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the requirement for the degree of Doctor of Philosophy 
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ZINC SILICATE-BASED GLASS CERAMIC 

 

 

By 

ZAMRATUL MAISARAH BINTI MOHD ISMAIL 

May 2018 

Chair: Khamirul Amin Matori, PhD  

Faculty: Science 

 

 

The need for fabricating low cost luminous material have gained considerable attention 

in optoelectronic field. Therefore, in this research, Zn2SiO4:Nd3+ based glass ceramic 

were prepared from recyclable waste soda lime silica (SLS) as silica source and ZnO 

using solid state method. The effect of Nd3+  ions (x = 0, 1, 2, 3, 4 and 5 wt.%) and the 

effect of sintering temperatures, ranging from 600 to 1000 °C on the thermal, structural, 

morphological and optical properties of the phosphors were also investigated using 

Differential Scanning Calorimetry (DSC), X-ray diffraction (XRD), Field emission 

scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) 

spectroscopy, Ultraviolet-visible near infrared (UV-Vis-NIR) spectroscopy and 

Photoluminescence (PL) spectroscopy. Thermal analysis were carried out to determine 

the thermal stability and glass transition temperature of the sample. Structural 

investigation using XRD revealed the presence of α-zinc silicate phase at 800 °C 

onwards. The effect of sintering temperature showed phases changes and  enhancement 

in crystallinity. With respect to Nd3+ doping, the diffraction peaks shifted due to lattice 

distortion. The morphologies from FESEM analysis showed the transformation in 

particles and grain boundaries formation. With increment in temperature and doping, 

the microstructure become densely packed grains. FTIR spectra showed that the 

progression of sintering temperature and doping revealed the existence of SiO4 and 

ZnO4 bonding which indicate the formation of Zn2SiO4 network. Furthermore, the 

optical properties of the Zn2SiO4:Nd3+ based glass ceramic were analysed for its UV 

absoprtion to determine the optical band gap. The optical band gap obtained were in the 

range 2.56 eV – 3.74 eV which is in agreement with WLEDs optical band gap. The 

increment and decrement of optical band gap (Egap) were speculated due to structural 

changes of host material and Burstein Moss effect. The photoluminescence spectra of 

Nd3+ ions exhibit blue to red emission at ~484 nm (blue), ~529–570 nm (green) and 

~600-676 nm (orange-red) corresponding to transitions 2P1/2 → 4I11/2, 4G7/2 → 4I9/2, 

(4G7/2→4I11/2, 4G5/2→4I9/2), (4G5/2→4I11/2) and (4G7/2→4I13/2, 4G5/2→4I11/2) respectively. 

These spectra proved the incorporation of Nd3+ into Zn2SiO4 lattice. The  emission 

intensity changes with respect to dopant percentage and sintering temperatures. The 
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intensity of PL emission were affected  by enhancement the crystallite of zinc silicate 

and Nd3+ ions into the crystals. Overall, from the obtained results this study concluded 

that Zn2SiO4:Nd3+ based glass ceramic have promising parameters for WLEDs 

application that exhibit blue to red region under infrared excitation. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

 

SIFAT STRUKTUR DAN OPTIK KE ATAS NEODYMIUM-DOP ZINK 

SILIKAT-BERASASKAN KACA SERAMIK 

 

 

Oleh 

ZAMRATUL MAISARAH BINTI MOHD ISMAIL 

Mei 2108 

Pengerusi: Khamirul Amin Matori, PhD 

Fakulti: Sains 

 

 

Keperluan dalam  menghasilkan bahan kependarkilauan berkos rendah telah menjadi 

perhatian di bidang optoelektronik. Oleh itu, dalam kajian ini, Zn2SiO4:Nd3+ berasaskan 

kaca seramik telah dihasilkan dari kaca soda silika (SLS) yang dikitar semula sebagai 

sumber silika dan ZnO dengan menggunakan teknik lindapan leburan. Kesan dopan 

Nd3+ ion (x = 0, 1, 2, 3, 4 and 5 wt.%) dan kesan suhu rawatan haba dalam jurang 600  

hingga 1000 °C ke atas sifat haba, struktur, morfologi dan optik ke atas sampel telah 

dijalankan menggunakan DSC, XRD, FESEM, FTIR spectroskopi, UV-Vis-NIR 

spectroskopi dan PL spetroskopi. Analisis haba telah dijalankan untuk mengenalpasti 

kestabilan haba kaca dan suhu transisi kaca pada sampel. Analisis struktur dengan 

menggunakan XRD telah mendapati penghasilan fasa α-zink silikat pada suhu 800 °C 

dan ke atas. Kesan suhu rawatan haba menghasilkan perubahan fasa dan peningkatan 

pada pengkristalan. Kesan dopan Nd3+ ke atas sampel menghasilkan darjah 

penganjakan kesan dari perubahan pada struktur. Analisis FESEM ke atas morfologi 

sampel menunjukkan transformasi dalam partikel dan pembentukan butiran. Dengan 

peningkatan suhu rawatan haba dan kepekatan dopan, morfologi menjadi butiran yang 

berketumpatan. Analisis FTIR menunjukkan bahawa perubahan dari suhu rawatan haba 

dan dopan telah menunjukkan dengan kehadiran ikatan SiO4 dan ZnO4 sekaligus 

membuktikan pembentukkan jaringan Zn2SiO4. Selain itu, sifat optik Zn2SiO4:Nd3+ 

berasaskan kaca seramik telah dianalisa dari penyerapan UV-Vis untuk mendapatkan 

nilai jurang jalur optik. Nilai jurang jalur optik yang diperolehi berada dalam julat 2.56 

eV – 3.74 eV adalah selari dengan julat yang diperlukan untuk WLEDs. Peningakatan 

dan penurunan nilai jurang jalur optik (Egap) berkemungkinan hasil dari perubahan 

struktur bahan dan efek Burstein-Moss. Spektra kefotopendarcahayaan dari ion Nd3+ 

menunjukkan kependarkilauan biru ke merah pada ~484 nm (biru), ~529–570 nm 

(hijau) dan ~600-676 nm (jingga-merah) yang diwakili daripada transisi 
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2P1/2 → 4I11/2, 4G7/2 → 4I9/2 , (4G7/2→4I11/2, 4G5/2→4I9/2), (4G5/2 → 4I11/2) dan (4G7/2→4I13/2, 
4G5/2→4I11/2). Spektra ini membuktikan bahawa Nd3+ ion menyerap ke dalam kekisi 

Zn2SiO4. Pancaran juga menunjukkan perubahan berdasarkan kepekatan dopan dan 

suhu rawatan haba. Peningkatan intensiti pancaran ini adalah disebabkan pembentukan 

kristalit zink silikat dan penyerapan ion Nd3+ ke dalam kristal. Secara keseluruhan, 

dapatan dari kajian ini merumuskan bahawa Zn2SiO4:Nd3+ berasaskan kaca seramik 

memiliki parameter yang berpotensi sebagai aplikasi WLEDs yang memancarkan 

sinaran dari ruang biru sehingga merah dengan menggunakan penganjakan inframerah. 

. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Research background 

 

 

Research innovation has recently committed to environmental concerns and energy 

consumption which have become technological importance for most industrial field in 

particular manufacturing sector. Emphasizing in industrialisation, the need for green 

alternative is critical to balance resource productivity and reduce pollution. In realizing 

this goal, various alternative have been done. Among this concern, initiative in research 

has been intensified on waste management. Solid waste recycling have been chosen as 

ideal ways to address the abovementioned context.  

 

 

Recycling of waste via research technologies represents an effective way to safely use 

the discarded materials. In fact, recycling of waste also helps in reducing dependency 

on natural resources as raw materials (Chinnam et al., 2013). In addition, 

manufacturing process for instance benefits from this routes by energy saving and 

minimized waste disposal. Recent research has reported that utilizing secondary 

materials can reduce energy and pollution compared to production by using natural raw 

materials (Eckelman et al., 2009). In mass production, these advantages are essential 

because reducing energy and recycled sources interrelated to production cost (Mymrin 

et al., 2016; Wiemes et al., 2017). 

 

 

In general, the sources of generated waste are classified into household, industrial, 

commercial and institutional waste (Chinnam et al., 2013). In fact, the curent trend in 

manufacturing has placed major emphasis on the use of post-consumer wastes and 

industrial by-product in the production process (Shakir and Mohammed, 2013). Among 

the generated wastes, glass is known as waste that amenable to recycling and 

reprocessing into other products. According to Glass Packaging Institute (2015), 

production of recycled glass into new product can save enormous amount of raw 

material consumption. In view of manufacturing side, processing glass waste means 

energy saving and thus reducing CO2 emission. In fact, incorporated waste glass can 

reduce glass melting time which eventually offers possiblity in cost reduction. 

 

 

Furthermore, most of glass waste made of soda lime silicate (SLS) glass coming from 

botttles. Glass from bottles is considered as a major waste product. A routine way to 

utilize these glass bottles is by recycling. SLS glass has been nominated as vitreous 

waste that worth attention as raw material. The main component of SLS glass is 

consisted of silicon dioxide (SiO2), sodium oxide (Na2O) and calcium oxide (CaO) 

(Chimalawong et al., 2012). Owing to its good glass-forming nature, SLS glass have 

fine optical and mechanical properties, such as good chemical stability, good durability, 

low melting point, high ultraviolet transparency, and good rare earth (RE) ion solubility 

as reviewed in previous studies (Xu et al., 2004; Qiao et al., 2006; Wang et al., 2011; 

Chimalawong et al., 2012). In addition, SLS glass has been explored previously for its 
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potential as glass precursor. Research innovation  have evolved where glass system 

containing ZnO is of interest due to its ability as host material. In a glass system, ZnO 

have ability as glassformer and modifier (Centikaya et al., 2013).  

This glass system known for its ability widely used for lowering the sintering 

temperature and optimizing coefficient thermal expansion in the field of electric 

devices such as region visible to infrared region transparency and allows doping ions to 

stimulated luminescence efficiency that suits for lasers, sensors and optical signal 

amplifiers (Karthikeyan et al., 2003; Pascutta et al., 2009; Sontakke and Annapurna, 

2013; Pandey et al., 2015; Sadat et al., 2015).  

 

 

Accordingly, the abovementioned host glass featuring ZnO can be transformed into 

glass–ceramics. Glass ceramics are inorganic silicate materials that have crystalline 

characteristics which can exist in one or more phases. In addition, crystals can be found 

embedded in a glass (amorphous) matrix prepared by the controlled crystallization of 

suitable glass compositions (Holland, 2002). Typically, the formation of glass ceramic 

can be carried out by heat treatment for certain amount of time focusing of nucleation 

and crystal growth.  Furthermore, in order to synthesize waste derived glass and glass 

ceramic, vitrification is noted as the best approach as reported by Colombo et al. 

(2003) and Rawlings et al. (2006). Pisciella et al. (2000) stated that this technique is a 

promising solution to overcome environmental effect that comes from industrial 

practices and have advantage in adding value to waste. According to Erol et al. (2007), 

the complex composition of waste need control by tuning the initial composition and 

heat tretament conditions. These crucial parameters may effect the kind of crystalline 

phase developed in the glass ceramic and final properties of the materials. Furthermore, 

controlled cooling of a molten glass or by sintering and crystallisation of glass powders 

glass–ceramic have been reported as method to produce glass ceramic (Hing et al., 

1997; Chinnam et al., 2013). 

 

 

Zinc silicate (Zn2SiO4) often times introduced as willemite, is one of silicates based 

phosphor (Takesue et al., 2009; Tarafder et al., 2014). Previous studies have been 

reported that tailoring Zn2SiO4 have been explored suitable for hosting rare earth (RE)  

(Tarafder et al., 2014; Rivera-Enríquez et al., 2016). Due to its tetrahedral rigid with 

three different fourfold crystallographic sites, trivalent RE doping with Zn2SiO4 ensure 

in emitting strong emission in visible region that promising in fabricating solid state 

laser and white LEDs (WLEDs) (Takesue et al., 2009; Krsmanović et al., 2009; 

Tarafder et al., 2014). As a function of temperature, Zn2SiO4 can be formed in α, β and 

𝛾-phases where α phase is noted as the most stable according to phase equilibrium by 

Takesue et al. (2009).  

 

 

In this study, a series of zinc soda lime silica (ZnO-SLS) doped Nd2O3 glasses are 

prepared from conventional melt-quenching technique and zinc silicate based glass-

ceramics are derived from these precursor glasses by a sintering process. In order to 

study the effect of sintering temperature and Nd2O3 doping, the properties of the glass 

and zinc silicate glass-ceramics have been characterized for its thermal, physical, 

structural, morphological and optical behaviour. Throughout the study, the structural 

and optical properties of precursor glass and Nd2O3 doped zinc silicate based glass-

ceramics have been evaluated by differential scanning calorimetry (DSC), X-ray 

diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier 
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transform infrared (FTIR), UV-Visible (UV-Vis) and photoluminescence (PL) 

spectroscopy.To address the abovementioned scope, the aim of this work is to fabricate 

and characterize Nd2O3-doped zinc silicate based glass-ceramics derived from ZnO-

SLS glass system as a potential  materials in the form of phosphor. 

 

 

1.2 Problem statement 

 

 

The development of inorganic luminous material based glass and glass ceramic has 

been strongly pursued due to their high thermal stability, low melting point and well 

solubilty with rare earth (Lahoz et al., 2005; Jyothi et al., 2011; Reben et al., 2012; 

Xiangyu et al., 2013). Among the materials, Zn2SiO4 has gained interest due to its 

ability to display emission  from UV to IR regions and it is suitable as a host for 

transition  metal and rare earth doping (Zhang et al., 2003; El-Ghoul et al., 2013; Babu 

and Buddhudu, 2013; Tarafder et al., 2013). Benefiting from these characteristics, 

Zn2SiO4 is widely nominated for solid state laser, optical communication and light 

emitting diode (LED) application. Various approaches have been reviewed to 

synthesize Zn2SiO4 including via hydrothermal method (Yu et al., 2010), sol gel 

method (Demsbski et al., 2011; Babu  and Buddhudu, 2013; Tung et al., 2016) and 

pyrolysis (Sivakumar et al., 2014). However, these methods suffer from high cost and 

high temperature arises from the usage of SiO2 as raw material (Bunting et al.,1930; 

Patrascu et al., 2009). Therefore, the utilization of recyclable vitreous SLS glass waste 

is expected to outcost the used of SiO2 as source and ease the fabrication at lower 

temperature. In addition, when targeting components to produce Zn2SiO4, ZnO is often 

introduced as wide band gap semiconductor material that suitable for RE doping where 

placing f electron elements into ZnO based material promising for solid state photonic 

device applications  (Lakshiminarayana et al., 2008; Singh et al., 2008; Abo-Mosallam 

et al., 2010); Kaur et al., 2011; Xian and Li, 2013; Jayanthi et al., 2013). The 

contribution of these components sums up this work by presenting a simple, cost 

effective and eco-friendly route. 

 

 

Till date no research have been reported on Nd3+ doped Zn2SiO4 by using SLS glass 

waste as silica source yet. In this work, the behaviour of Nd3+ doped Zn2SiO4 

containing ZnO-SLS system have been investigated via low cost route solid state 

reaction. This study is the first study in literature to report on Nd3+ doped on Zn2SiO4  

that produce visible emission in blue to red region.  

 

 

1.3 Objectives of the Study 

  

 

The main objective of this research is to fabricate and characterize zinc silicate based 

glass and glass ceramic containing SLS-ZnO glasses. This research have been 

experimentally design accordingly starting from mixing the glass composition, undergo 

melt-and quenching process, progresssion of doping process and heat treatment and 

followed by various steps of analysis. The objectives of this research are summarized 

as follows: 
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1. To synthesize Zn2SiO4:Nd3+ from waste SLS glass, ZnO and Nd2O3 using solid 

state method. 

2. To determine the thermal and physical analysis of Zn2SiO4:Nd3+. 

3. To study the effect of sintering temperature on structural and optical properties of 

Zn2SiO4:Nd3+. 

4. To evaluate the effect of Nd2O3 doping on structural and optical properties of 

Zn2SiO4:Nd3+. 

 

 

1.4 Hypotheses 

 

 

Based on objectives, the hypotheses for this study are: 

 

1. The melt-quenching process of SLS, ZnO and Nd2O3 is expected to form blueish 

glass frits. 

2. The thermal analysis of ZnO-SLS doped Nd2O3 glasses by DSC analysis is 

expected to show changes as Nd3+ concentration increased. The changes is due to 

formation of non-bridging oxygen that caused by structure rearrangement after 

doping.  

3. Density of Zn2SiO4:Nd3+ is expected to show non linearity trend. The density is 

expected to increase as Nd3+ doping increases due to large molecular weight 

between Nd2O3 compared to ZnO and SiO2 and crystallization process. In 

addition, the density might also decreased due to formation of non bridging 

oxygens due to doping. 

4. XRD results for ZnO-SLS doped Nd2O3 glasses are expected to show broad hump 

and the sintered Zn2SiO4 glass ceramic are expected to show crystalline pattern. 

Based on ZnO-SiO2 phase diagram, the samples are expected to form 𝛽-Zn2SiO4 

and α-Zn2SiO4 as sintering temperature increases. The Nd3+ doping is expected to 

assist in nucleation during crystallization. 

5. FTIR bands are expected to detect the SiO4, ZnO4 and Si-O-Zn bands which 

confirmed the formation of Zn2SiO4. 

6. FESEM micrograph Zn2SiO4:Nd3+ glass and glass ceramic are expected to show 

evolution of microstructure from irregulars particles to more refined grains 

boundaries.  

7. UV-Vis absorption is expected to shows Nd3+ related absorption peaks which 

confirmed the incorporation of Nd3+ into Zn2SiO4 lattice. 

8. Photoluminescence results is expected to shows emission in blue, green and red 

visible range upon excitation at 800 nm. The emission is assigned to Nd3+ related 

transition.  

 

 

1.5 Scopes of the Study 

 

 

The scopes of the study are stated as follows: 

 

1. Zinc silicate doped neodymium ions, Zn2SiO4:Nd3+ was prepared from waste SLS 

glasses, ZnO and Nd2O3 powders according to stoichiometric equation, 

(ZnO0.5SLS0.5)1-x (Nd2O3)x where x = 0, 0.01, 0.02, 0.03, 0.04 and 0.05 by using 

conventional solid state method. 
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2. Zn2SiO4:Nd3+ based glass ceramic samples were prepared at varied sintering 

temperature from 600 °C to 1000 °C. 

3. The physical properties of Zn2SiO4:Nd3+ were analyzed by using densimeter to 

determine the density of the sample. 

4. The thermal properties of [(SLS)0.5(ZnO)0.5]1-x(Nd2O3)x were analyzed by DSC 

measurement to determine the glass transition temperature (Tg) and 

crystallization temperature (Tc) of the sample. 

5. The structural properties of Zn2SiO4:Nd3+ were analyzed by XRD, FTIR, FESEM 

and EDX to determine the phase formation, chemical bonding, microstructure 

and elemental composition of the sample. 

6. The optical properties of Zn2SiO4:Nd3+ were analyzed by UV-Vis and PL 

spectroscopy to evaluate the absorption, optical band gap and luminescence of 

the sample. 

 

 

1.6 Importance of study 

 

 

The need for novel luminous material has intensified research into glass and glass 

ceramic derived from waste. Considerable research has proven that these glasses have 

potential in emerging as solid state technology in the form of phosphor. Recently, great 

effort have been devoted to achieve white light emitting diodes sources (WLEDs) for 

many application purposes such as high luminous efficiency, low energy consumption, 

long working lifetime, and convenient manufacturing method (Chen et al., 2015). 

 

 

Due to its  proven transparency in visible light region and efficient light emitting of the 

luminescent glasses, Zn2SiO4 have been a kind of desirable optical materials and also a 

potential candidates to replace the phosphors for WLEDs concerning their benefits 

such as lower fabrication cost, easy to shape, and superior thermal stability. Currently, 

Zn2SiO4 have been attempted as sources for red and green phosphor for WLEDs by UV 

and blue excitation (El-Ghoul et al., 2013; Babu and Buddhudu, 2013; Tarafder et al., 

2013). However, no attempts have been reported yet for Zn2SiO4 that excited by near 

infrared wavelength.   

 

 

To the best of our knowledge, no study have been reported for Nd3+ doped Zn2SiO4 

prepared from SLS glass waste as silica source yet. In the present work, investigation 

are focused on the behaviour of Nd3+ doped Zn2SiO4 containing ZnO-SLS system 

fabricated via inexpensive solid state method. In fact, this study is the first study in 

literature to report on Nd3+ doped Zn2SiO4 with visible emission that covers blue to red 

region. In fact, based on the previous report on Nd3+ doped phosphor, luminescence 

studies are frequently done on the infrared region, however there have been very few 

reports on the emission behavior of Nd3+  in visible region. The research gap has thus 

motivated this work to explored the potential of Zn2SiO4 doped Nd3+ as a potential 

candidate for WLEDs based glass ceramic in visible region via excitation using an 

infrared diode. Furthermore, details of the upconverting process in this work are also 

worth attention. 
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1.7 Outline of the Thesis 

 

 

This thesis is outlined as follows. Chapter 1 gives an overview of research background, 

problem statements, objectives, scopes of study and importance of study. The 

pioneering work of glass, glass ceramic and  Zn2SiO4 doped rare earth and their 

properties are covered in Chapter 2. Overall research methodology including sample 

preparation and characterization of Zn2SiO4 doped neodymium based glass ceramic are 

explained in Chapter 3. The results and discussion of Zn2SiO doped neodymium based 

glass ceramic in terms of effect of sintering temperature and effect of Nd3+ doping are 

discussed thoroughly for their physical, thermal, structural and optical properties in 

Chapter 4. The conclusions and recommendation for future work are explained in 

Chapter 5. 
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