89



© C
OPYRIG

HT U
PM

Liebers, A. (2001). Planarizing graphs A survey and annotated bibliography.
Journal of Graph Algorithms and Applications, 5:1–74.

Liu, P. C. and Geldmacher, R. C. (1979). On the Deletion of Nonplanar Edges
of a Graph. Congressus Numerantium, 24:727–738.

Lloyd, E. L. (1977). On triangulations on a set of points in the plane. Proc.
of IEEE Symposium on Foundations of Computer Science (FOCS), IEEE,
pages 228–240.

Lubiw, A. (1985). Decomposing polygonal regions into convex quadrilater-
als. In Proceedings of the 1st ACM Symposium on Computational Geome-
try, pages 97–106, Baltimore, Maryland, USA.

Maehara, H. (2003). Plane graphs with straight edges whose bounded faces
are acute triangles. Journal of Combinatorial Theory Series B, 88(1):237–
245.

Mendonca, C. G. X., Schaffer, K., Xavier, E. F., Stolfi, J., Faria, L., and
Figueiredo, C. M. H. (2002). The splitting number and skewness of Cn×
Cm. Ars combinatoria, 63:193–205.

Mezzini, M. and Moscarini, M. (2009). Simple algorithms for minimal tri-
angulation of a graph and backward selection of a decomposable Markov
network. Theorectical Computer Science. doi: 10.1016/j.tcs.2009.10.004.

Miles, M. and Huberman, A. (1994). Qualitative Data Analysis: An Ex-
panded Sourcebook. Thousand Oaks. Sage Publications, California, 2nd
edition.

Nordberg, K. (2009). The Triangulation Tensor. Computer Vision and Image
Understanding, 113:935 – 945.

Okabe, A., Boots, B., and Sugihara, K. (1999). Patial Tessellations: Concepts
and Applications of Voronoi Diagrams. John Wiley & Sons, Chichester,
England.

O’Rourke, J. (1994). Computational Geometry in C. Cambridge University
Press.

Ozawa, T. and Takahashi, H. (1981). A graph-planarization algorithm and
its application to random graphs. In Saito, N. and Nishizeki, T., editors,
Proceedings of the 17th Symposium, Research Institute of Electrical Com-
munication, volume 108 of Lecture Notes in Computer Science, pages 95–
107, Sendai, Japan. Tohoku University, Springer-Verlag.

90



© C
OPYRIG

HT U
PM

Pahlings, H. (1978). On the chromatic number of skew graphs. Journal of
Combinatorial Theory, Series B, 25(3):303–306.
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