UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF AEROSOLIZED PALM-BASED NANOEMULSION SYSTEM CONTAINING QUERCETIN FOR PULMONARY DELIVERY OF LUNG CANCER

NOOR HAFIZAH BINTI ARBAIN

FS 2018 76
DEVELOPMENT OF AEROSOLIZED PALM-BASED NANOEMULSION SYSTEM CONTAINING QUERCETIN FOR PULMONARY DELIVERY OF LUNG CANCER

By

NOOR HAFIZAH BINTI ARBAIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

August 2018
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEVELOPMENT OF AEROSOLIZED PALM-BASED NANOEMULSION SYSTEM CONTAINING QUERCETIN FOR PULMONARY DELIVERY OF LUNG CANCER

By

NOOR HAFIZAH BINTI ARBAIN

August 2018

Quercetin (QT) is an attractive natural compound, has been extensively investigated for its pharmacological effects towards lung cancer. However, clinical applications of QT as chemotherapeutic agent are limited due to low water solubility and low bioavailability. A new nanoemulsion system to enhance the solubility of QT in the dispersed phase and its bioavailability was developed for pulmonary delivery of lung cancer.

Aerosolized palm-based nanoemulsion system containing QT was carried out using high energy emulsification method by dissolving QT in oil phase and then it was added into aqueous phase. Screening of oils and surfactants were done by solubility and emulsification test. From the results, it showed that the combination of palm oil esters (POE), ricinoleic acid (RC) with ratio 1:1 (wt. / wt.) and Tween 80 gave the highest solubility (0.66 mg/mL) of QT compared to other oil mixtures and showed the smallest droplet size was obtained (131.5 nm). These compositions were used for further optimization of nanoemulsion formulation. The formulation was optimized using Mixture Experimental Design (MED) and Artificial Neural Network (ANN).

The composition effects of the mixture of POE:RC (1.50–4.50 wt. %), lecithin (1.50–2.50 wt. %), Tween 80 (0.50–1.00 wt. %), glycerol (1.50–3.00 wt. %), and water (88.00–94.95 wt. %) towards the droplet size and volume median diameter (VMD) as the responses were studied. The mathematical model from MED suggested three optimized formulations named OPT 1, OPT 2 and OPT 3 with specific amount of POE:RC (1.50, 3.40 and 4.50 wt. %), lecithin (1.50 and 2.50 wt. %), Tween 80 (1.50 wt. %), glycerol (1.50, 3.00, and 2.43 wt. %) and water (93.95, 89.56, and 89.02 wt. %) gave predicted response values of
droplet size (110.42 nm, 132.95 nm and 146.04 nm) and VMD (5.959 μm, 4.576 μm and 4.378 μm). These values showed good correlation with the actual values of droplet size (110.30 nm, 131.40 nm and 150.60 nm) and VMD (5.882 μm, 4.557 μm and 4.266 μm). The results from ANN analysis gave no significant differences between the actual and predicted values of VMD with lower residual standard error than MED.

From the physicochemical characterizations, the optimized formulations (OPT 1, OPT 2 and OPT 3) possessed suitability for pulmonary application. The droplet size measured in Transmission Electron Microscopy (TEM) was consistent with the size obtained using Zetasizer analysis and showed the droplets of nanoemulsion were spherical. These optimized formulations exhibited good stability against phase separation and remained in nano-sized under storage. Stability evaluation shows these formulations were stable under centrifugation test, freeze thaw cycle test and storage at 4 °C for three months.

The evaluation of aerosol nanoemulsion showed efficient delivery with more than 90% aerosols output, higher percent dispersed and percent inhaled of drug formulation. The aerosols delivery properties for OPT 1, OPT 2 and OPT 3 yielded mass median aerodynamic diameter (4.25 ± 0.38 μm, 3.20 ± 0.07 μm and 3.09 ± 0.05 μm), fine particle fraction (70.56 ± 6.33%, 89.01 ± 1.37% and 90.52 ± 0.10%) and geometric standard deviation (1.96 ± 0.07, 1.76 ± 0.03 and 1.77 ± 0.03) that suitable for aerosolization to be inhaled in the lung.

The optimized nanoemulsions demonstrated the sustained QT release of about 18.33 ± 0.32%, 24.15 ± 1.68% and 26.75 ± 2.20% within 48 hours and there were in adherence to Korsmeyer’s Peppas mechanism. Cytotoxicity analysis showed the developed formulation has a better cytotoxicity action on human lung cancer cells (A549) compared to human lung fibroblast cells (MRC5). In conclusion, a stable palm-based nanoemulsion system containing QT was successfully developed in this study and shows potential for pulmonary delivery of lung cancer.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGHASILAN SISTEM AEROSOL NANOEMULSI BERASASKAN SAWIT MENGGANDUNGI QUERCETIN UNTUK PENGHANTARAN PULMONARI KANSER PARU-PARU

Oleh

NOOR HAFIZAH BINTI ARBAIN

Ogos 2018

Pengerusi : Professor Mohd Basyaruddin Abdul Rahman, PhD
Fakulti : Sains

Quercetin (QT) adalah sebatian semulajadi yang menarik, telah dikaji secara meluas untuk aktiviti farmakologinya sebagai ubat kanser paru-paru. Walau bagaimanapun, aplikasi klinikal QT sebagai ejen kemoterapi adalah terhad kerana kelarutannya di dalam air dan bioavailabilitinya yang rendah. Sistem nanoemulsi yang baru untuk meningkatkan kelarutan QT dalam fasa penyebaran dan bioavailabilitinya telah dibangunkan untuk penghantaran pulmonari kanser paru-paru.

Sistem aerosol nanoemulsi berasaskan minyak kelapa sawit mengandungi QT disediakan menggunakan kaedah pengemulsi tenaga tinggi dengan melarutkan QT di dalam fasa minyak dan kemudian ia dimasukkan ke dalam fasa berair. Pemilihan minyak dan surfaktan dilakukan melalui ujian keterlarutan dan pengemulsian. Daripada keputusan tersebut, ia menunjukkan gabungan ester minyak sawit (POE) dan asid risinolik (RC) dengan nisbah 1:1 dan Tween 80 memberikan kelarutan QT yang tertinggi (0.66 mg/mL) berbanding campuran minyak yang lain dan menunjukkan saiz zarah yang lebih kecil telah diperolehi (131.5 nm). Komposisi ini seterusnya telah digunakan untuk pengoptimuman penghasilan nanoemulsi. Formulasi ini dioptimumkan dengan menggunakan Reka Bentuk Eksperimen Campuran (MED) dan Rangkaian Saraf Tiruan (ANN).

Kesan komposisi campuran POE:RC (1.50-4.50 wt. %), lesitin (1.50-2.50 wt. %), Tween 80 (0.50-1.00 wt. %), gliserol (1.50-3.00 wt. %) dan air (88.00-94.95 wt. %) kepada respon iaitu saiz zarah dan isipadu median diameter dikaji. Model matematik daripada MED mencadangkan tiga formulasi yang dioptimumkan iaitu OPT 1, OPT 2 dan OPT 3 dengan jumlah POE:RC (1.50, 3.40 dan 4.50 wt. %), lesitin (1.50 dan 2.50 wt. %), Tween 80 (1.50 wt. %), gliserol (1.50, 3.00, dan 2.43 wt. %) dan air (93.95, 89.56, dan 89.02 wt. %) memberikan nilai respon
yang diramalkan bagi saiz zarah (110.42 nm, 132.95 nm and 146.04 nm) dan isipadu median diameter (5.959 μm, 4.576 μm and 4.378 μm). Nilai-nilai ini menunjukkan hubungkait yang baik dengan nilai sebenar bagi saiz zarah (110.30 nm, 131.40 nm and 150.60 nm) dan isipadu median diameter (5.882 μm, 4.557 μm dan 4.266 μm). Analisis ANN menunjukkan tiada perbezaan ketara untuk isipadu median diameter di antara nilai yang diramalkan dengan nilai sebenar dengan baki ralat piawaian yang lebih rendah daripada MED.

Dari pencirian fizikokimia, formulasi yang optimum (OPT 1, OPT 2 dan OPT 3) mempunyai kesesuaian untuk aplikasi pulmonari. Saiz zarah yang diukur dalam Transmisi Elektron Mikroskopi (TEM) adalah selaras dengan saiz yang diperoleh menggunakan analisis Zetasizer dan menunjukkan bahawa titisan nanoemulsi adalah sfera. Formulasi yang dioptimumkan ini menunjukkan kestabilan yang baik terhadap pemisahan fasa dan kekal dalam saiz-nano semasa penyimpanan. Penilaian kestabilan ini menunjukkan formulasi tersebut stabil di bawah ujian pengemparan, ujian kitaran beku- cair dan penyimpanan pada ± 4 °C selama 3 bulan.

Penilaian aerosol nanoemulsi menunjukkan penghantaran yang efektif dengan lebih daripada 90% pengeluaran aerosol, peratus formulasi dadah tersebar dan disedut yang lebih tinggi. Ciri-ciri penyerapan aerosol bagi OPT 1, OPT 2 dan OPT 3 menghasilkan median jisim diameter aerodinamik (4.25 ± 0.38 μm, 3.20 ± 0.07 μm dan 3.09 ± 0.05 μm), pecahan zarah halus (70.56 ± 6.33%, 89.01 ± 1.37% dan 90.52 ± 0.10%) dan sisihan piawaian geometri (1.96 ± 0.07, 1.76 ± 0.03 dan 1.77 ± 0.03) yang sesuai untuk aerosolisasi untuk disedut dalam paru-paru.

Nanoemulsi yang dioptimumkan menunjukkan pelepasan QT yang berterusan kira-kira 18.33 ± 0.32%, 24.15 ± 1.68% dan 26.75 ± 2.20% dalam masa 48 jam dan ia berpegang kepada mekanisme pelepasan Korsmeyer Peppas. Analisis ketoksikan menunjukkan formulasi yang dibangunkan ini mempunyai tindakan ketoksikan yang lebih baik pada sel-sel kanser paru-paru manusia (A549) berbanding dengan sel fibroblas paru-paru manusia (MRC5). Kesimpulannya, sistem nanoemulsi berasaskan sawit yang stabil berasaskan sawit mengandungi QT yang stabil berjaya dibangunkan dalam kajian ini dan menunjukkan potensi untuk penghantaran pulmonari kanser paru-paru.
ACKNOWLEDGEMENTS

In the name of Allah the Most Gracious and the Most Merciful, first and foremost, I would like to express my deepest praise to Allah S.W.T. for giving me a great opportunity, patient, strength, determination and courage to complete this research project. Alhamdulillah.

My deep gratitude goes first to my supervisor, Prof. Dr. Mohd Basyaruddin Abdul Rahman for his wealth of knowledge and valuable guidance and experience from the beginning until the end of this research project. His unwavering support has kept me constantly enthusiasm with my research. I also would like to thank all my co-supervisors, namely, late Prof. Dr. Mahiran Basri, Dr. Norazlinaliza Salim, and Prof. Dr. Wong Tin Wui for their support and valuable insights in relevance to the study.

My appreciation to all my laboratory colleague for their helpful insight, cooperation and support along the time to complete my doctoral programme. My appreciation also extends to the Ministry of Higher Learning for their special award of financial assistance under MyBrain15 scheme.

And finally, I would like to acknowledge with gratitude, the support and love of my beloved family; my late parents, my husband, Mohd Izzat Mohd Yusof, my childrens, Muhammad Mirza Al Amsyar and Ameena Zahrah, my siblings, my mother in laws, and my family in laws for giving me more than a simple helping hand. I would like to thanks for the moral support and loving encouragement throughout my life.
I certify that a Thesis Examination Committee has met on 14 August 2018 to conduct the final examination of Noor Hafizah Binti Arbaín on her thesis entitled "Development of Aerosolized Palm-Based Nanoemulsion System Containing Quercetin for Pulmonary Delivery of Lung Cancer" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Mansor b Hj Ahmad @ Ayob, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Emilia binti Abd Malek, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Datin Sharida binti Fakurazi, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Chia Chen Wang, PhD
Professor
National Sun Yat-Sen University
Taiwan
(External Examiner)

[Signature]

RUSLI HAJI ABDULLAH, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 27 September 2018
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohd Basyaruddin Bin Abdul Rahman, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Mahiran Binti Basri, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Norazlinaliza Binti Salim, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

Wong Tin Wui, PhD
Professor
Universiti Teknologi MARA, Puncak Alam
Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: ______________________________________

viii
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: _________________________________
Name of Chairman of Supervisory Committee: _________________________________

Signature: _________________________________
Name of Member of Supervisory Committee: _________________________________

Signature: _________________________________
Name of Member of Supervisory Committee: _________________________________

Signature: _________________________________
Name of Member of Supervisory Committee: _________________________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background of Study
1.2 Problem Statement
1.3 Scope of Study
1.4 Objectives of Study
1.5 Hypothesis of Study

2 LITERATURE REVIEW

2.1 Lung Cancer
2.2 Drugs for Lung Cancer
 2.2.1 Quercetin
2.3 Pulmonary Drug Delivery
 2.3.1 Pulmonary Drug Delivery Devices
 2.3.2 Anatomy of Lung and Respiratory System
 2.3.3 Mechanism of Particles Deposition in the Lung
 2.3.4 Novel Pulmonary Delivery
 2.3.5 Challenges in Inhalation Nanochemotherapy
2.4 The Carrier Systems for Drug Delivery and Its Limitations
2.5 Nanoemulsion
2.6 Formulation of Nanoemulsion
 2.6.1 Methods of Preparation of Nanoemulsion
 2.6.2 Materials Used in Preparation of Nanoemulsion
2.7 Stability of Nanoemulsions
 2.7.1 Flocculation
 2.7.2 Creaming and Sedimentation
 2.7.3 Coalescence Rate
 2.7.4 Ostwald Ripening Rate
MATERIALS AND METHODOLOGY

3

3.1 Materials

3.2 Selection of Oils

3.3 Selection of Surfactants

3.4 Preparation of Nanoemulsion

3.5 Formulation Optimizations

3.5.1 Mixture Experiment Design

3.5.2 Artificial Neural Network Design

3.6 Modification of Nanoemulsion Formulation

3.7 Characterization of the Optimized Nanoemulsion Formulation

3.7.1 Visual Observation of Nanoemulsion

3.7.2 Volume Median Diameter Analysis

3.7.3 Droplet Size and Polydispersity Index (PDI) Analysis

3.7.4 Zeta Potential Analysis

3.7.5 pH Analysis

3.7.6 Conductivity Analysis

3.7.7 Osmolality Analysis

3.7.8 Viscosity Analysis

3.7.9 Drug Content Analysis

3.7.10 Drug Entrapment Efficiency

3.7.11 Transmission Electron Microscopy

3.8 Stability Study

3.8.1 Stability under Centrifugation and Freeze Thaw Cycle Test

3.8.2 Fourier Transforms Infrared Spectroscopy Analysis

3.8.3 Stability Against Droplet Size

3.9 Aerosol Performance Analysis

3.10 Drug Release Study

3.10.1 Drug Release Mechanism

3.11 Cytotoxicity Study

RESULTS AND DISCUSSION

4

4.1 Selection of Oils

4.2 Selection of Surfactants

4.3 Preparation of Nanoemulsion

4.4 Formulation Optimization By Mixture Experiment Design

4.4.1 Experimental Design and Model Fitting

4.4.2 Analysis of Variance

4.4.3 D-Optimal Analysis

4.4.4 Verification of the Model
4.4.5 Numerical Optimization

4.5 Formulation Optimization by Artificial Neural Network
 4.5.1 The Topologies of The Algorithm
 4.5.2 Model Selection
 4.5.3 The GA-5-14-1 Network
 4.5.4 Model Validation
 4.5.5 Optimization of Nanoemulsion
 4.5.6 Comparison between MED and ANN for Optimized Formulation

4.6 Characterization of the Optimized Nanoemulsion Formulation
 4.6.1 Visual Observation of Nanoemulsion
 4.6.2 Volume Median Diameter Analysis
 4.6.3 Droplet Size and Polydispersity Index Analysis
 4.6.4 Zeta Potential Analysis
 4.6.5 pH and Conductivity Analysis
 4.6.6 Osmolality Analysis
 4.6.7 Viscosity Analysis
 4.6.8 Drug Content Analysis
 4.6.9 Drug Entrapment Efficiency
 4.6.10 Transmission Electron Microscopy Analysis

4.7 Stability Study
 4.7.1 Fourier Transforms Infrared Spectroscopy Analysis
 4.7.2 Stability Against Droplet Size
 4.7.3 Coalescence Rate
 4.7.4 Ostwald Ripening

4.8 Aerosol Performance Analysis
 4.8.1 Aerosol Output
 4.8.2 Aerosol Rate
 4.8.3 The Aerodynamic Properties
 4.8.4 Percent Dispersed And Percent Inhaled

4.9 Drug Release Study
 4.9.1 Drug Release Mechanism

4.10 Cytotoxicity of Nanoemulsion

5 CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH
 5.1 Conclusion
 5.2 Recommendations for Future Research

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparison of devices used for pulmonary drug delivery</td>
</tr>
<tr>
<td>2.2</td>
<td>Relation between the areas of lung deposition, particle size and the mechanism of deposition</td>
</tr>
<tr>
<td>2.3</td>
<td>Examples of different nanoparticles as the carrier for inhalation in lung cancer treatment</td>
</tr>
<tr>
<td>2.4</td>
<td>Nanoemulsion in pulmonary delivery system</td>
</tr>
<tr>
<td>2.5</td>
<td>The components used in nanoemulsion systems for pulmonary delivery application</td>
</tr>
<tr>
<td>2.6</td>
<td>Fatty acid composition of POE</td>
</tr>
<tr>
<td>3.1</td>
<td>Restrictions of component proportions (%)</td>
</tr>
<tr>
<td>3.2</td>
<td>The D-optimal mixture experimental design</td>
</tr>
<tr>
<td>3.3</td>
<td>The experimental design that consists of the training and testing data sets</td>
</tr>
<tr>
<td>4.1</td>
<td>Predicted and actual values of droplet size and VMD of nanoemulsion obtained from D-optimal mixture experimental design</td>
</tr>
<tr>
<td>4.2</td>
<td>Analysis of variance (ANOVA) for the D-optimal mixture design of the linear model of nanoemulsions</td>
</tr>
<tr>
<td>4.3</td>
<td>Regression coefficients of the final reduced models</td>
</tr>
<tr>
<td>4.4</td>
<td>Validation set for four different formulations of nanoemulsion-containing QT</td>
</tr>
<tr>
<td>4.5</td>
<td>Optimum formulation derived by D-optimal mixture experimental design</td>
</tr>
<tr>
<td>4.6</td>
<td>The performance results of the optimized topologies, QP-5-6-1, BBP-5-7-1, IBP-5-6-1, GA-5-14-1 of nanoemulsion</td>
</tr>
<tr>
<td>4.7</td>
<td>Validation set predicted by selected model GA-5-14-1 for formulation of nanoemulsion</td>
</tr>
<tr>
<td>4.8</td>
<td>The predicted and actual response values for the optimized formulation derived by MED and ANN</td>
</tr>
<tr>
<td>4.9</td>
<td>Physicochemical properties of QT loaded nanoemulsion-based palm oil</td>
</tr>
<tr>
<td>4.10</td>
<td>The entrapment efficiency of nanoemulsions</td>
</tr>
<tr>
<td>4.11</td>
<td>Stability of QT loaded nanoemulsion after centrifugation and freeze thaw cycles test</td>
</tr>
<tr>
<td>4.12</td>
<td>The aerosol aerodynamic parameters assessed by laser diffraction and cascade impaction for the optimized nanoemulsions</td>
</tr>
<tr>
<td>4.13</td>
<td>The coefficient of determination ((R^2)) of kinetic model of nanoemulsion</td>
</tr>
<tr>
<td>4.14</td>
<td>The IC(_{50}) values of OPT 1, OPT 2 and OPT 3 on human lung cancer cells (A549)</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Lung cancer cases and deaths worldwide</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Molecular structure of quercetin</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>The respiratory system</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Correlation between the eight stages of the Andersen cascade impactor (ACI) device and the different parts of the human respiratory system</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>The clearance mechanism in the lung: (1) Contact with the lung lining fluids, (2) Absorption of the formulation ingredient across the pulmonary epithelium, (3) Clearance of the undissolved particle</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Types of nanoemulsion</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental set-up for aerosol performance analysis by Andersen cascade impactor</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>The solubility of QT in various oil mixtures</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>The droplet size and PDI value of nanoemulsion</td>
<td>50</td>
</tr>
<tr>
<td>4.3</td>
<td>The appearance of nanoemulsion formulation (a) without QT and (b) with QT different mixture of surfactant</td>
<td>51</td>
</tr>
<tr>
<td>4.4</td>
<td>HPLC-UV spectra for (a) standard QT, (b) QT-loaded nanoemulsion and (c) blank nanoemulsion</td>
<td>52</td>
</tr>
<tr>
<td>4.5</td>
<td>Contour plot (a) and three dimensional surface (b) showing the interaction effect between three variables (POE:RC, lecithin and water) on the response (droplet size). Two variables were kept constant (Tween 80 and glycerol)</td>
<td>56</td>
</tr>
<tr>
<td>4.6</td>
<td>Contour plot (a) and three dimensional surfaces (b) showing the interaction effect between three variables (POE:RC, lecithin and water) on the response (volume median diameter) and two variables were kept constant (Tween 80 and glycerol)</td>
<td>58</td>
</tr>
<tr>
<td>4.7</td>
<td>The selected RMSE vs. node number for the composition of the nanoemulsion containing QT network’s hidden layer for IBP, BBP, QP and GA</td>
<td>62</td>
</tr>
<tr>
<td>4.8</td>
<td>The scatter plots of the predicted volume median diameter (VMD) versus actual volume median diameter (VMD) for the testing data set that shows the performed R^2 of the optimized topologies: (a) QP-5-6-1, (b) BBP-5-7-1, (c) IBP-5-6-1, and (d) GA-5-14-1</td>
<td>64</td>
</tr>
<tr>
<td>4.9</td>
<td>The scatter plots of the predicted volume median diameter (VMD) versus actual volume median diameter (VMD) for the training data set that shows the performed R^2 of the optimized topologies: (a) QP-5-6-1, (b) BBP-5-7-1, (c) IBP-5-6-1, and (d) GA-5-14-1</td>
<td>66</td>
</tr>
<tr>
<td>4.10</td>
<td>The network architecture (5-14-1) of the multilayer normal feed-forward connection type for the geometric algorithm (GA), which consists of 5, 14 and 1 nodes in</td>
<td>68</td>
</tr>
</tbody>
</table>
4.11 The physical appearance of nanoemulsion of (a) OPT 1, (b) OPT 2 and (c) OPT 3
4.12 Droplet size analysis of aerosolized nanoemulsion of (a) OPT 1, (b) OPT 2, and (c) OPT 3
4.13 TEM image of nanoemulsion for: (a) OPT 1, (b) OPT 2, (c) OPT 3
4.14 FTIR spectrum of nanoemulsion for: (a) OPT 1, (b) OPT 2, (c) OPT 3
4.15 Mean droplet size as a function of time of OPT 1, OPT 2 and OPT 3 at 4 °C
4.16 $\frac{1}{r^2}$ as a function of time of nanoemulsion of OPT 1, OPT 2 and OPT 3
4.17 r^2 as a function of time of nanoemulsion of OPT 1, OPT 2 and OPT 3
4.18 Aerosol output of nanoemulsion of OPT 1, OPT 2 and OPT 3
4.19 Aerosol rate of nanoemulsion of OPT 1, OPT 2 and OPT 3
4.20 MMAD and % FPF < 5 μm of nebulized nanoemulsion of OPT 1, OPT 2 and OPT 3
4.21 Percent dispersed (PD) and percent inhaled (PI) of nebulized nanoemulsion of OPT 1, OPT 2 and OPT 3
4.22 Andersen cascade impaction of drug deposition for the nanoemulsion of OPT 1, OPT 2 and OPT 3
4.23 Percentage drug released of nanoemulsion of OPT 1, OPT 2 and OPT 3 within 48 h
4.24 Cell viability of MRC5 cells at 48 hours treatment with OPT 1, OPT 2 and OPT 3 (n=3)
4.25 Cell viability of A549 cells at 48 hours treatment with OPT 1, OPT 2 and OPT 3 (n=3)
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AmB</td>
<td>Amphotericin B</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ACI</td>
<td>Andersen cascade impactor</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>bEGF</td>
<td>Biotinylated epidermal growth factor</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DOX</td>
<td>Doxetacel</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme linked immunosorbent assay</td>
</tr>
<tr>
<td>FPF</td>
<td>Fine particle fraction</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transforms infrared</td>
</tr>
<tr>
<td>GP</td>
<td>Gelatin particles</td>
</tr>
<tr>
<td>GEM</td>
<td>Gemcitabine</td>
</tr>
<tr>
<td>GRAS</td>
<td>Generally recognized as safe</td>
</tr>
<tr>
<td>GSD</td>
<td>Geometric standard deviation</td>
</tr>
<tr>
<td>IC₅₀</td>
<td>Half maximal inhibitory concentration</td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>High-performance liquid chromatography- Ultra-violet</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>A549</td>
<td>Human lung cancer cell line</td>
</tr>
<tr>
<td>MRC5</td>
<td>Human lung fibroblast cell line</td>
</tr>
<tr>
<td>HA–Pt</td>
<td>Hyaluronic-cisplatin</td>
</tr>
<tr>
<td>HLB</td>
<td>Hydrophilic lipophile balance</td>
</tr>
<tr>
<td>Iv</td>
<td>Intravenous</td>
</tr>
<tr>
<td>MMAD</td>
<td>Mass median aerodynamic diameter</td>
</tr>
<tr>
<td>Min</td>
<td>Minutes</td>
</tr>
<tr>
<td>MED</td>
<td>Mixture experiment design</td>
</tr>
<tr>
<td>OW</td>
<td>Oil-in-water nanoemulsion</td>
</tr>
<tr>
<td>POE</td>
<td>Palm oil esters</td>
</tr>
<tr>
<td>PD</td>
<td>Percent dispersed</td>
</tr>
<tr>
<td>PIP</td>
<td>Percent inhaled</td>
</tr>
<tr>
<td>PIC</td>
<td>Phase inversion composition</td>
</tr>
<tr>
<td>PIT</td>
<td>Phase inversion temperature</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer solution</td>
</tr>
<tr>
<td>PDI</td>
<td>Polydispersity index</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylene glycol</td>
</tr>
<tr>
<td>Tween 80</td>
<td>Polyoxyethylene (20) sorbitan monooleate</td>
</tr>
<tr>
<td>PRESS</td>
<td>Prediction error sum of squares</td>
</tr>
<tr>
<td>QT</td>
<td>Quercetin</td>
</tr>
<tr>
<td>RSE</td>
<td>Residual standard error</td>
</tr>
<tr>
<td>RC</td>
<td>Ricinoleic acid</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root means squared error</td>
</tr>
<tr>
<td>rpm</td>
<td>Rotation per minute</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>VMD</td>
<td>Volume median diameter</td>
</tr>
<tr>
<td>W/O</td>
<td>Water-in-oil nanoemulsion</td>
</tr>
<tr>
<td>wt.</td>
<td>Weight</td>
</tr>
<tr>
<td>MTT</td>
<td>3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Globally, lung cancer is among the main cause of cancer death and the most regular type of cancer cases. More than one million people killed by lung cancer a year. Lung cancer was rarely occurs in the last decades in which a survey shows only a small number of lung cancer cases reported from the whole cancer cases. However, the percentage has increased after several years afterwards (Witschi, 2001). In addition, only about 17% of people suffering from lung cancer surviving for five years which may indicates that the available treatment are associated with significant limitations in efficacy of treatment for the disease. Hence, it showing an important need for choices in more effective treatment (Jaggi, 2017; Burris 2009).

The current treatment of lung cancer is chemotherapy. Mostly, the chemotherapeutics are given by oral or intravenous therapies. However, the efficacy of these therapies are limited by constrains of systemic side effects due to non-localize delivery of drugs to the target site (Shah et al., 2017; Tseng et al., 2008). The chemotherapeutics that delivered directly to the lungs is an interesting strategy to improve the efficacy of lung cancer therapy.

Pulmonary delivery system, a non-invasive administration is a new concept especially for lung cancer treatment. Pulmonary delivery offers many advantages than other routes of administration including its ability to deliver high concentrations of drugs locally at the target site while minimizing the side effects and enhancing patient compliance. These advantages are due to the lungs provides large surface area through which molecules can be absorbed and go direct into the bloodstream (Laouini et al., 2014).

Natural chemotherapeutics are becoming increasingly used for cancer treatment (Karadag et al., 2013: Verma et al., 2013). Quercetin (QT) is one of the plant-based drugs with high accessibility and affordability (Gupta et al., 2010; Kennedy et al., 2009). QT showed potential to inhibit proliferation of various types of cancer cells, including lung cancer cells (Karadag et al., 2013). However, the use of QT is limited due to its hydrophobicity and low bioavailability (Scalia, et al., 2013; Gao et al., 2009). Many approaches have been introduced to increase the solubility of low-water soluble drugs through delivery systems. Previous study reported that the penetration of QT was complemented
significantly by the mixture of emulsifiers and lipids, which is affiliated by its solubility in the carriers used (Azuma et al., 2002).

Nanoemulsions have the potential to deliver active drug compounds to the lungs because of their high efficiency in drug's solubilization in which enhance their bioavailability (Amani et al., 2010). Furthermore, they have the possibility to increase the drug deposition and reservation for a long period of time in the lung tissues (Nasr et al., 2012). With the advantage of solution-like physicochemical properties of nanoemulsions, nanoemulsions perform as a solution upon nebulization and will demonstrate suitability and improved aerosolisation performance for pulmonary delivery of lung cancer. Up to date, the delivery of nanoemulsion-based drugs via pulmonary administration for lung cancer treatment is still in its infancy, have not yet been fully exploited and published.

1.2 Problem Statement

Conventional treatment of drug delivery in the lung such as systemic administration is limited due to non-targeting nature which renders a higher drug doses needed to the target tissue and this results in increasing adverse effects to the normal cells (Akhter et al., 2015). To reduce such effects, it would clearly be preferable to administer therapeutic drugs by pulmonary delivery.

The favors of pulmonary delivery such as delivery of drugs to the lungs are localized, where the systemic side effects are reduced (Silva et al., 2013). Nevertheless, the pulmonary administration through aerosolization and inhalation is limited by a few challenges. The main challenge is the efficacy of inhaled aerosols, which is determined by their aerodynamic properties. It is generally preferred that aerosol droplets size of 1-5 μm are needed for an effective inhalation therapy (Laouini et al., 2014).

The properties of QT such as low water solubility and low bioavailability have limited its uses in pharmaceutical field (Amani et al., 2010) that may hinder effective pulmonary delivery (Nesamony et al., 2014). Hence, an efficient and biocompatible delivery system should be developed to increase its solubility and enhance its bioavailability. The major challenge in the development of nanoemulsion system is to maintain the droplet size in the nanometre range while remain physically stable for a period of time. Hence, it is important to find the right composition in the formulation for a stable nanoemulsion system with appropriate characteristics for pulmonary delivery.
1.3 Scope of Study

This study concentrated on the development of aerosolized palm-based nanoemulsion system containing quercetin for pulmonary delivery of lung cancer. The early stage was the selection of nanoemulsions composition. The formulation was then optimized using Multiple Experimental Design and Artificial Neural Network to determine the best composition in the formulation with respect to droplet size and volume median diameter. The physicochemical and aerodynamic performance of the developed formulations were examined. Thereafter, the drug release and cytotoxicity profiles were also determined.

1.4 Objectives of Study

The main objective of this research is to develop aerosolized palm-based nanoemulsion system containing QT for pulmonary delivery of lung cancer. Hence, the following objectives were targeted to assist in achieving main objective:

i) to formulate and optimize the compositions of the QT-loaded nanoemulsions using appropriate mathematical models

ii) to characterize the physicochemical properties and stability of the optimized nanoemulsions

iii) to characterize the aerosol performance of the optimized nanoemulsions

iv) to determine the in vitro release ability and cytotoxicity of nanoemulson

1.5 Hypothesis of Study

i) Palm-based nanoemulsion system could increase the solubility and bioavailability of quercetin

ii) Palm-based nanoemulsion system containing quercetin could enhance the aerosolization performance in pulmonary delivery

iii) Aerosolized palm-based nanoemulsion system containing quercetin could demonstrate suitability for pulmonary delivery in lung cancer

iv) Palm-based nanoemulsion system containing quercetin could deliver high concentrations of drugs in the deep lung

v) Palm-based nanoemulsion system containing quercetin could enhance the drug deposition in the deep lung
REFERENCES

Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. *Journal of Controlled Release*, 171(3), 349–357.

Journal of Infectious Diseases, 200(3), 357–360.