

UNIVERSITI PUTRA MALAYSIA

PREPARATION AND PHOTOELECTROCHEMICAL PROPERTIES OF NANOSTRUCTURED MANGANESE-DOPED CADMIUM SULFIDE/ TITANIA FOR SOLAR CELL APPLICATION

WARDATUN NADRAH BINTI MOHD AMIN

FS 2018 69

PREPARATION AND PHOTOELECTROCHEMICAL PROPERTIES OF NANOSTRUCTURED MANGANESE-DOPED CADMIUM SULFIDE/ TITANIA FOR SOLAR CELL APPLICATION

By

WARDATUN NADRAH BINTI MOHD AMIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

May 2018

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photograph and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

PREPARATION AND PHOTOELECTROCHEMICAL PROPERTIES OF NANOSTRUCTURED MANGANESE-DOPED CADMIUM SULFIDE/ TITANIA FOR SOLAR CELL APPLICATION

By

WARDATUN NADRAH BINTI MOHD AMIN

May 2018

Chairman Faculty : Zulkarnain Zainal, PhD : Science

The outstanding properties of nanocrystalline semiconductor, titanium dioxide (TiO_2) such as low production cost, good chemical stability, non-toxicity and high photocurrent efficiency make it well accepted to mediate solar energy conversion. However, TiO_2 has limitation in absorbing sunlight's visible spectrum due to its wide band gap. Moreover, there are issues such as high proportion of recombination of photogenerated electron-hole pairs which highly influence the photoelectrochemical performance. To overcome these problem inorganic sensitisation using metal chalcogenides were widely explored. CdS attracted so much interest in photoelectrochemical cell applications due to its high absorption coefficient, good direct band gap and excellent conversion efficiency. In this research, the effect of doping of manganese on the photoelectrochemical performance CdS sensitised TiO_2 was studied. The viscous paste of TiO_2 nanopowder was coated on the flourine-doped SnO₂ conductive glass via doctor-blade method, followed by calcination at 500 °C. Polyester decomposition during calcination was found to be responsible for the formation of high quality crack free strongly adherent without delamination films.

CdS was grown on TiO₂ by successive ionic layer adsorption (SILAR) technique by dipping the TiO₂ electrode alternately in two different solutions containing Cd²⁺ and S²⁻ precursors. SILAR technique has been carried out at varying SILAR cycles, dipping time, pH, concentrations of cationic precursor and annealing temperatures. CdS/TiO₂ prepared by depositing CdS using seven SILAR cycles with one min dipping time was found to show optimum optical absorption with the band gap of 2.238 eV. X-ray diffraction pattern showed that the deposited CdS on TiO₂ were polycrystalline with cubic structure. The CdS/TiO₂ was found to be n-type based on the photoelectrochemical (PEC) results.

Mn-doped CdS was prepared using SILAR technique by introducing manganese salt into the cationic precursor solution in an effort to improve the photocurrent generation. The electrode fabrication was done at different SILAR cycles, manganese concentrations and annealing temperature. XRD patterns showed that the incorporation of manganese in CdS matrix of nanoporous TiO₂ structure shifted the diffraction peak of CdS to lower angle. The optical absorption results reveal that Mn-doping greatly enhanced the light absorption in the visible region. The band gap energy dropped from 2.238 eV to 1.680 eV. The photocurrent of the thin film increase by more than 30 % from 3.613 mA/cm² for CdS/TiO₂ to 5.477 mA/cm² for Mn-doped CdS/TiO₂. Mn-doped CdS/TiO₂ clearly showed tremendous increased in the photocurrent by more than 60 times compared to TiO₂ nanoparticles. Besides, other transition metals such as chromium, nickel and copper were doped with CdS on TiO₂ nanoparticles to compare the effect on the photoelectrochemical performance. It was found out that Mn doped CdS achieved the highest photoconversion efficiency with the value 4.025 % among the transition metals. Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENYEDIAAN DAN PENCIRIAN FOTOELEKTROKIMIA MANGAN-DOP KADMIUM SULFIDA/TITANIA BERSTRUKTUR NANO UNTUK APLIKASI SOLAR SEL

Oleh

WARDATUN NADRAH BINTI MOHD AMIN

Mei 2018

Pengerusi : Zulkarnain Zainal, PhD Fakulti : Sains

Kelebihan semikonduktor nanokristal titanium dioksida (TiO₂) adalah kerana kos pengeluarannya yang rendah, kestabilan kimia yang baik, tidak toksik dan keberkesanan fotoelektrokimia yang tinggi telah menjadikannya diterima baik sebagai bahan pengantara dalam pernukaran tenaga solar. Walaubagaimanapun, TiO₂ mempunyai had dalam menyerap spektrum cahaya nampak kerana luang tenaga jalur yang besar. Selain itu, terdapat isu seperti perkadaran yang tinggi dalam penggabungan semula elektronlubang selepas fotogenerasi amat mempengaruhi prestasi fotoelektrokimianya. Untuk mengatasi masalah pemekaan tak organik dengan menggunakan logam ini kalkogenida diterokai secara meluas. CdS telah menarik banyak minat dalam aplikasi sel fotoelektrokimia disebabkan oleh pekali penyerapan yang tinggi, luang tenaga jalur terus yang baik dan keberkesanan penukaran yang sangat baik. Di dalam kajian ini, kesan pendopan mangan ke atas prestasi fotoelektrokimia CdS/TiO₂ dikaji. Campuran TiO₂ yang likat daripada serbuk nano TiO₂ telah disalut ke atas kaca kondukif SnO₂ terdop florin melalui kaedah pangacuan pita, diikuti dengan rawatan haba pada suhu 500 °C. Faktor yang memberi kesan kepada ciri-ciri fotoelektrokimia seperti kaedah pengendapan, nombor lapisan pengendapan dan rawatan TiCl₄ telah dikaji. Penghuraian polyester ketika rawatan haba bertanggungjawab dalam pembentukan filem yang berkualiti tinggi, tidak mudah retak dan melekat kuat tanpa pengelupasan.

CdS telah diendapkan di atas TiO₂ dengan menggunakan kaedah tindakbalas penjerapan lapisan ion berturut (SILAR) dengan elektrod TiO₂ direndamkan berselang-seli di dalam dua larutan yang berlainan yang mengandungi Cd²⁺ dan S². Teknik SILAR telah dilakukan dengan membezakan kitaran SILAR, masa rendaman, pH, kepekatan kation dan suhu rawatan haba. CdS/TiO₂ disediakan dengan mengendapkan CdS sebanyak tujuh lapisan SILAR dalam satu minit masa rendaman dan didapati sampel ini menunjukkan penyerapan optik yang optimum dengan nilai jalur ruang optik 2.238 eV. Keputusan pembelauan sinar-X menunjukkan pengendapan CdS di atas TiO₂ merupakan

polikristal yang berstruktur kubus. CdS/TiO₂ merupakan semikonduktor jenis n berasaskan keputusan ciri-ciri fotoelektrokimia (PEC).

Mn didopkan dengan CdS telah disediakan melalui teknik SILAR dengan memperkenalkan garam mangan ke dalam larutan kation dalam usaha meningkatkan kadar fotoarus. Fabrikasi elektrod telah dilakukan dengan membezakan kitaran SILAR, kepekatan mangan dan suhu rawatan haba. Corak pembelauan XRD menunjukkan gabungan mangan di dalam matriks CdS dan liang TiO₂ yang berstruktur nano telah mengalih puncak pembelauan CdS ke sudut yang lebih rendah. Serapan optik mendedahkan bahawa Mn banyak meningkatkan serapan cahaya pada kawasan nampak. Tenaga jalur ruang didapati telah jatuh dari 2.238 ke 1.680 eV. Prestasi fotoelektrokimia lapisan nipis meningkat lebih daripada 30 % daripada 3.613 mA/cm² untuk CdS/TiO₂ ke 5.477 mA/cm² untuk Mn-dop CdS/TiO₂. Mn dop CdS/TiO₂ jelas menunjukkan peningkatan yang besar di dalam fotoarus melebihi 60 kali ganda berbanding dengan nanopartikel TiO₂. Di samping itu, logam peralihan yang lain seprti kromium, nikel dan kuprum juga didopkan dengan CdS di atas nanozarah TiO₂ untuk membandingkan kesan prestasi fotoelektrokima. Didapati Mn terdop CdS mencapai kecekapan fotopenukaran yang paling tinggi dengan nilai 4.025 % berbanding logam peralihan yang lain.

ACKNOWLEDGEMENTS

First of all, thank you to Allah the almighty for His bless and strength throughout this journey. My sincere gratitude goes to my PhD supervisor Prof. Dr. Zulkarnain Zainal for the brilliant insight, continuous guidance, support, and wealth of knowledge in this study. I also would like to express my highly gratitude to my advisory team Prof. Dr. Zainal Abidin Talib and Assoc. Prof. Dr. Lim Hong Ngee for their tireless guidance, support and comment. Many thanks to my PhD financial support from Ministry of Education, Malaysia for this golden opportunity for me to further my study in Universiti Putra Malaysia.

I would like to thank Dr. Chang Sook Keng for her help in constructive comment, suggestion, knowledge, data interpretations and meaningful electrochemistry discussion. Many thanks to Dr. Nurul Asma Samsudin and Elmi Shahizam for their determination and 'life" talk which always inspired at the same time entertained me and Lab 2 members, Siti Nor, Shazana, Asmaa, Araa, Hanim, Nana and Laimy for the friendship and be a good companion during my PhD at the postgraduate office. My appreciation also goes to the all officer from the Faculty of Science, ITMA and IBS for their help on the sample analyses by XRD and FESEM as well as officer from MIMOS for the assistance in HR-TEM analysis.

Lastly, infinite thanks to my wonderful sister, Khairatun Najwa for her guidance, support and precious advise while doing my PhD. Special thanks to my parent Mohd Amin Mustafa and Rukiah Bachok for your endless love, prayer and support throughout these 3 years and 10 months. Thank you so much. May Allah gather us in Jannah. I certify that a Thesis Examination Committee has met on 8 May 2018 to conduct the final examination of Wardatun Nadrah binti Mohd Amin on her thesis entitled "Preparation and Photoelectrochemical Properties of Nanostructured Manganese-Doped Cadmium Sulfide/Titania for Solar Cell Application" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Abdul Halim bin Abdullah, PhD Associate Professor Faculty of Science

Universiti Putra Malaysia (Chairman)

Nor Azah binti Yusof, PhD Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Mohd Zobir bin Hussein, PhD Professor Institute of Advanced Technology Universiti Putra Malaysia (Internal Examiner)

Mohammed Khair Hourani, PhD Professor

University of Jordan Jordan (External Examiner)

NOR AINI AB. SHUKOR, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 28 June 2018

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor Philosophy. The members of the Supervisory Committee were as follows:

Zulkarnain Zainal, PhD Professor Faculty of Science

Universiti Putra Malaysia (Chairman)

Zainal Abidin Talib, PhD Professor Faculty of Science Universiti Putra Malaysia (Member)

Lim Hong Ngee, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

ROBIAH BINTI YUNUS, PhD Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/ fabrication in the thesis, and (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature :

Date :

Name and Matric No. : Wardatun nadrah Binti Mohd Amin/GS39834

Declaration by Members of Supervisory Committee

This confirm that :

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature : ______ Name of Chairman of Supervisory Committee : <u>Professor Dr. Zulkarnain Zainal</u>

Signature : ______ Name of Member of Supervisory Committee :<u>Professor Dr. Zainal Abidin Talib</u>

Signature : ______ Name of Member of Supervisory Committee : <u>Associate Professor Dr. Janet Lim Hong Ngee</u>

TABLE OF CONTENTS

	Page
ABSTRACT	i
ABSTRAK	iii
ACKNOWLEDGEMENTS	v
APPROVAL	vi
DECLARATION	viii
LIST OF TABLES	xiii
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xxii

CHAPTER

1

2

INTR	ODUC	ΓΙΟΝ	
1.1	Genera	l introduction	1
1.2	Probler	n statement	2
1.3	Backgr	ound of research	3
1.4	Objecti	ives	4
1.5	Thesis	structure	5
LITE	RATUR	RE REVIEW	
2.1	Solar C	Cell	6
	2.1.1	Silicon-based solar cell	8
	2.1.2	Dye-sensitized solar cell	8
	2.1.3	Inorganic metal- based solar cell	9
2.2	Thin fil	Im semiconductor	10
2.3	Fundan	nental in Photoelectrochemistry of	11
	Semico	onductor	
2.4	TiO ₂ na	anoparticles as an electrode	13
	2.4.1	Structural properties of TiO ₂	13
		nanoparticles	
	2.4.2	Optical Properties of TiO ₂	15
		nanoparticles	
2.5	Prepara	ation of TiO ₂ nanoparticles as an	16
	electro	de	
	2.5.1	Sol-gel method	17
	2.5.2	Hydrothermal method	17
	2.5.3	Electrochemical method	18
	2.5.4	Preparation TiO ₂ paste from	18
		commercial TiO ₂ nanoparticles	
2.6	Inorgar	nic semiconductor metal chalcogenide	19
	as light	harvesting materials	
	2.6.1	Multiple exciton generation	19
	2.6.2	Tunable energy gaps	20
	2.6.3	Better charge separation and transport	21
2.7	Fabrica	ation of semiconductor materials	22
	2.7.1	Chemical bath deposition method	22
	2.7.2	Successive ionic layer adsorption	23

reaction

		2.7.3	Electrodeposition method	23
	20	2.7.4	Hydrothermal method method	23
	2.8	Effect of semicor	of post-treatment on deposition of number of number of number of number of number of number of the number of number of the numbe	23
	2.9	Metal i	on doping	24
3	МАТ	ERIALS	S AND METHODS	
	3.1	Prepara	tion of TiO ₂	26
		3.1.1	Preparation of TiO ₂ paste	26
		3.1.2	Coating method of TiO ₂ paste	27
		3.1.3	TiO ₂ coating layers	27
	3.2	Fabrica	tion of CdS/TiO ₂ photoanode	28
		3.2.1	Juning time	29
		2 2 2	diping time	20
		3.2.2	Optimization of cationic precursor	29
		3.2.3	Effect of 11Cl ₄ treatment on	29
		2.2.4	deposition of CdS	20
	2.2	3.2.4	Effect of temperature of CdS/11O ₂	30
	3.3	Prepara	tion of Manganese doped-CdS by	30
		SILAR	method Diffe	20
		3.3.1	Different concentration of MnSO ₄	30
			(cationic precursor)	20
		3.3.2	Different SILAR cycles	30
		3.3.3	Effect of temperature of Mn-doped CdS/TiO ₂	30
	3.4	Prepara	tion Cr, Ni and Cu doped CdS/TiO ₂	30
	3.5	Experin	nental measurement	31
		3.5.1	Optical study	31
		3.5.2	Photoelectrochemical Analysis	31
		3.5.3	X-Ray Diffraction Analysis	32
		3.5.4	Field Emission Scanning Electron	33
			Microscopy Analysis	
		3.5.5	High Resolution Transmission	33
			Electron Microscopy Analysis	
		3.5.6	Energy Dispersive Analysis of X-Ray	33
		3.5.7	Inductively Coupled Plasma Optical	33
			Emission Spectroscopy	
		3.5.8	Photoelectrochemical Conversion	34
			Efficiency	-
4	RESI	JLTS AI	ND DISCUSSION	
4	RESU 4.1	JLTS AI Prepara	ND DISCUSSION	35
4	RESU 4.1	JLTS AI Prepara 4.1.1	ND DISCUSSION tion of TiO ₂ electrode TiO ₂ paste	35 35
4	RESU 4.1	JLTS A Prepara 4.1.1 4.1.2	ND DISCUSSION ition of TiO ₂ electrode TiO ₂ paste Deposition method of viscous TiO ₂	35 35 40
4	RESU 4.1	J LTS A Prepara 4.1.1 4.1.2	ND DISCUSSION tion of TiO ₂ electrode TiO ₂ paste Deposition method of viscous TiO ₂ paste on FTO	35 35 40
4	RESU 4.1	JLTS AI Prepara 4.1.1 4.1.2 4.1.3	ND DISCUSSION tion of TiO ₂ electrode TiO ₂ paste Deposition method of viscous TiO ₂ paste on FTO Different layer of TiO ₂ thin film	35 35 40 41
4	RESU 4.1	JLTS AI Prepara 4.1.1 4.1.2 4.1.3 4.1.4	ND DISCUSSION tion of TiO ₂ electrode TiO ₂ paste Deposition method of viscous TiO ₂ paste on FTO Different layer of TiO ₂ thin film Morphology properties of TiO ₂	35 35 40 41 44
4	RESU 4.1	JLTS AI Prepara 4.1.1 4.1.2 4.1.3 4.1.4	ND DISCUSSION tion of TiO ₂ electrode TiO ₂ paste Deposition method of viscous TiO ₂ paste on FTO Different layer of TiO ₂ thin film Morphology properties of TiO ₂ photoanode	35 35 40 41 44
4	RESU 4.1	JLTS AI Prepara 4.1.1 4.1.2 4.1.3 4.1.4 Fabrica	ND DISCUSSION tion of TiO ₂ electrode TiO ₂ paste Deposition method of viscous TiO ₂ paste on FTO Different layer of TiO ₂ thin film Morphology properties of TiO ₂ photoanode tion of CdS/TiO ₂ photoanode	35 35 40 41 44 46
4	RESU 4.1	JLTS AI Prepara 4.1.1 4.1.2 4.1.3 4.1.4 Fabrica 4.2.1	ND DISCUSSION tion of TiO ₂ electrode TiO ₂ paste Deposition method of viscous TiO ₂ paste on FTO Different layer of TiO ₂ thin film Morphology properties of TiO ₂ photoanode tion of CdS/TiO ₂ photoanode Effect of SILAR cycles	35 35 40 41 44 46 47

xi

		4.2.2	Effect of varying the dipping time	52
		4.2.3	Effect of concentration of cationic	57
			precursor	
		4.2.4	Effect of pH	64
		4.2.5	Effect of TiCl ₄ treatment on the	71
			deposition of CdS	
		4.2.6	Effect of temperature of CdS	82
			deposited on TiO ₂	
	4.3	Manga	inese as dopant	88
		4.3.1	Different concentration of	89
			Manganese	
		4.3.2	Effect of different SILAR cycles	95
		4.3.3	Effect of heat treatment	99
	4.4	X-Ray	Diffraction Analysis	103
	4.5	FESEN	Analysis of Mn-doped CdS/TiO ₂	103
	4.6	High F	Resolution Transmission Electron	105
		Micros	scopy (HRTEM) Analysis	
	4.7	Photoe	electrochemical properties of different	108
		metal i	ons doped CdS/TiO ₂	
	4.8	Photoe	electrochemical Conversion Efficiency	112
5	CON	CLUSI	ON AND RECOMMENDATIONS	
	5.1	Conclu	ision	114
	5 <mark>.2</mark>	Recom	mendations	116
REFERE	ENCES			117
APPEND	DICES			128
BIODAT	'A OF <mark>STU</mark>	DENT		140
LIST OF	PUBLICA	TIONS		141

LIST OF TABLES

Table		Page
2.1	Example of QDSSC and the solar cell efficiency performance based on nano- TiO_2 as an electrode.	14
3.1	Table of concentration of cationic and anionic precursor of SILAR cycle.	29
4.1	Band gap values for (a) 1 layer, (b) 2 layers and (c)3 layers of TiO_2 thin film calcined at 500 °C	43
4.2	Band gap values for TiO ₂ nanoparticles, 3CT, 5CT, 7CT, 9CT	48
4.3	and IICT Band gap values of TiO ₂ nanoparticles, 7CT20, 7CT40, 7CT60, 7CT80 and 7CT100	54
4.4	Band gap energy values of CdS/TiO ₂ nanoparticles prepared at different concentration of cationic precursor	59
4.5	Band gap energy values of CdS/TiO ₂ nanoparticles prepared at different pH	66
4.6	Band gap energy values of CdS/TiO ₂ with TiCl ₄ treatment nanoparticles prepared at different treatment time	74
4.7	Band gap energy value for TiO ₂ nanoparticles, 7CT60 heated at 70 °C, 7CT60 calcined at 200 °C and 300 °C under N ₂	83
4.8	Band gap values for TiO ₂ nanoparticles and Mn doped CdS/TiO ₂ at different concentration of Mn	91
4.9	Concentration of Mn dopant in the samples	94
4.10	Band gap energy of TiO_2 nanoparticles, CdS/TiO ₂ and Mn doped CdS/TiO ₂ at different SILAR cycles	96
4.11	Band gap energy values of TiO ₂ , CdS/TiO ₂ , Mn-doped CdS/TiO ₂ nanoparticles prepared at different SILAR cycles	100
4.12	Elemental analysis for CdS/TiO2 nanoparticles	107
4.13	Elemental analysis for Mn doped CdS/TiO2 nanoparticles	108
4.14	Band gap energy values and photocurrent response of TiO_2 , CdS/TiO ₂ , Mn-doped CdS/TiO ₂ nanoparticles prepared at different SILAR cycles	110

4.15 Parameter of photocurrent density (J_{ph}) , short-circuit photocurrent density (J_{sc}) , open-circuit (V_{oc}) and photoelectrochemical conversion efficiency of CdS/TiO₂ at different concentration of cationic precursor

LIST OF FIGURES

Figures		Page
1.1	Overview of the approach of preparation of photoelectrochemical properties of nanostructured Mn doped CdS/TiO ₂ for solar cell	4
2.1	Schematic representation of solar cell technology which has been classified into first, second, and third generations. These generation are further classified into different types based on sensitizer material used for the fabrication of a solar cell.	7
2.2	Number of articles published per year obtained using the keywords "Dye sensitized solar cell' (data source : scopus)	9
2.3	Number of articles published per year obtained using the keywords "Quantum dots-sensitized solar cell' (data source : scopus)	10
2.4	Schematic diagrams of the energy band of a) an instrinsic semiconductor (b) a n-type semiconductor and (c) a p-type semiconductor.	11
2.5	Schematic diagrams of the energy band of a) an instrinsic semiconductor (b) a n-type semiconductor and (c) a n-type semiconductor.	12
2.6	Direct and indirect energy band transitions in semiconductor	16
2.7	(a) Typical schematic diagram of solar cell and (b) multiple exciton generation of a single photon.	20
2.8	Schematic diagram of (a) impact ionization and (b) Auger recombination processes. Electrons (filled circle), holes (empty circle), conduction band (CB) and valence band (VB).	20
2.9	Schematic diagram of size tunable energy band gap with size of semiconductor nanomaterials.	21
2.10	Schematic diagram of typical energy band of CdSe on TiO_2 photoelectrode	22
3.1	Flow chart on the preparation of TiO2 photoanode	26

3.2	Coating TiO_2 paste on FTO glass by doctor blade method	27
3.3	Coating TiO_2 paste on FTO glass by brush coating method	27
3.4	Diagram of formation of CdS nanocrystal layer via SILAR of cationic and ionic precursor. ($\bullet = Cd^{2+}$ and $\bullet = S^{2-}$)	28
3.5	Set up for photoelectrochemical experiments	32
4.1	Linear sweep photovoltammograms obtained at the scan 20 mVs ⁻¹ from -0.80 to +1.00 for (a) modified viscous TiO_2 and (b) conventional TiO_2 paste in 0.1 M NaCl (KCl as supporting electrolyte) solution	36
4.2	Reaction that occurs between citric acid and ethylene glycol in the Pechini process.	37
4.3	Propose formation process of TiO ₂ nanoparticle	37
4.4	XRD pattern of (a) FTO, (b) TiO ₂ /FTO calcined at 500 °C and (c) TiO ₂ degussa powder P25	39
4.5	Linear sweep photovoltammograms of FTO deposited by viscous TiO_2 paste by doctor blade technique and brush coating technique obtained at the scan 20 mVs ⁻¹ (a) from - 0.50 V to +1.00 V and (b) +0.45 V to +0.60 V in 0.1 M NaCl (KCl as supporting electrolyte) solution	40
4.6	UV–Vis absorption curves at different layer of 1 layer, layers and 3 layers of TiO_2 thin film calcined at 500 °C	42
4.7	Band gap curves of (a)1 layer, (b)2 layers and (c)3 layers of TiO_2 thin film calcined at 500 °C	42
4.8	Photocurrent density values of TiO_2 nanoparticles at different layer; (a) 1 layer, (b) 2 layers and (c) 3 layers	44
4.9	FESEM images of viscous TiO_2 at different magnification (a) 25 000x, (b) 50 000x, (c) 100 000x and (d) 200 000x.	45
4.10	FESEM cross section images of viscous TiO_2 at different magnification (a) 5000x, (b) 50 000x	45
4.11	EDX spectrum for TiO ₂	46
4.12	UV–Vis absorption curves for TiO_2 nanoparticles, 3CT, 5CT, 7CT, 9CT and 11CT	47

4.13	Band gap curves: (a) TiO_2 nanoparticle; and CdS/TiO ₂ nanoparticles prepared at various SILAR cycles: (b) 3CT, (c) 5CT, (d) 7CT, (e) 9CT and (d) 11CT	48
4.14	Band gap energy (eV) of TiO_2 and CdS/TiO_2 prepared at different SILAR cycles	49
4.15	Linear sweep voltammograms obtained at the scan of 20 mVs^1 from 0.50 to +1.00 for (a) bare TiO ₂ ; and CdS/TiO ₂ nanoparticles prepared at different SILAR cycles: (b) 3CT, (c) 5CT, (d) 7CT, (e) 9CT and (f) 11CT.	50
4.16	Photocurrent response at 0.50 V vs Ag/AgCl for CdS/TiO ₂ prepared at different SILAR cycles	51
4.17	FESEM images: (a) TiO_2 nanoparticles, (b) 3CT, (c) 7CT and (d) 11CT	52
4.18	FESEM images of 7CT sample at (a) 50 000 and (b) 200 000 magnification.	52
4.19	Band gap curve of (a) bare TiO_2 , (b) 7CT20, (c) 7CT40, (d)7CT60, \in 7CT80 and (f) 7CT100	53
4.20	Band gap energy (eV) of TiO_2 and CdS/TiO_2 prepared at different dipping time	54
4.21	Linear sweep voltammograms obtained at the scan of 20 mVs ⁻¹ from 0.50 to ± 1.00 for (a) TiO ₂ nanoparticles, (b) 7CT20, (c) 7CT40, (d) 7CT60, (e) 7CT80 and (d) 7CT100	55
4.22	Photocurrent response at 0.50 V vs Ag/AgCl for CdS/TiO ₂ prepared at different dipping	56
4.23	FESEM images: (a) TiO_2 nanoparticles, (b) 7CT20, (c) 7CT60 and (d) 7CT100	57
4.24	UV–Vis absorption curves for TiO_2 nanoparticles, 7CT60 (0.075), 7CT60 (0.050), 7CT60 (0.100), 7CT60 (0.125) and 7CT60 (0.150)	58
4.25	Band gap curves: (a) TiO_2 nanoparticles, (b) 7CT60 (0.075), (c) 7CT60 (0.050), (d) 7CT60 (0.100), \in 7CT60 (0.125) and (f) 7CT60 (0.150)	59
4.26	Band gap energy (eV) of TiO_2 and CdS/TiO_2 at different cationic precursor	60
4.27	XRD pattern (a) bare TiO ₂ , (b) 7CT60 (0.075), (c) 7CT60 (0.050), (d) 7CT60 (0.100), (e) 7CT60 (0.125) and (f) 7CT60 (0.150)	61

xvii

4.28	Linear sweep voltammograms obtained at the scan of 20 mVs ⁻¹ from -0.50 to +1.00 for (a) TiO ₂ nanoparticles, (b) 7CT60 (0.050), (c) 7CT60 (0.075), (d) 7CT60 (0.100), (e) 7CT60 (0.125) and (f) 7CT60 (0.150)	62
4.29	Photocurrent response at 0.50 V vs Ag/AgCl for CdS/TiO ₂ prepared at different concentration of cationic precursor cycles	63
4.30	FESEM images of (a) TiO_2 nanoparticles, (b) 7CT60 (0.050), (c) 7CT60 (0.100 M) and (d) 7CT60 (0.150 M)	64
4.31	UV–Vis absorption curves for TiO_2 nanoparticles, 7CT60 (0.100/4.2), 7CT60 (0.100/5.2), 7CT60 (0.100/6.2), 7CT60 (0.100/7.2) and 7CT60 (0.100/8.2)	65
4.32	Band gap curves: (a) TiO_2 nanoparticles, (b) 7CT60 (0.100/5.2), (c) 7CT60 (0.100/6.2), (d) 7CT60 (0.100/7.2) and (e) 7CT60 (0.100/8.2)	66
4.33	Band gap energy (eV) of sample CdS/TiO ₂ at different pH of cationic precursor	67
4.34	XRD diffraction peak for (a) FTO substrate, (b) TiO_2 nanoparticles, (c) 7CT60 (0.100/5.2), (d) 7CT60 (0.100/6.2), (e) 7CT60 (0.100/7.2) and (f) 7CT60 (0.100/8.2)	68
4.35	Linear sweep voltammograms obtained at the scan of 20 mV s ⁻¹ from -0.50 to +1.00 for (a) TiO ₂ nanoparticles, (b) 7CT60 (0.100/5.2), (c) 7CT60 (0.100/6.2), (d) 7CT60 (0.100/7.2) and (e) 7CT60 (0.100/8.2).	69
4.36	Photocurrent response at 0.50 V vs Ag/AgCl for CdS/TiO ₂ prepared at different pH of cationic precursor cycles	70
4.37	Schematic diagram of (a) the surface charge of TiO_2 as a function of solution pH and (b) the deposition process of CdS on TiO_2 film using Cd(Ac) ₂ as cationic precursor	71
4.38	UV–Vis absorption curves for (a) TiO_2 nanoparticles, (b) CdS/untreated TiO_2 and CdS/treated TiO_2 : (c) 15 min, (d) 30 min and (e) 60 min at 70 °C	73
4.39	Band gap curves: (a) TiO_2 nanoparticles, (b) 7CT60 (0.100/7.2), (c) treated 7CT60 (0.100/7.2) for 15 min, (d) treated 7CT60 (0.100/7.2) for 30 min and \in treated 7CT60 (0.100/7.2) for 60 min at 70 °C	74
4.40	Band gap energy (eV) of 7CT60 (0.100/7.2) at different time treatment of TiCl ₄ solution	75

xviii

4.41	Schematic figures of the TiCl ₄ -treatment effects on the performance of CdS- sensitized solar cells	75
4.42	Linear sweep voltammograms obtained at the scan of 20 mV s ⁻¹ from -0.50 to +1.00 for (a) TiO ₂ nanoparticles (b) untreated 7CT60 (0.100/7.2) and treated7CT60 (0.100/7.2) with TiCl ₄ ; for (c) 15 min, (d) 30 min and (e) 60 min at 70 °C.	77
4.43	Photocurrent response at 0.50 V vs Ag/AgCl for TiO_2 nanoparticle, untreated 7CT60 (0.100/7.2) and treated 7CT60 (0.100/7.2) with TiCl ₄ for 15 min, 30 min and 60 min at 70 °C.	78
4.44	XRD pattern (a) FTO substrate, (b) TiO_2 nanoparticles, (c) 7CT60 (0.100/7.2) without TiCl ₄ treatment and (d) 7CT60 (0.100/7.2) with TiCl ₄ treatment for 30 m	79
4.45	FESEM images of (a) TiO ₂ nanoparticles and (b) TiO ₂ with TiCl ₄ treatment (30 mins) at 70 °C	80
4.46	FESEM images 4.42 of (a) 7CT60 (0.100/7.2) without TiCl ₄ treatment and (b) 7CT60 (0.100/7.2) with TiCl ₄ treatment for 30 mins at 70 °C	81
4.47	UV–Vis absorption curves for TiO_2 nanoparticles, CdS/TiO ₂ heated at 70 °C and calcined at 200 °C and 300 °C.	82
4.48	Band gap curves: (a) TiO_2 nanopartciles, (b) TiO_2 nanoparticle, (b) 7CT60 (0.100/7.2) at 70°C, (c) 7CT60 (0.100/7.2) at 200°C and (d) 7CT60 (0.100/7.2) at 300 °C.	83
4.49	Band gap energy (eV) of TiO_2 and $7CT60$ (0.100/7.2) calcined at different temperature	84
4.50	XRD pattern (a) FTO substrate, (b) TiO_2 nanoparticles, (c) 7CT60 (0.100/7.2) heated at 70 °C, (d) 7CT60 (0.100/7.2) Calcined at 100 °C and (e) 7CT60 (0.100/7.2) calcined at 300 °C.	85
4.51	Linear sweep voltammograms obtained at the scan of 20 mV s ⁻¹ from-0.50 to +1.00 for (a) TiO ₂ nanoparticles (b) 7CT60 (0.100/7.2) heated at 70 °C, (c) 7CT60 (0.100/7.2) calcined at 100°C and (d) 7CT60 (0.100/7.2) calcined at 300 °C	86
4.52	Photocurrent response at 0.50 V vs Ag/AgCl for TiO_2 nanoparticles, 7CT60 (0.100/7.2) heated at 70°C, 7CT60 (0.100/7.2) calcined at 200 °C and 7CT60 (0.100/7.2) calcined at 300 °C	87

xix

4.53	FESEM images: (a) TiO_2 nanoparticles, and 7CT60 (0.100/7.2) nanoparticle prepared at different annealing temperature: (b) 70 °C, (c) 200 °C and (d) 300 °C	87
4.54	Schematic transport path photogenerated electron in CdS deposited on TiO_2 nanoparticle: (a) uniformly coverd and (b) aggregated covered	88
4.55	Schematic diagram of energy level structure diagram of undoped and Mn-doped CdS/TiO ₂ . Red arrow indicates the electron transfer from CdS CB to the midgap electronic states.	89
4.56	UV–Vis absorption curves for (a) TiO_2 nanoparticles; and Mn-doped CdS at different manganese salt concentration: (b) MnSO ₄ (0.5 mM), (c) MnSO ₄ (1.0 mM), (d) MnSO ₄ (1.5 mM) and (e) MnSO ₄ (2.0 mM)	90
4.57	Band gap curves: (a) TiO_2 nanoparticles; and Mn-doped CdS at different manganese salt concentration: (b) $MnSO_4$ (0.5 mM), (c) $MnSO_4$ (1.0 mM), (d) $MnSO_4$ (1.5 mM) and (e) $MnSO_4$ (2.0 mM)	91
4.58	Band gap energy (eV) of undoped and Mn doped CdS/TiO ₂ at different Mn concentration	92
4.59	Linear sweep voltammograms obtained at the scan of 20 mV s ⁻¹ from -0.50 to +1.00 for (a) bare TiO ₂ , (b) CdS/TiO ₂ and Mn-CdS/TiO ₂ at different manganese salt cancentration (c) 0.5 mM, (d) 1.0 mM, (e) 1.5 mM and (e) 2.0 mM	93
4.60	Photocurrent response at 0.50 V vs Ag/AgCl of Mn-doped CdS at different Mn concentration	94
4.61	Band gap curves for (a) bare TiO_2 , (b) CdS/TiO ₂ and Mn-CdS/TiO ₂ at different SILAR cycles (c) 5, (d) 7, (e) 9 and (e) 11 cycles.	96
4.62	Band gap energy (eV) of undoped and Mn-doped CdS/TiO $_2$ at different SILAR cycle	97
4.63	Linear sweep voltammograms obtained at the scan of 20 mV s ⁻¹ from -0.50 to +1.00 for (a) TiO ₂ nanaoparticles, (b) CdS/TiO ₂ and Mn doped CdS/TiO ₂ atdifferent SILAR cycles: (c) 5 cycles, (d) 7 cycles, (e) 9 cycles and (d) 11 cycles	98
4.64	Photocurrent response at 0.50 V vs Ag/AgCl for Mn doped CdS/TiO ₂ at different SILAR cycles	99

4.65	Band gap curves for (a) TiO_2 nanoparticles, (b) CdS/TiO_2 and Mn doped CdS/TiO_2 at different heat treatment temperature (c) 70 °C, (d) 200 °C and (e) 300 °C	100
4.66	Band gap energy (eV) of undoped and Mn-doped CdS/TiO $_2$ at different calcination temperature	101
4.67	Linear sweep voltammograms obtained at the scan of 20 mV s ⁻¹ from -0.50 to +1.00 for (a) TiO_2 nanoparticles, (b) CdS/TiO ₂ and Mn doped CdS/TiO ₂ at different heat treatment temperature (c) 70 °C, (d) 200 °C and (e) 300 °C	102
4.68	XRD patterns of FTO, bare TiO_2 nanoparticles, CdS/TiO ₂ and Mn doped CdS/TiO ₂ nanoparticles prepared at optimum condition	103
4.69	FESEM images: (a) bare TiO ₂ , (b) CdS/TiO ₂ nanoparticles and (c) Mn doped CdS/TiO ₂	104
4.70	Cross section images: (a) TiO ₂ nanoparticles, (b) CdS/TiO ₂ nanoparticles and (c) Mn doped CdS/TiO ₂	105
4.71	TEM images of TiO ₂ nanoparticle at magnification of (a) 13500x, (b) 88000x and (c) EDX of TiO ₂ nanoparticles	106
4.72	(a) TEM image, (b) HRTEM images and (c) SAED image of CdS/TiO ₂ nanoparticles at optimum condition	107
4.73	(a) TEM image, (b) HRTEM images and (c) SAED image of Mn doped CdS/TiO ₂ nanoparticles	108
4.74	UV–Vis absorption curves for Cr-doped CdS/TiO ₂ , Mn-doped CdS/TiO ₂ , Ni-doped CdS/TiO ₂ and Cu-doped CdS/TiO ₂	109
4.75	Band gap curves for (a) Cr-doped CdS/TiO ₂ , (b) Mn-doped CdS/TiO ₂ , (c) Ni-doped CdS/TiO ₂ and (d) Cr-doped CdS/TiO ₂	110
4.76	Linear sweep voltammograms obtained at the scan of 20 mV s ⁻¹ from -0.50 to +1.00 for (a) TiO ₂ nanoparticles, (b) Mn-CdS/TiO ₂ , (c) Cr-CdS/TiO ₂ , (d) Ni-CdS/TiO ₂ and (e) Cu-CdS/TiO ₂	111
4.77	Photoconversion efficiency values of bare TiO_2 , CdS/TiO_2 and Mn-doped CdS/TiO_2 at optimum condition: (a) applied potential = -0.50 V to 1.00 V and (b) applied potential = 0 V	113

LIST OF ABBREVIATIONS

4CT	4 cycles successive ionic layer adsorption reaction of cadmium sulphide on titanium oxide nanoparticles
5CT	5 cycles successive ionic layer adsorption reaction of cadmium sulphide on titanium oxide nanoparticles
7CT	7 cycles successive ionic layer adsorption reaction of cadmium sulphide on titanium oxide nanoparticles
9CT	9 cycles successive ionic layer adsorption reaction of cadmium sulphide on titanium oxide nanoparticles
11CT	11 cycles successive ionic layer adsorption reaction of cadmium sulphide on titanium oxide nanoparticles
7CT20	7 cycles successive ionic layer adsorption reaction of cadmium sulphide on titanium oxide nanoparticles for 20 s dipping time
7CT40	7 cycles successive ionic layer adsorption reaction of cadmium sulphide on titanium oxide nanoparticles for 40 s dipping time
7CT60	7 cycles successive ionic layer adsorption reaction of cadmium sulphide on titanium oxide nanoparticles for 60 s dipping time
7CT80	7 cycles successive ionic layer adsorption reaction of cadmium sulphide on titanium oxide nanoparticles for 80 s dipping time
7CT100	7 cycles successive ionic layer adsorption reaction of cadmium sulphide on titanium oxide nanoparticles for 100 s dipping time
CA	Citric acid
CBD	Chemical bath deposition
DSSC	Dye-sensitized solar cell
Ec	Conduction band
EDX	Energy Dispersion X-ray
EG	Ethylene glycol
E_{f}	Fermi level
Ev	Valence band
FESEM	Field Emission Scanning Electron Microscopy

G

- FTO Fluorine doped Tin Oxide
- HRTEM High Resolution Transmission Electron Microscopy
- hv Photon energy
- I.I Impact Ionization
- JCPDS Joint Committee of Power Diffraction Standard
- LSPV Linear Sweep Photovoltammetry
- QDSSC Quantum dot-sensitized solar cell
- QD Quantum dot
- SILAR Successive ionic layer adsorption reaction
- TNT Titania nanotubes
- UV-VIS Ultraviolet visible
- XRD X-ray Diffraction

 \bigcirc

CHAPTER 1

INTRODUCTION

1.1 General introduction

The rapid industrialization and high population growth are the two major factors which contribute to the global energy crisis and therefore accelerate the research on renewable energy. Over the past few decades, solar energy, biomass and geothermal energy are emerging as alternative energy sources. Out of the mix, solar energy is the renewable and clean type of energy that offers an answer to the increasing concern of global warming and greenhouse effect (Kabir et al., 2018). It is also definitely an abundant resource with rapid declining conversion cost and thus attracts many researchers for its use in various theoretical and experimental studies (Jun et al., 2014).

Solar cell is highly regarded as an alternative renewable energy candidate in the current market. Solar cells based on silicon wafer so-called first generation solar cell technology is the most popular solar cells in the market which can reach solar cell efficiency as high as 29% (Blakers et al., 2013). Moreover, they are expensive and more at risk to lose some of their efficiency at higher temperature (Ubani et al., 2017). Alternatively, solar cell utilized with inorganic thin film is the second generation solar cell which offer cost reduction in manufacturing procedure but this type of cell exhibits relatively lower than 14% efficiency (Jun et al., 2013). Chronologically, the invention of the third-generation of high–efficiency thin film solar cell is to reduce cost by significantly increasing efficiencies by 15-20 % (Conibeer, 2007).

High efficiency thin film solar cell technology is a reliable technology to compete with the silicon wafer solar cell which now makes up to 90 % of the global market. It satisfied minimum material usage with acceptable efficiency to allow high market penetration of solar electricity (Lee et al., 2017). Therefore, studies on high efficiency thin film semiconductor materials such as ZnO (Pietruszka et al., 2015), TiO₂ (Peng et al., 2013) and carbon based species (Uddin et al., 2013) have attracted immense interest of worldwide researchers in order to reduce cost and enhance the capability in the solar cell technology. Semiconductor materials capable to incorporate with a small band gap sensitizing agent such as metal chacolgenides and dyes which are responsive to visible light. The sensitizing agents improved the photocurrent by the electron injection properties of the semiconductor materials. Moreover, the low band gap of inorganic material is able to suppress the recombination of photogenerated electron-hole pairs in wide band gap semiconductor materials which eventually exhibit higher performance of photoelectrochemical cell (Zhang et al., 2017).

Many methods has been employed to deposit inorganic metal chacolgenide such as chemical bath deposition (Chen et al., 2010), successive ionic layer adsorption reaction (SILAR) (Badawi et al., 2016), electrochemical deposition and hydrothermal (Song et

al., 2018) methods. The low cost SILAR technique is one of the effective ways due to its ability to control nanocrystal size and distribution of the deposited metal chacolgenide by parameter optimization such as precursor concentration and number of SILAR cycles. In this study, CdS as a sensitizer was modified by introducing Mn and deposited on TiO_2 nanoparticles for high performance photoelectrochemical cell via SILAR method.

1.2 Problem Statements

In recent years, many semiconductor-sensitized material has been reported for solar cell application (Zhu et al., 2000). TiO_2 is one of the semiconductors that has been widely used to deliver high efficiency photoelectrochemical cell due to its good chemical stability, low cost production, high corrosion resistance, high photocatalytic activities and good charge transport which play an important role in the solar cell performance (Bhat et al., 2017). However, TiO_2 has limitation in absorbing sunlight's visible spectrum due to its wide bandgap that restricts the photoactivation to only ultraviolet region.

One of the alternative ways to extend the optical absorption of TiO_2 is by coupling with organic dyes. Dyes as sensitizers have attracted high attention due to their low fabrication cost and high efficiency, flexibility in colour, shape and transparency (Golobostanfard et al., 2014). Dyes used in DSSCs are extremely efficient at converting absorbed photons into free electron in the titanium oxide layer. However, the photocurrent is limited to the amount of photons that can actually be absorbed by the dye. Typically dyes have poorer absorption compared to silicon, meaning that fewer of the photons in sunlight are available for current generation in comparison to silicon.

As an alternative to dye, inorganic metal chalcogenides have been attracted high attention among researchers owing to their great stability, good absorption over wider wavelength range and multiple exciton generation that leads to the high production of power efficiencies (Xu et al., 2013; Yang et al., 2011). Many of inorganic semiconductor materials have been used in order to enhance the photoelectrochemical performance such as CdTe (Bao et al., 2017), CdSe (Jun et al., 2014) and PbS (Shi et al., 2015). All these unique characteristics of the inorganic metal chacogenides have raised interest among researchers in renewable energy research field. Another alternative way to enhance the performance is by introducing metal ions dopant to create long-lived charge carrier and reduce the electron-hole recombination (Wu et al., 2015).

Besides, the difficulty in incorporating inorganic semiconducting material into TiO_2 mesoporous matrix to obtain a well-covered monolayer on inner surface of TiO_2 electrode also influence the efficiency of photoelectrochemical cell. It is an important component which require suitable surface area for effective inorganic semiconductor material loading and eventually increase the high amount of electron-hole pair generation upon the excitation. Many studies in DSSCs using TiO_2 paste in the photoanode and some preparations are not suitable for highly efficient inorganic solar cell due to the small size of inorganic semiconductor which is less than 10 nm. In order to overcome such problem, high viscosity paste can be prepared by mixing commercial TiO_2 powder with citric acid (CA) and ethylene glycol (EG). High quality thin film with large number of pores was produce which created from the decomposition of polyester from CA and ethylene glycol EG.

1.3 Background of research

The outstanding properties of Mn doped CdS on TiO_2 nanoparticles are studied extensively as one of the potential electrodes in photoelectrochemical cell. In this study, three major parts were adopted to enhance the photoelectrochemical performance. The first part was conducted through the preparation of TiO_2 electrode that plays important roles in photoelectrochemical performance due its good charge transport properties (Park et al., 2013). The second part was by deposition of semiconductor materials on TiO_2 nanoparticles by using SILAR method that demonstrates excellent photocurrent density of 25 times higher than TiO_2 nanoparticles. The third part was carried out by modification of CdS by introducing Mn dopant that shows remarkable photocurrent density of 60 times higher than TiO_2 .

Prior to the deposition of inorganic semiconductor materials, TiO_2 coating parameter was done to find the optimum condition for TiO_2 coating. Parameter such as type of TiO_2 paste, coating method and coating layer are varied throughout the study. The overview of the study presented in Figure 1.1. In this study, CdS was deposited on TiO_2 as light harvesting materials by employing SILAR method which responsible to the enhancement of the photocurrent due to its good characteristics such as tunable energy band gap, multiple exciton generation and better charge separation and transport (Hu et al., 2018). Moreover, modification of CdS was done by incorporating Mn as a dopant with CdS that produces dramatic changes in the electrical properties and photoelectrochemical performance.

Figure 1.1: Overview of the approach of preparation of photoelectrochemical properties of nanostructured Mn doped CdS/TiO₂ for solar cell

1.4 Objectives

This research aims to explore, optimize and develop Mn-doped CdS on TiO₂ nanoparticles with excellent photoelectrochemical performance. In order to achieve this main objective, this project was divided into five specific objectives:

- 1) To prepare high quality TiO_2 photoanode from the viscous TiO_2 paste by doctor-blade method.
- To deposit CdS nanoparticles and Mn-doped CdS nanoparticles on the TiO₂/FTO photoanodes via successive layer adsorption and reaction (SILAR) method.
- To optimize study parameter of the deposition of CdS and Mn-doped CdS on TiO₂/FTO photoanodes.
- 4) To determine the photoelectrochemical and optical properties of CdS and Mndoped CdS on the TiO₂ nanoparticles.
- 5) To determine the photoconversion efficiency of the CdS and Mn, Cr, Ni and Cu doped CdS for solar cell application.

1.5 Structure of Thesis

This thesis consists of 5 chapters. This chapter, Chapter 1, provides the introduction, problem statements and objectives. The outline structure of the remaining part of the thesis is as follow.

Chapter 2 is focused on the background of literature on the previous work of photoelectrochemical cell. A comprehensive literature on TiO_2 as a photoanode and fabrication of metal chalcogenide was discussed intensively covering the properties until method of preparation. An overview on the effect of dopant to photoelectrochemical performance also will be presented.

Chapter 3 focuses on the research methodology and particularly, the source of the materials and chemicals used will be explained in detail. The complete methodology of preparation of TiO_2 nanoparticles photoelectrode and fabrication of CdS and Mn doped CdS on TiO_2 nanoparticles will be also discussed in this chapter. In addition, characterizations of samples are described.

Chapter 4 demonstrates the experimental results for deposition of different types of TiO₂ nanoparticles, different deposition methods, and various coating layers and different calcination temperatures. The optical and photoelectrochemical properties of CdS/TiO₂ and Mn doped CdS/TiO₂ will be discussed intensively in this chapter. In addition, the crystal structure, morphology, elemental composition and photoefficiency are discussed comprehensively.

Finally, Chapter 5 presents all the key findings of this project and provides conclusion on the observations obtained beyond previously published work. Recommendations are also given for further studies regarding potential applications.

REFERENCES

- Abdullah, M. H., & Rusop, M. (2014). Improved performance of dye-sensitized solar cell with a specially tailored TiO2 compact layer prepared by RF magnetron sputtering. *Journal of Alloys and Compounds, 600*: 60-66.
- Alhammadi, S., Moon, K., Park, H., & Kim, W. K. (2017). Effect of different cadmium salts on the properties of chemical-bath-deposited CdS thin films and Cu(InGa)Se2 solar cells. *Thin Solid Films*, 625: 56-61.
- Arabpour Roghabadi, F., Oniy Aghmiuni, K., & Ahmadi, V. (2016). Optical and electrical simulation of hybrid solar cell based on conjugated polymer and sizetunable CdSe quantum dots: Influence of the QDs size. Organic Electronics, 34: 164-171.
- Atomsa Gonfa, B., Zhao, H., Li, J., Qiu, J., Saidani, M., Zhang, S., Izquierdo, R., Wu, N., El Khakani, M. A., & Ma, D. (2014). Air-processed depleted bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays. *Solar Energy Materials and Solar Cells*, 124: 67-74.
- Ayyaswamy, A., Ganapathy, S., Alsalme, A., Alghamdi, A., & Ramasamy, J. (2015). Structural, optical and photovoltaic properties of co-doped CdTe QDs for quantum dots sensitized solar cells. *Superlattices and Microstructures*, 88: 634-644.
- Babu, E. S., Hong, S.-K., Vo, T. S., Jeong, J.-R., & Cho, H. K. (2015). Photoelectrochemical water splitting properties of hydrothermally-grown ZnO nanorods with controlled diameters. *Electronic Materials Letters*, 11(1): 65-72.
- Badawi, A., Al-Hosiny, N., Merazga, A., Albaradi, A. M., Abdallah, S., & Talaat, H. (2016). Study of the back recombination processes of PbS quantum dots sensitized solar cells. *Superlattices and Microstructures*, 100: 694-702.
- Balis, N., Dracopoulos, V., Bourikas, K., & Lianos, P. (2013). Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSe with CoS and CuS counter electrodes. *Electrochimica Acta*, 91: 246-252.
- Bao, Z., Liu, L., Yang, X., Tang, P., Yang, K., Lu, H., He, S., Liu, J., Liu, X., & Li, B. (2017). Synthesis and characterization of novel oxygenated CdSe window layer for CdTe thin film solar cells. *Materials Science in Semiconductor Processing*, 63: 12-17.
- Barbe, C. J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., & Gra⁻⁻tzel, M. (1997). Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications. J. Am. Ceram. Soc, 20(12): 3157-3171.
- Behnajady, M. A., & Eskandarloo, H. (2013). Preparation of TiO2 nanoparticles by the sol-gel method under different pH conditions and modeling of photocatalytic activity by artificial neural network. *Research on Chemical Intermediates*.
- Bet-moushoul, E., Mansourpanah, Y., Farhadi, K., & Tabatabaei, M. (2016). TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes. *Chemical Engineering Journal, 283*: 29-46.
- Bhat, T. S., Mali, S. S., Sheikh, A. D., Korade, S. D., Pawar, K. K., Hong, C. K., Kim, J. H., & Patil, P. S. (2017). TiO 2 /PbS/ZnS heterostructure for panchromatic quantum dot sensitized solar cells synthesized by wet chemical route. *Optical Materials*, 73: 781-792.
- Blakers, A., Zin, N., McIntosh, K. R., & Fong, K. (2013). High Efficiency Silicon Solar Cells. *Energy Procedia*, 33: 1-10.

- Cai, C., Zhai, L., Ma, Y., Zou, C., Zhang, L., Yang, Y., & Huang, S. (2017). Synthesis of AgInS2 quantum dots with tunable photoluminescence for sensitized solar cells. *Journal of Power Sources*, 341: 11-18.
- Cha, E. S., Ko, Y. M., Kim, S. C., & Ahn, B. T. (2017). Short-circuit current improvement in CdTe solar cells by combining a ZnO buffer layer and a solution back contact. *Current Applied Physics*, 17(1): 47-54.
- Chen, C., Ye, M., Lv, M., Gong, C., Guo, W., & Lin, C. (2014). Ultralong Rutile TiO2 Nanorod Arrays with Large Surface Area for CdS/CdSe Quantum Dotsensitized Solar Cells. *Electrochimica Acta*, 121: 175-182.
- Chen, H., Li, W., Liu, H., & Zhu, L. (2010). A suitable deposition method of CdS for high performance CdS-sensitized ZnO electrodes: Sequential chemical bath deposition. *Solar Energy*, 84(7): 1201-1207.
- Chen, P., Brillet, J., Bala, H., Wang, P., Zakeeruddin, S. M., & Grätzel, M. (2009). Solidstate dye-sensitized solar cells using TiO2 nanotube arrays on FTO glass. *Journal of Materials Chemistry*, 19(30): 5325.
- Chen, S., Paulose, M., Ruan, C., Mor, G. K., Varghese, O. K., Kouzoudis, D., & Grimes, C. A. (2006). Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: Preparation, characterization, and application to photoelectrochemical cells. *Journal of Photochemistry and Photobiology A: Chemistry*, 177(2-3): 177-184.
- Chen, S. G., Chappel, S., Diamant, Y., & Zaban, A. (2001). Preparation of Nb2O5 Coated TiO2 Nanoporous Electrodes and Their Application in Dye-Sensitized Solar Cells. *Chem. Mater.*, 13: 4629-4634.
- Chen, W.-C., Kong, F.-T., Ghadari, R., Li, Z.-Q., Guo, F.-L., Liu, X.-P., Huang, Y., Yu, T., Hayat, T., & Dai, S.-Y. (2017). Unravelling the structural-electronic impact of arylamine electron-donating antennas on the performances of efficient ruthenium sensitizers for dye-sensitized solar cells. *Journal of Power Sources*, 346: 71-79.
- Chi, Y.-j., Fu, H.-g., Qi, L.-h., Shi, K.-y., Zhang, H.-b., & Yu, H.-t. (2008). Preparation and photoelectric performance of ITO/TiO2/CdS composite thin films. *Journal* of Photochemistry and Photobiology A: Chemistry, 195(2-3): 357-363.
- Conibeer, G. (2007). Third-generation photovoltaics. *Materials Today*, 10(11): 42-50.
- Cui, C., Qiu, Y., Zhao, J., Lu, B., Hu, H., Yang, Y., Ma, N., Xu, S., Xu, L., & Li, X. (2015). A comparative study on the quantum-dot-sensitized, dye-sensitized and co-sensitized solar cells based on hollow spheres embedded porous TiO2 photoanodes. *Electrochimica Acta*, 173: 551-558.
- Danks, A. E., Hall, S. R., & Schnepp, Z. (2016). The evolution of 'sol-gel' chemistry as a technique for materials synthesis. *Materials Horizons*, 3(2): 91-112.
- Dariani, R. S., & Emami, Z. (2015). Structural and optical studies of CdS and CdS:Ag nano needles prepared by a SILAR method. *Ceramics International*, 41(7): 8820-8827.
- Deepa, K. G., & Nagaraju, J. (2014). Development of SnS quantum dot solar cells by SILAR method. *Materials Science in Semiconductor Processing*, 27: 649-653.
- Deng, Y., Peng, E., Shao, Y., Xiao, Z., Dong, Q., & Huang, J. (2015). Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctorbladed active layers. *Energy Environ. Sci.*, 8(5): 1544-1550.
- El-Menyawy, E. M., Zedan, I. T., & Azab, A. A. (2017). One-pot solvothermal synthesis and characterization of CdS nanotubes decorated with graphene for solar cell applications. *Journal of Alloys and Compounds*, 695: 3429-3434.

- Elbohy, H., Thapa, A., Poudel, P., Adhikary, N., Venkatesan, S., & Qiao, Q. (2015). Vanadium oxide as new charge recombination blocking layer for high efficiency dye-sensitized solar cells. *Nano Energy*, *13*: 368-375.
- Ertis, I. F., & Boz, I. (2017). Synthesis and Characterization of Metal-Doped (Ni, Co, Ce, Sb) CdS Catalysts and Their Use in Methylene Blue Degradation under Visible Light Irradiation. *Modern Research in Catalysis*, 06(01): 1-14.
- Esparza, D., Zarazúa, I., López-Luke, T., Carriles, R., Torres-Castro, A., & Rosa, E. D.
 1. (2015). Photovoltaic Properties of Bi2S3 and CdS Quantum Dot Sensitized TiO2 Solar Cells. *Electrochimica Acta, 180*: 486-492.
- Fan, J., Li, Z., Zhou, W., Miao, Y., Zhang, Y., Hu, J., & Shao, G. (2014). Dye-sensitized solar cells based on TiO2 nanoparticles/nanobelts double-layered film with improved photovoltaic performance. *Applied Surface Science*, 319: 75-82.
- Fazli, F. I. M., Ahmad, M. K., Soon, C. F., Nafarizal, N., Suriani, A. B., Mohamed, A., Mamat, M. H., Malek, M. F., Shimomura, M., & Murakami, K. (2017). Dyesensitized solar Cell using pure anatase TiO 2 annealed at different temperatures. *Optik - International Journal for Light and Electron Optics*, 140: 1063-1068.
- Fitra, M., Daut, I., Irwanto, M., Gomesh, N., & Irwan, Y. M. (2013). Effect of TiO2 Thickness Dye Solar Cell on Charge Generation. *Energy Procedia*, *36*: 278-286.
- Gakhar, R., Smith, Y. R., Misra, M., & Chidambaram, D. (2015). Photoelectric performance of TiO2 nanotube array photoelectrodes sensitized with CdS0.54Se0.46 quantum dots. *Applied Surface Science*, 355: 1279-1288.
- Golobostanfard, M. R., & Abdizadeh, H. (2014). Tandem structured quantum dot/rod sensitized solar cell based on solvothermal synthesized CdSe quantum dots and rods. *Journal of Power Sources*, 256: 102-109.
- Gong, J., Liang, J., & Sumathy, K. (2012). Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. *Renewable and Sustainable Energy Reviews*, 16(8): 5848-5860.
- Gopi, C. V., Venkata-Haritha, M., Kim, S. K., & Kim, H. J. (2015). A strategy to improve the energy conversion efficiency and stability of quantum dot-sensitized solar cells using manganese-doped cadmium sulfide quantum dots. *Dalton Trans*, 44(2): 630-638.
- Gopi, C. V. V. M., Srinivasa Rao, S., Kim, S.-K., Punnoose, D., & Kim, H.-J. (2015). Highly effective nickel sulfide counter electrode catalyst prepared by optimal hydrothermal treatment for quantum dot-sensitized solar cells. *Journal of Power Sources, 275*: 547-556.
- Green, M. A. (2002). Third generation photovoltaics: solar cells for 2020 and beyond. *Physica E: Low-dimensional Systems and Nanostructures, 14*(1–2): 65-70.
- Guo, B., Liu, Z., Hong, L., & Jiang, H. (2005). Sol gel derived photocatalytic porous TiO2 thin films. Surface and Coatings Technology, 198(1-3): 24-29.
- Győri, Z., Kónya, Z., & Kukovecz, Á. (2015). Visible light activation photocatalytic performance of PbSe quantum dot sensitized TiO2 Nanowires. *Applied Catalysis B: Environmental, 179*: 583-588.
- Hamadanian, M., & Jabbari, V. (2013). Improved Conversion Efficiency in Dye-Sensitized Solar Cells Based on Electrospun TiCl4-Treated TiO2Nanorod Electrodes. *International Journal of Green Energy*, 11(4): 364-375.
- Han, J., Liu, Z., Guo, K., Wang, B., Zhang, X., & Hong, T. (2015). High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays. *Applied Catalysis B: Environmental*, 163: 179-188.

- Ho, P., Bao, L. Q., Ahn, K.-S., Cheruku, R., & Kim, J. H. (2016). P-Type dye-sensitized solar cells: Enhanced performance with a NiO compact blocking layer. *Synthetic Metals*, 217: 314-321.
- Hu, C., Lu, T., Chen, F., Zhang, R., Lian, C., Zheng, S., Hu, Q., & Duo, S. (2014). Enhancement of photocatalytic performance of TiO2 produced by an alcohothermal approach through inclusion of water. *Materials Research Bulletin*, 53: 42-48.
- Hu, L., Zhang, Z., Patterson, R. J., Hu, Y., Chen, W., Chen, C., Li, D., Hu, C., Ge, C., Chen, Z., Yuan, L., Yan, C., Song, N., Teh, Z. L., Conibeer, G. J., Tang, J., & Huang, S. (2018). Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping. *Nano Energy*.
- Hu, X., Li, Y., Tian, J., Yang, H., & Cui, H. (2017). Highly efficient full solar spectrum (UV-vis-NIR) photocatalytic performance of Ag2S quantum dot/TiO2 nanobelt heterostructures. *Journal of Industrial and Engineering Chemistry*, 45: 189-196.
- Huang, F., Hou, J., Wang, H., Tang, H., Liu, Z., Zhang, L., Zhang, Q., Peng, S., Liu, J., & Cao, G. (2017). Impacts of surface or interface chemistry of ZnSe passivation layer on the performance of CdS/CdSe quantum dot sensitized solar cells. *Nano Energy*, 32: 433-440.
- Huang, N., Sebo, B., Pan, M. M., Liu, Y. M., Peng, T., Sun, W. W., Bu, C. H., & Zhao, X. Z. (2013). A viscous titania paste with a single coating-sintering step for 8–24 µm thick, high-haze, high-quality TiO2 films of dye-sensitized solar cells. Solar Energy, 97: 266-272.
- Hussain, Akhtar Arif, & Aslam, S. M. (2017). Emerging renewable and sustainable energy technologies: State of the art. *Renewable and Sustainable Energy Reviews*, 71: 12-28.
- Ito, S., Chen, P., Comte, P., Nazeeruddin, M. K., Liska, P., Péchy, P., & Grätzel, M. (2007). Fabrication of screen-printing pastes from TiO2 powders for dyesensitised solar cells. *Progress in Photovoltaics: Research and Applications*, 15(7): 603-612.
- Jai Kumar, B., & Mahesh, H. M. (2017). Concentration-dependent optical properties of TGA stabilized CdTe Quantum dots synthesized via the single injection hydrothermal method in the ambient environment. *Superlattices and Microstructures*, 104: 118-127.
- Jiao, J., Zhou, Z.-J., Zhou, W.-H., & Wu, S.-X. (2013). CdS and PbS quantum dots cosensitized TiO2 nanorod arrays with improved performance for solar cells application. *Materials Science in Semiconductor Processing*, 16(2): 435-440.
- Jostar. T, S., Devadason, S., & Suthagar, J. (2015). Influence of Mn-doping with CdS on the structural and optical properties of ZnS/CdS/TiO2 photoanodes. *Journal of Materials Science: Materials in Electronics, 26*(8): 5668-5676.
- Jun, H. K., Careem, M. A., & Arof, A. K. (2013). Quantum dot-sensitized solar cells perspective and recent developments: A review of Cd chalcogenide quantum dots as sensitizers. *Renewable and Sustainable Energy Reviews*, 22: 148-167.
- Jun, H. K., Careem, M. A., & Arof, A. K. (2014). Fabrication, Characterization, and Optimization of CdS and CdSe Quantum Dot-Sensitized Solar Cells with Quantum Dots Prepared by Successive Ionic Layer Adsorption and Reaction. *International Journal of Photoenergy*, 2014: 1-14.
- Jun, H. K., Careem, M. A., & Arof, A. K. (2014). Performances of some low-cost counter electrode materials in CdS and CdSe quantum dot-sensitized solar cells. *Nanoscale Research Letters*, 9(16): 1-7.

- Jung, S. W., Kim, J.-H., Kim, H., Choi, C.-J., & Ahn, K.-S. (2012). ZnS overlayer on in situ chemical bath deposited CdS quantum dot-assembled TiO2 films for quantum dot-sensitized solar cells. *Current Applied Physics*, 12(6): 1459-1464.
- Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., & Kim, K.-H. (2018). Solar energy: Potential and future prospects. *Renewable and Sustainable Energy Reviews*, 82: 894-900.
- Kaneco, S., Chen, Y., Westerhoff, P., & Crittenden, J. C. (2007). Fabrication of uniform size titanium oxide nanotubes: Impact of current density and solution conditions. *Scripta Materialia*, 56(5): 373-376.
- Kavitha, M., C.Gopinathan, & P.Pandi. (2008). Synthesis and Characterization of TiO2 Nanopowders
- in Hydrothermal and Sol-Gel Method. International Journal of Advancements in Research & Technology, 2: 102-108.
- Kavitha, M., C.Gopinathan, & P.Pandi. (2013). Synthesis and Characterization of TiO2 Nanopowders in Hydrothermal and Sol-Gel Method. *International Journal of* Advancements in Research & Technology, 2(4): 102-108.
- Khmelinskii, I., & Makarov, V. I. (2016). Quantum confinement in semiconductor nanofilms: Optical spectra and multiple exciton generation. *Photonics and Nanostructures Fundamentals and Applications, 19*: 39-47.
- Kim, H.-J., Kim, D.-J., Rao, S. S., Savariraj, A. D., Soo-Kyoung, K., Son, M.-K., Gopi, C. V. V. M., & Prabakar, K. (2014). Highly efficient solution processed nanorice structured NiS counter electrode for quantum dot sensitized solar cells. *Electrochimica Acta, 127*: 427-432.
- Kim, H.-J., Xu, G.-C., Gopi, C. V. V. M., Seo, H., Venkata-Haritha, M., & Shiratani, M. (2017). Enhanced light harvesting and charge recombination control with TiO2/PbCdS/CdS based quantum dot-sensitized solar cells. *Journal of Electroanalytical Chemistry*, 788: 131-136.
- Kong, E.-H., Chang, Y.-J., & Jang, H. M. (2014). Quantum dot-sensitized mesoporous spherical TiO2 paste with cyclic calcination for photoelectrochemical cells. *Electrochimica Acta, 132*: 98-102.
- Kongkan, A., Tvrdy, K., Takechi, K., Kuno, M., & Kamat, P. V. (2008). Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture. J. AM. CHEM. SOC., 130: 4007-4015.
- Kongkanand, A., Tvrdy, K., Takechi, K., Kuno, M., & Kamat, P. V. (2007). Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture. J. AM. CHEM. SOC., 130: 4007-4016.
- Koo, H.-J., Park, J., Yoo, B., Yoo, K., Kim, K., & Park, N.-G. (2008). Size-dependent scattering efficiency in dye-sensitized solar cell. *Inorganica Chimica Acta*, 361(3): 677-683.
- Kouhnavard, M., Ikeda, S., Ludin, N. A., Ahmad Khairudin, N. B., Ghaffari, B. V., Mat-Teridi, M. A., Ibrahim, M. A., Sepeai, S., & Sopian, K. (2014). A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. *Renewable and Sustainable Energy Reviews*, 37: 397-407.
- Lai, Y., Lin, Z., Zheng, D., Chi, L., Du, R., & Lin, C. (2012). CdSe/CdS quantum dots co-sensitized TiO2 nanotube array photoelectrode for highly efficient solar cells. *Electrochimica Acta*, 79: 175-181.
- Lee, D.-S., Lee, S.-Y., Rhee, K. Y., & Park, S.-J. (2014). Effect of hydrothermal temperature on photocatalytic properties of TiO2 nanotubes. *Current Applied Physics*, 14(3): 415-420.
- Lee, J.-K., Jeong, B.-H., Jang, S.-i., Kim, Y.-G., Jang, Y.-W., Lee, S.-B., & Kim, M.-R. (2009). Preparations of TiO2 pastes and its application to light-scattering layer

for dye-sensitized solar cells. *Journal of Industrial and Engineering Chemistry*, 15(5): 724-729.

- Lee, T. D., & Ebong, A. U. (2017). A review of thin film solar cell technologies and challenges. *Renewable and Sustainable Energy Reviews*, 70: 1286-1297.
- Lee, Y.-L., & Chang, C.-H. (2008). Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells. *Journal of Power Sources*, 185(1): 584-588.
- Li, L., Yang, X., Zhang, W., Zhang, H., & Li, X. (2014). Boron and sulfur co-doped TiO2 nanofilm as effective photoanode for high efficiency CdS quantum-dotsensitized solar cells. *Journal of Power Sources*, 272: 508-512.
- Li, S., Chen, Z., Li, T., Gao, H., Wei, C., Li, W., Kong, W., & Zhang, W. (2014). Vertical nanosheet-structured ZnO/TiO2 photoelectrodes for highly efficient CdS quantum dot sensitized solar cells. *Electrochimica Acta*, *127*: 362-368.
- Li, T., Zou, X., & Zhou, H. (2014). Effect of Mn Doping on Properties of CdS Quantum Dot-Sensitized Solar Cells. *International Journal of Photoenergy*, 2014: 1-6.
- Li, Y., Guo, M., Zhang, M., & Wang, X. (2009). Hydrothermal synthesis and characterization of TiO2 nanorod arrays on glass substrates. *Materials Research Bulletin*, 44(6): 1232-1237.
- Liang, J., Zhang, G., & Sun, W. (2014). Post-treatment on dye-sensitized solar cells with TiCl4 and Nb2O5. *RSC Advances*, *4*(13): 6746.
- Liao, Y., Que, W., Jia, Q., He, Y., Zhang, J., & Zhong, P. (2012). Controllable synthesis of brookite/anatase/rutile TiO2 nanocomposites and single-crystalline rutile nanorods array. *Journal of Materials Chemistry*, 22(16): 7937.
- Ludin, N. A., Al-Alwani Mahmoud, A. M., Bakar Mohamad, A., Kadhum, A. A. H., Sopian, K., & Abdul Karim, N. S. (2014). Review on the development of natural dye photosensitizer for dye-sensitized solar cells. *Renewable and Sustainable Energy Reviews*, 31: 386-396.
- Lugo, S., Sánchez, Y., Espíndola, M., Oliva, F., Izquierdo-Roca, V., Peña, Y., & Saucedo, E. (2017). Cationic compositional optimization of CuIn(S1-ySey)2 ultra-thin layers obtained by chemical bath deposition. *Applied Surface Science*, 404: 57-62.
- Luo, Q.-P., Wang, B., & Cao, Y. (2017). Single-crystalline porous ZnO nanosheet frameworks for efficient fully flexible dye-sensitized solar cells. *Journal of Alloys and Compounds*, 695: 3324-3330.
- Ma, L., Ai, X., & Wu, X. (2017). Effect of substrate and Zn doping on the structural, optical and electrical properties of CdS thin films prepared by CBD method. *Journal of Alloys and Compounds, 691*: 399-406.
- Macías, C., Lugo, S., Benítez, Á., López, I., Kharissov, B., Vázquez, A., & Peña, Y. (2017). Thin film solar cell based on CuSbS2 absorber prepared by chemical bath deposition (CBD). *Materials Research Bulletin*, 87: 161-166.
- Majidi, H., & Baxter, J. B. (2011). Electrodeposition of CdSe coatings on ZnO nanowire arrays for extremely thin absorber solar cells. *Electrochimica Acta*, *56*(6): 2703-2711.
- Manoharan, K., & Venkatachalam, P. (2015). Photoelectrochemical performance of dye sensitized solar cells based on aluminum-doped titanium dioxide structures. *Materials Science in Semiconductor Processing*, 30: 208-217.
- Manthina, V., & Agrios, A. G. (2017). Facile Synthesis of Zn1-xCoxO/ZnO Core/Shell Nanostructures and Their Application to Dye-Sensitized Solar Cells. *Superlattices and Microstructures*.
- Mir, W. J., Jagadeeswararao, M., Das, S., & Nag, A. (2017). Colloidal Mn-Doped Cesium Lead Halide Perovskite Nanoplatelets. ACS Energy Letters, 2(3): 537-543.

- Miyauchi, M. (2011). Tailoring of SnS quantum dots in mesoporous media for efficient photoelectrochemical device. *Chemical Physics Letters*, *514*(1-3): 151-155.
- Mussa Farkhani, S., & Valizadeh, A. (2014). Review: three synthesis methods of CdX (X = Se, S or Te) quantum dots. *IET Nanobiotechnol*, 8(2): 59-76.
- Nikhil, A., Thomas, D. A., Amulya, S., Mohan Raj, S., & Kumaresan, D. (2014). Synthesis, characterization, and comparative study of CdSe–TiO2 nanowires and CdSe–TiO2 nanoparticles. *Solar Energy*, 106: 109-117.
- Ohring, M. (1995). 13 OPTICAL PROPERTIES OF MATERIALS Engineering Materials Science (pp. 665-XI). San Diego: Academic Press.
- Ojo, A. A., Salim, H. I., Olusola, O. I., Madugu, M. L., & Dharmadasa, I. M. (2016). Effect of thickness: a case study of electrodeposited CdS in CdS/CdTe based photovoltaic devices. *Journal of Materials Science: Materials in Electronics*, 28(4): 3254-3263.
- Ou, H., & Lo, S. (2007). Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Separation and Purification Technology, 58(1): 179-191.
- Panchuk, O., & Fochuk, P. (2010). Chapter VI Doping A2 Triboulet, Robert. In P. Siffert (Ed.), CdTe and Related Compounds; Physics, Defects, Hetero- and Nano-structures, Crystal Growth, Surfaces and Applications (pp. 309-362). Amsterdam: Elsevier.
- Park, G. D., Lee, J.-H., Lee, J.-K., & Kang, Y. C. (2014). Effect of esterification reaction of citric acid and ethylene glycol on the formation of multi-shelled cobalt oxide powders with superior electrochemical properties. *Nano Research*, 7(12): 1738-1748.
- Park, K., Zhang, Q., Myers, D., & Cao, G. (2013). Charge transport properties in TiO(2) network with different particle sizes for dye sensitized solar cells. ACS Appl Mater Interfaces, 5(3): 1044-1052.
- Park, N.-G. (2015). Perovskite solar cells: an emerging photovoltaic technology. *Materials Today*, 18(2): 65-72.
- Peng, Z., Liu, Y., Shu, W., Chen, K., & Chen, W. (2013). Efficiency enhancement of CuInS2 quantum dot sensitized TiO2 photo-anodes for solar cell applications. *Chemical Physics Letters*, 586: 85-90.
- Peng, Z., Liu, Y., Zhao, Y., Shu, W., Chen, K., Bao, Q., & Chen, W. (2013). Efficiency enhancement of TiO2 nanodendrite array electrodes in CuInS2 quantum dot sensitized solar cells. *Electrochimica Acta*, 111: 755-761.
- Pietruszka, R., Witkowski, B. S., Gieraltowska, S., Caban, P., Wachnicki, L., Zielony, E., Gwozdz, K., Bieganski, P., Placzek-Popko, E., & Godlewski, M. (2015). New efficient solar cell structures based on zinc oxide nanorods. *Solar Energy Materials and Solar Cells*, 143: 99-104.
- Prabakar, K., Minkyu, S., Inyoung, S., & Heeje, K. (2010). CdSe quantum dots cosensitized TiO2photoelectrodes: particle size dependent properties. *Journal of Physics D: Applied Physics*, 43(1): 012002.
- Punnoose, D., Kim, H.-J., Srinivasa Rao, S., & Pavan Kumar, C. S. S. (2015). Cobalt sulfide counter electrode using hydrothermal method for quantum dotsensitized solar cells. *Journal of Electroanalytical Chemistry*, 750: 19-26.
- Qi, J., Liu, W., Biswas, C., Zhang, G., Sun, L., Wang, Z., Hu, X., & Zhang, Y. (2015). Enhanced power conversion efficiency of CdS quantum dot sensitized solar cells with ZnO nanowire arrays as the photoanodes. *Optics Communications*, 349: 198-202.
- Robel, I., Subramanian, V., Kuno, M., & Kamat, P. V. (2006). Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to

Mesoscopic TiO2 Films. *Journal of the American Chemical Society*, *128*(7): 2385-2393.

- Sabataitytė, J., Oja, I., Lenzmann, F., Volobujeva, O., & Krunks, M. (2006). Characterization of nanoporous TiO2 films prepared by sol-gel method. *Comptes Rendus Chimie*, 9(5-6): 708-712.
- Sahai, S., Ikram, A., Rai, S., Shrivastav, R., Dass, S., & Satsangi, V. R. (2017). Quantum dots sensitization for photoelectrochemical generation of hydrogen: A review. *Renewable and Sustainable Energy Reviews*, 68: 19-27.
- Samadpour, M., Bardajee, G. R., Gheysare, S. G., & Shafagh, P. (2015). Transition metal doping for enhancing quantum dot sensitized solar cells performance. *Journal* of Physics D: Applied Physics, 48(9): 095101.
- Sato, K., Ono, K., Izuishi, T., Kuwahara, S., Katayama, K., Toyoda, T., Hayase, S., & Shen, Q. (2016). The effect of CdS on the charge separation and recombination dynamics in PbS/CdS double-layered quantum dot sensitized solar cells. *Chemical Physics*, 478: 159-163.
- Sedghi, A., & Miankushki, H. N. (2013). Influence of TiCl4Treatment on Structure and Performance of Dye-Sensitized Solar Cells. Japanese Journal of Applied Physics, 52(7R): 075002.
- Seebauer, E. G., & Noh, K. W. (2010). Trends in semiconductor defect engineering at the nanoscale. *Materials Science and Engineering: R: Reports, 70*(3-6): 151-168.
- Senthil, T. S., Muthukumarasamy, N., & Kang, M. (2013). Effect of acid treatment and dipping time on the performance of CdS quantum dot solar cells. *Optical Engineering*, 52(7): 075102.
- Shaban, Z., Ara, M. H. M., Falahatdoost, S., & Ghazyani, N. (2016). Optimization of ZnO thin film through spray pyrolysis technique and its application as a blocking layer to improving dye sensitized solar cell efficiency. *Current* Applied Physics, 16(2): 131-134.
- Sharma, S., Jain, K. K., & Sharma, A. (2015). Solar Cells: In Research and Applications—A Review. *Materials Sciences and Applications*, 06(12): 1145-1155.
- Shen, C., Tong, H., Gao, W., Yuan, S., Chen, G., & Yang, Y. (2015). Effects of anode structures and fabrication methods on cell efficiencies of CdS/CdSe quantum dot co-sensitized solar cells. *Journal of Alloys and Compounds*, 644: 205-210.
- Shen, Q., Katayama, K., & Toyoda, T. (2015). Characterization of hot carrier cooling and multiple exciton generation dynamics in PbS QDs using an improved transient grating technique. *Journal of Energy Chemistry*, 24(6): 712-716.
- Shi, X.-F., Xia, X.-Y., Cui, G.-W., Deng, N., Zhao, Y.-Q., Zhuo, L.-H., & Tang, B. (2015). Multiple exciton generation application of PbS quantum dots in ZnO@PbS/graphene oxide for enhanced photocatalytic activity. *Applied Catalysis B: Environmental*, 163: 123-128.
- Şişman, İ., Tekir, O., & Karaca, H. (2017). Role of ZnO photoanode nanostructures and sensitizer deposition approaches on the photovoltaic properties of CdS/CdSe and CdS1-xSex quantum dot-sensitized solar cells. *Journal of Power Sources*, 340: 192-200.
- Song, X., Liu, X., Yan, Y., Deng, J., Wang, Y., Dong, X., Mo, Z., & Xia, C. (2018). One-pot hydrothermal synthesis of thioglycolic acid-capped CdSe quantum dots-sensitized mesoscopic TiO 2 photoanodes for sensitized solar cells. *Solar Energy Materials and Solar Cells*, 176: 418-426.

- Song, X., Wang, M., Shi, Y., Deng, J., Yang, Z., & Yao, X. (2012). In situ hydrothermal growth of CdSe(S) nanocrystals on mesoporous TiO2 films for quantum dotsensitized solar cells. *Electrochimica Acta*, 81: 260-267.
- Song, X., Wang, M., Xing, T., Deng, J., Ding, J., Yang, Z., & Zhang, X. (2014). Fabrication of micro/nano-composite porous TiO2 electrodes for quantum dotsensitized solar cells. *Journal of Power Sources*, 253: 17-26.
- Song, X., Wang, M., Zhang, H., Deng, J., Yang, Z., Ran, C., & Yao, X. (2013). Morphologically controlled electrodeposition of CdSe on mesoporous TiO2 film for quantum dot-sensitized solar cells. *Electrochimica Acta*, 108: 449-457.
- Sun, P., Zhang, X., Liu, X., Wang, L., Wang, C., Yang, J., & Liu, Y. (2012). Growth of single-crystalline rutile TiO2 nanowire array on titanate nanosheet film for dyesensitized solar cells. *Journal of Materials Chemistry*, 22(13): 6389.
- Sun, Y., & Yan, K.-P. (2014). Effect of anodization voltage on performance of TiO2 nanotube arrays for hydrogen generation in a two-compartment photoelectrochemical cell. *International Journal of Hydrogen Energy*, 39(22): 11368-11375.
- Tang, Y., Tao, J., Zhang, Y., Wu, T., Tao, H., & Bao, Z. (2008). Preparation and Characterization of TiO2 Nanotube Arrays via Anodization of Titanium Films Deposited on FTO Conducting Glass at Room Temperature. Acta Phys. -Chim. Sin., 24(12): 2191-2197.
- Terakawa, A. (2013). Review of thin-film silicon deposition techniques for highefficiency solar cells developed at Panasonic/Sanyo. *Solar Energy Materials and Solar Cells*, 119: 204-208.
- Thool, G. S., Sraveen, K., Singh, A. K., Pal, U., & Singh, S. P. (2015). Cowrie-shell architectures: Low temperature growth of Ni doped CdS film. *Journal of Alloys and Compounds*, 649: 553-558.
- Tran, V. A., Truong, T. T., Phan, T. A. P., Nguyen, T. N., Huynh, T. V., Agresti, A., Pescetelli, S., Le, T. K., Di Carlo, A., Lund, T., Le, S.-N., & Nguyen, P. T. (2017). Application of nitrogen-doped TiO2 nano-tubes in dye-sensitized solar cells. *Applied Surface Science*, 399: 515-522.
- Tubtimtae, A., Lee, M.-W., & Wang, G.-J. (2011). Ag2Se quantum-dot sensitized solar cells for full solar spectrum light harvesting. *Journal of Power Sources*, 196(15): 6603-6608.
- Ubani, C. A., Ibrahim, M. A., & Teridi, M. A. M. (2017). Moving into the domain of perovskite sensitized solar cell. *Renewable and Sustainable Energy Reviews*, 72: 907-915.
- Uddin, M. J., Davies, B., Dickens, T. J., & Okoli, O. I. (2013). Self-aligned carbon nanotubes yarns (CNY) with efficient optoelectronic interface for microyarn shaped 3D photovoltaic cells. *Solar Energy Materials and Solar Cells, 115*: 166-171.
- Unni, G. E., Deepak, T. G., & Sreekumaran Nair, A. (2016). Fabrication of CdSe sensitized SnO2 nanofiber quantum dot solar cells. *Materials Science in Semiconductor Processing*, 41: 370-377.
- Vijayalakshmi, R., & Rajendran, V. (2012). Synthesis and characterization of nano-TiO2 via different methods. *Archives of Applied Science Research*, 4(2): 1183-1190.
- Wang, H., Yang, S., Wang, Y., Xu, J., Huang, Y., Li, W., He, B., Muhammad, S., Jiang, Y., Tang, Y., & Zou, B. (2017). Influence of post-synthesis annealing on PbS quantum dot solar cells. *Organic Electronics*, 42: 309-315.
- Wang, Q., Ito, S., Grätzel, M., Fabregat-Santiago, F., Mora-Seró, I., Bisquert, J., Bessho, T., & Imai, H. (2006). Characteristics of High Efficiency Dye-Sensitized Solar Cells. *The Journal of Physical Chemistry B*, 110(50): 25210-25221.

- Wang, Y., He, Y., Lai, Q., & Fan, M. (2014). Review of the progress in preparing nano TiO2: an important environmental engineering material. *J Environ Sci (China)*, 26(11): 2139-2177.
- Wiranwetchayan, O., Promnopas, S., Thongtem, T., Chaipanich, A., & Thongtem, S. (2017). Effect of alcohol solvents on TiO 2 films prepared by sol–gel method. *Surface and Coatings Technology*.
- Wu, P., Pan, J. B., Li, X. L., Hou, X., Xu, J. J., & Chen, H. Y. (2015). Long-lived charge carriers in Mn-doped CdS quantum dots for photoelectrochemical cytosensing. *Chemistry*, 21(13): 5129-5135.
- Wu, W. Q., Lei, B. X., Rao, H. S., Xu, Y. F., Wang, Y. F., Su, C. Y., & Kuang, D. B. (2013). Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells. *Sci Rep*, *3*: 1352.
- Xu, T., Zou, F., Yu, Y., & Zhi, J. (2013). Synthesis and characterization of CdSexTe1-x sensitized TiO2 solar cell with enhanced photovoltaic properties. *Materials Letters*, *96*: 8-11.
- Yang, J., Kim, J. Y., Yu, J. H., Ahn, T. Y., Lee, H., Choi, T. S., Kim, Y. W., Joo, J., Ko, M. J., & Hyeon, T. (2013). Copper-indium-selenide quantum dot-sensitized solar cells. *Phys Chem Chem Phys*, 15(47): 20517-20525.
- Yang, P., Tang, Q., Ji, C., & Wang, H. (2015). A strategy of combining SILAR with solvothermal process for In2S3 sensitized quantum dot-sensitized solar cells. *Applied Surface Science*.
- Yang, Z., Chen, C. Y., Roy, P., & Chang, H. T. (2011). Quantum dot-sensitized solar cells incorporating nanomaterials. *Chem Commun (Camb)*, 47(34): 9561-9571.
- Yazıcı, M., Çomaklı, O., Yetim, T., Yetim, A. F., & Çelik, A. (2016). Effect of sol aging time on the wear properties of TiO2–SiO2 composite films prepared by a solgel method. *Tribology International*, 104: 175-182.
- Ye, M., Wen, X., Wang, M., Iocozzia, J., Zhang, N., Lin, C., & Lin, Z. (2015). Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. *Materials Today*, 18(3): 155-162.
- Yu, L., Li, Z., Liu, Y., Cheng, F., & Sun, S. (2014). Mn-doped CdS quantum dots sensitized hierarchical TiO2 flower-rod for solar cell application. *Applied Surface Science*, 305: 359-365.
- Yu, X., Zhu, J., Zhang, Y., Weng, J., Hu, L., & Dai, S. (2012). SnSe2 quantum dot sensitized solar cells prepared employing molecular metal chalcogenide as precursors. *Chem Commun (Camb)*, 48(27): 3324-3326.
- Zaba, A., Mic'ic', O. I., Gregg, B. A., & Nozik, A. J. (1998). Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots. *Langmuir*, 14: 3153-3156.
- Zaban, A., Mic'ic, O. I., Gregg, B. A., & Nozik, A. J. (1998). Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots. *Langmuir*, 14: 3153-3156.
- Zeng, T., Chen, Y., Su, X., Li, Y., & Feng, Q. (2014). Hydrothermal steam induced crystallization synthesis of anatase TiO2 nanoparticles with high photovoltaic response. *Materials Letters*, 119: 43-46.
- Zhang, X., Lin, Y., Wu, J., Jing, J., & Fang, B. (2017). Improved performance of CdSe/CdS/PbS co-sensitized solar cell with double-layered TiO 2 films as photoanode. *Optics Communications*, 395: 117-121.
- Zhang, Y., Wu, L., Xie, E., Duan, H., Han, W., & Zhao, J. (2009). A simple method to prepare uniform-size nanoparticle TiO2 electrodes for dye-sensitized solar cells. *Journal of Power Sources*, 189(2): 1256-1263.

- Zhou, R., Zhang, Q., Tian, J., Myers, D., Yin, M., & Cao, G. (2013). Influence of Cationic Precursors on CdS Quantum-Dot-Sensitized Solar Cell Prepared by Successive Ionic Layer Adsorption and Reaction. *The Journal of Physical Chemistry C*, 117(51): 26948-26956.
- Zhou, R., Zhang, Q., Uchaker, E., Yang, L., Yin, N., Chen, Y., Yin, M., & Cao, G. (2014). Photoanodes with mesoporous TiO2 beads and nanoparticles for enhanced performance of CdS/CdSe quantum dot co-sensitized solar cells. *Electrochimica Acta*, 135: 284-292.
- Zhu, X., Zou, X., & Zhou, H. (2015). Effects of Different Doping Ratio of Cu Doped CdS on QDSCs Performance. *Journal of Nanomaterials*, 2015: 1-4.
- Zhu, Y., Zhang, L., Gao, C., & Cao, L. (2000). The synthesis of nanosized TiO2 powder using a sol-gel method with TiCl4 as a precursor. *Journal of Materials Science*, 35: 4049-4054.

