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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfillment of the requirement for the degree of Doctor of Philosophy 

HYBRID AND LINEAR MULTISTEP METHODS FOR SOLVING 
OSCILLATORY SECOND-ORDER DIFFERENTIAL EQUATIONS 

By 

SUFIA ZULFA BINTI AHMAD 

June 2018 

Chairman : Professor Fudziah Bt Ismail, PhD 
Faculty : Science 

This thesis is focused mainly on developing methods for solving special second 
order ordinary differential equations (ODEs) and delay differential equations 
(DDEs) with oscillatory solutions. The first part of this thesis is on the 
derivation of semi-implicit hybrid methods using the technique of 
trigonometrically-fitted for solving oscillatory ordinary as well as delay 
differential equations. The implementation of trigonometrically fitting 
technique is supposed to enhance the efficiency of the methods. Numerical 
results are illustrated using efficiency curve where the common logarithm of 
the maximum global error versus the CPU time is taken. Results indicated that 
the new method work efficiently for solving both ODEs and DDEs. The 
stability of the methods are presented. 

In the second part of the thesis, phase-fitting technique is applied to the 
existing hybrid methods for solving oscillatory ODEs. The modification causes 
the nullifying of phase-lag of the methods. Numerical results illustrated that 
the new phase-fitted method is efficient compared to the existing fitted and 
non-fitted methods. 

The derivation of vanishing phase-lag and amplification fitted semi-implicit 
hybrid method are shown in the third part of the thesis. The general formula of 
hybrid method is modified with additional coefficients which depend on the 
value of the fitted frequency. The theory of zero dissipation and zero 
dispersion techniques are investigated.  Numerical solutions show that the new 
method is a promising tool for integrating oscillatory problems. 
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The fourth part of the thesis focuses on the derivation of block explicit hybrid 
methods. The new methods generate two points at every step length. The 
trigonometrically-fitting technique is adapted to the block methods to enhance 
the efficiency of the methods. Numerical result demonstrated that the new 
method performed better in accuracy and require lesser computational time 
compared to the methods in comparison. 
 

Finally, two-step linear multistep methods with extra derivatives are derived 
using collocation technique. The method is developed using sequence of 
Chebyshev polynomials as the basis function. The new methods are then 
trigonometrically-fitted to improve the efficiency in solving oscillatory 
problems. The results signify that the methods are promising tools for the 
integration of oscillatory problems. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

 

KAEDAH HIBRID DAN MULTILANGKAH LINEAR BAGI 
PENYELESAIAN PERSAMAAN BEMBEZAAN PERINGKAT KEDUA 

YANG BERAYUN 
 

Oleh 

SUFIA ZULFA BINTI AHMAD 

Jun 2018 

 
Pengerusi : Professor Fudziah Bt Ismail, PhD 
Fakulti  : Sains 

 

Tumpuan utama tesis ini adalah untuk menerbitkan kaedah bagi 
menyelesaikan persamaan oembezaan biasa (PBB) dan persamaan peringkat 
pembezaan tunda (PPT) peringkat kedua yang berayun. Bahagian pertama 
tesis ini adalah mengenai kaedah separa-tersirat hibrid (STH) yang dibina 
menggunakan teknik suai secara trigonometri (SST) untuk menyelesaikan 
permasalahan berayun PBB dan PPT. Pelaksanaan teknik SST ini bertujuan 
untuk meningkatkan kecekapan sesuatu kaedah. Keputusan berangka 
digambarkan menggunakan lengkung kecekapan di mana logaritma biasa dari 
ralat global maksimum berbanding masa CPU diambil. Keputusan 
menunjukkan kaedah baharu ini dapat menyelesaikan masalah PBB and PPT 
dengan cekap. Kestabilan kaedah ini turut dipersembahkan. 
 

Pada bahagian kedua tesis, teknik serakan secara fasa (SSF) digunakan ke atas 
kaedah hibrid yang sedia ada bagi penyelesaian PBB untuk masalah berayun. 
Pengubahsuaian ini mencetuskan kaedah serakan secara fasa sifar. Keputusan 
berangka menunjuk kaedah baharu lebih cekap dibandingkan dengan kaedah-
kaedah sedia ada yang secara fasa dan tidak secara fasa. 
 

Pembinaan kaedah berdasarkan teknik lesapan beserta serakan sifar secara fasa 
(LSSF) ditunjukkan dalam bahagian ketiga tesis ini. Persamaan umum kaedah 
hibrid ini diubahsuai menggunakan pekali-pekali tambahan yang nilainya 
bergantung kepada nilai frekuensi. Teori lesapan secara sifar dan serakan 
secara sifar ini dikaji. Kaedah baharu ini diuji untuk masalah yang berselang 
besar untuk membuktikan kecekapan kaedah baharu ini dalam penyelesaian 
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masalah berayun. Keputusan berangka menunjukkan kaedah baharu 
menjanjikan kaedah yang bersesuaian bagi menyelesaikan masalah berayun. 
 

Bahagian keempat tesis ini merujuk kepada pembinaan kaedah tiga langkah 
blok tak-tersirat hibrid (BTTH). Kaedah baharu ini menghasilkan dua 
penyelesaian bagi setiap langkah yang dibina. Teknik SST digunakan ke atas 
kaedah-kaedah blok ini untuk meningkatkan kecekapan kaedah tersebut. 
Keputusan berangka menunjukkan kaedah baharu ini menjimatkan masa dan 
lebih cekap berbanding kaedah-kaedah yang dibandingkan. 
 

Akhir sekali, kaedah linear multilangkah dengan derivatif tambahan diperoleh 
menggunakan teknik kolokasi. Kaedah ini dibina menggunakan jujukan 
polinomial Chebyshev sebagai fungsi asas. SST digunakan ke atas kaedah 
baharu ini untuk meningkatkan kecekapan bagi menyelesaikan masalah 
berayun. Keputusan menunjukkan bahawa kaedah hibrid adalah kaedah yang 
dijanjikan bersesuaian bagi mengamirkan masalah jenis berayun. 
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1 
 

CHAPTER 1 
 

INTRODUCTION 
 

1.1 Differential Equations 
 

Differential equations are known as mathematical formulas or equations that 
relate some functions and its derivatives. The relationship of functions and 
derivatives can simply be described as the physical quantities and their rate of 
change. Differential equations have become essential studies that include in 
variety of disciplines especially in the field of engineering, mathematics, 
astronomic and sciences. For example engineers design spacecraft by 
considering the radiation environment, duration of the research program, and 
computation on how much shielding is needed for the spacecraft to survive till 
the end of its mission. Therefore, a more realistic model involving differential 
equation which calculate and estimate the orbit path and radiation belt rates 
which can be performed using a simple graphical integration by estimating 
areas under the curves. There are several types of differential equations such as 
ordinary, partial, delay, fuzzy, and non-linear differential equations. In this 
thesis, we are going to focus on solving special second order ordinary 
differential equations and delay differential equations with oscillatory 
solutions. 
 

1.2 Two – step Hybrid Methods 
 

The general formula of 𝑠-stage two-step explicit hybrid method for numerical 
integration of initial value problems (IVPs) as proposed in Franco (2006) is in 
the form of 

𝑌𝑖 = (1 + 𝑐𝑖)𝑦𝑛 − 𝑐𝑖𝑦𝑛−1 + ℎ2 ∑ 𝑎𝑖𝑗𝑓(𝑥𝑛 + 𝑐𝑗ℎ, 𝑌𝑗)

𝑠

𝑗=1

,                  (1.1) 

𝑦𝑛+1 = 2𝑦𝑛 − 𝑦𝑛−1 + ℎ2 ∑ 𝑏𝑖

𝑠

𝑖=1

𝑓(𝑥𝑛 + 𝑐𝑖ℎ, 𝑌𝑖)                                (1.2) 

 
where 𝑖 = 1, … , 𝑠, for 𝑖 > 𝑗.The coefficients of 𝑏𝑖, 𝑐𝑖 , and  𝑎𝑖𝑗can be represented 

in Butcher tableau as in Table 1.1. 
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Table 1.1: The s-stage of explicit hybrid method 
 

𝑐 𝐴
𝑏𝑇    =   

−1 0
0 0 0
𝑐3 𝑎3,1 𝑎3,2 0

⋮ ⋮ ⋮ ⋱ ⋱
𝑐𝑠 𝑎𝑠,1 𝑎𝑠,2 … 𝑎𝑠,𝑠−1 0

𝑏1 𝑏2 … 𝑏𝑠−1 𝑏𝑠

 

 
Semi-implicit hybrid method (SIHM) can be written in the form of 

𝑌𝑖 = (1 + 𝑐𝑖)𝑦𝑛 − 𝑐𝑖𝑦𝑛−1 + ℎ2 ∑ 𝑎𝑖𝑗𝑓(𝑥𝑛 + 𝑐𝑗ℎ, 𝑌𝑗),

𝑠

𝑗=1

                           (1.3) 

𝑦𝑛+1 = 2𝑦𝑛 − 𝑦𝑛−1 + ℎ2 ∑ 𝑏𝑖

𝑠

𝑖=1

𝑓(𝑥𝑛 + 𝑐𝑖ℎ, 𝑌𝑖),                                             (1.4) 

 
where 𝑖 = 1, … , 𝑠, and 𝑖 ≥ 𝑗 . The first two nodes are defined as 𝑐1 = −1 , and 
𝑐2 = 0 given the equation (1.3) and (1.4) as 
 

 𝑌1 = 𝑦𝑛−1, 𝑌2 = 𝑦𝑛 ,                                                                                 (1.5) 

𝑌𝑖 = (1 + 𝑐𝑖)𝑦𝑛 − 𝑐𝑖𝑦𝑛−1 + ℎ2 ∑ 𝑎𝑖𝑗𝑓

𝑖

𝑗=1

(𝑥𝑛 + 𝑐𝑗ℎ, 𝑌𝑗),                           (1.6) 

𝑦𝑛+1 = 2𝑦𝑛 − 𝑦𝑛−1 + ℎ2 (𝑏1𝑓𝑛−1 + 𝑏2𝑓𝑛 + ∑ 𝑏𝑖𝑓(𝑥𝑛 + 𝑐𝑖ℎ, 𝑌𝑖)

𝑠

𝑖=3

),        (1.7) 

 
where 𝑖 = 3, … , 𝑠 , 𝑖 ≥ 𝑗 , and functions 𝑓𝑛−1 = 𝑓(𝑥𝑛−1, 𝑦𝑛−1)  and 𝑓𝑛 = 𝑓(𝑥𝑛 , 𝑦𝑛) . 
The 𝑠-stages SIHM can be written in Butcher tableau as in Table 1.2. 
 

Table 1.2: The 𝒔-stage of semi-implicit hybrid methods 
 

−1 0
0 0 0
𝑐3 𝑎3,1 𝑎3,2 𝑎3,3

⋮ ⋮ ⋮ ⋱ ⋱
𝑐𝑠 𝑎𝑠,1 𝑎𝑠,2 … 𝑎𝑠,𝑠−1 𝑎𝑠,𝑠

𝑏1 𝑏2 … 𝑏𝑠−1 𝑏𝑠

 

 

1.2.1 Local Truncation Error and Order Condition of Hybrid Method 
 

The study of algebraic order condition of explicit hybrid method was done by 
Coleman (2003). The methods are characterized by two 𝑠-dimensional vectors, 
𝒃 and 𝒄, with elements 𝑏𝑖 and 𝑐𝑖, respectively, and 𝑠 × 𝑠 matrix A with elements 
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𝑎𝑖𝑗 . In vector notation, for an autonomous system of equation 𝑦" = 𝑓(𝑦), (1.3) 

and (1.4) can be written in the form of 
 
        𝑦𝑛+1 = 2𝑦𝑛 − 𝑦𝑛−1 + ℎ2(𝒃𝑇⨂𝐼)𝑓(𝒀), 
 

 𝒀 = (𝒆 + 𝒄)⨂𝑦𝑛 − 𝒄⨂𝑦𝑛−1 + ℎ2(𝐴⨂𝐼)𝑓(𝒀),        (1.8) 
 

where 𝒆 = (1, … ,1)𝑇 . The order conditions for two-step hybrid methods are 
derived by considering them as one-step methods of the form 
 

𝑢𝑛 = 𝑢𝑛−1 + ℎ𝜙(𝑢𝑛−1, ℎ),              (1.9) 
 

where 𝑢𝑛  is an appropriately defined numerical solution vector, and some 
starting procedure is used to generate 𝑢0. This approach is prompted by the 
work of Hairer and Warner (2012) for a class of two-step RK methods for 
differential equations of first order. The first equation in (1.8) can be written as 
a pair of equations by defining 𝐹𝑛 ≔ (𝑦𝑛+1 − 𝑦𝑛)/ℎ so that 
 

𝑦𝑛=𝑦𝑛−1 + ℎ𝐹𝑛−1,     𝐹𝑛 = 𝐹𝑛−1 + ℎ(𝒃𝑇⨂𝐼)𝑓(𝒀). 
 
These equations can be written as (1.9) with 
 

𝑢𝑛 = (
𝑦𝑛

𝐹𝑛
) ,     𝜙(𝑢𝑛−1, ℎ) = (

𝐹𝑛−1

(𝒃𝑇⨂𝐼)𝑓(𝒀)
), 

where  𝒀 is defined by 
 

𝒀 = (𝒆 + 𝒄)⨂𝑦𝑛 − 𝒄⨂𝑦𝑛−1 + ℎ2(𝐴⨂𝐼)𝑓(𝒀) 

= 𝒆⨂𝑦𝑛−1 + ℎ(𝒆 + 𝒄)⨂𝐹𝑛−1 + ℎ2(𝐴⨂𝐼)𝑓(𝒀).         (1.10) 

 
The vector 𝑢𝑛 is an approximation for 𝑧𝑛 = 𝑧(𝑥𝑛, ℎ), where 𝑧 is the exact-value 
function defined by 

𝑧(𝑥, ℎ) = (

𝑦(𝑥)

𝑦(𝑥 + ℎ) − 𝑦(𝑥)

ℎ

) 

 
The local truncation error of the method at 𝑥𝑛 is 
 

𝑑𝑛 = 𝑧𝑛 − 𝑧𝑛−1 − ℎ𝜙(𝑧𝑛−1, ℎ)                                       (1.11) 
for    

𝜙(𝑧𝑛−1, ℎ) = (

𝑦(𝑥𝑛) − 𝑦(𝑥𝑛−1)

ℎ
(𝒃𝑇⨂𝐼)𝑓(𝒀)

)                                              (1.12) 
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where 𝒀 is now defined implicitly as (1.10). The order conditions for semi-
implicit hybrid method up to order seven which is derived in Coleman (2003) 
are listed in Table 1.3.  
 

Table 1.3: Order condition 
 

Tree 𝑡 𝜌(𝑡) Order condition 

𝑡21 2 
∑ 𝑏𝑖

𝑠

𝑖=1

= 1 

𝑡31 3 
∑ 𝑏𝑖𝑐𝑖

𝑠

𝑖=1

= 0 

𝑡41 4 
∑ 𝑏𝑖𝑐𝑖

2 =
1

6

𝑠

𝑖=1

 

𝑡42  
∑ 𝑏𝑖𝑎𝑖𝑗

𝑠

𝑖=1

=
1

12
 

𝑡51 5 
∑ 𝑏𝑖𝑐𝑖

3 = 0

𝑠

𝑖=1

 

𝑡52  
∑ 𝑏𝑖𝑐𝑖𝑎𝑖𝑗

𝑠

𝑖=1

=
1

12
 

𝑡53  
∑ 𝑏𝑖

𝑠

𝑖=1

𝑎𝑖𝑗𝑐𝑗 = 0 

𝑡61 6 
∑ 𝑏𝑖𝑐𝑖

4 =
1

15

𝑠

𝑖=1

 

𝑡62  
∑ 𝑏𝑖𝑐𝑖

2𝑎𝑖𝑗 =
1

30

𝑠

𝑖=1

 

𝑡63  
∑ 𝑏𝑖𝑐𝑖𝑎𝑖𝑗𝑐𝑗 = −

1

60

𝑠

𝑖=1

 

𝑡64  
∑ 𝑏𝑖𝑎𝑖𝑗𝑎𝑖𝑘 =

7

120

𝑠

𝑖=1

 

𝑡65  
∑ 𝑏𝑖𝑎𝑖𝑗𝑐𝑗

2 =
1

180

𝑠

𝑖=1

 

𝑡66  
∑ 𝑏𝑖𝑎𝑖𝑗𝑎𝑗𝑘 =

1

360

𝑠

𝑖=1

 

𝑡71 7 
∑ 𝑏𝑖𝑐𝑖

5 = 0

𝑠

𝑖=1

 

𝑡72  
∑ 𝑏𝑖𝑐𝑖

3𝑎𝑖𝑗 =
1

30

𝑠

𝑖=1
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𝑡73  
∑ 𝑏𝑖𝑐𝑖

2𝑎𝑖𝑗𝑐𝑗 = 0

𝑠

𝑖=1

 

𝑡74  
∑ 𝑏𝑖𝑐𝑖𝑎𝑖𝑗𝑎𝑖𝑘 =

1

30

𝑠

𝑖=1

 

𝑡75  
∑ 𝑏𝑖

𝑠

𝑖=1

𝑐𝑖𝑎𝑖𝑗𝑐𝑗
2 =

1

72
 

𝑡76  
∑ 𝑏𝑖

𝑠

𝑖=1

𝑐𝑖𝑎𝑖𝑗𝑎𝑗𝑘 = −
1

720
 

𝑡77  
∑ 𝑏𝑖𝑎𝑖𝑗𝑎𝑖𝑘𝑐𝑘 = −

1

120

𝑠

𝑖=1
 

𝑡78  
∑ 𝑏𝑖𝑎𝑖𝑗𝑐𝑗

3 = 0

𝑠

𝑖=1

 

𝑡79  
∑ 𝑏𝑖

𝑠

𝑖=1

𝑎𝑖𝑗𝑐𝑗𝑎𝑗𝑘 =
1

360
 

𝑡7,10  
∑ 𝑏𝑖𝑎𝑖𝑗𝑎𝑗𝑘𝑐𝑘 = 0

𝑠

𝑖=1

 

 

 
where value of  𝑖 ≥ 𝑗 ≥ 𝑘 . The simplifying condition for hybrid method is 
 

∑ 𝑎𝑖𝑗 =
(𝑐𝑖

2 + 𝑐𝑖)

2

𝑠

𝑖
. 

 
The error constant for the 𝑝th – order method can be defined as 
 

𝐶𝑝+1 = ‖(𝑒𝑝+1(𝑡1)) , … , 𝑒𝑝+1(𝑡𝑘)‖
2

                             (1.13) 

 
where 𝑘 is the number of trees of order 𝑝 + 2(𝑝(𝑡𝑖) = 𝑝 + 2) and 𝑒𝑝+1(𝑡𝑖) is the 

local truncation error which was defined in Coleman (2003). 
 

1.2.2 Analysis of the Periodicity, Absolute Stability, Dispersion and 
Dissipation Errors 
 

Phase analysis can be divided into two parts: homogeneous which the phase 
error are accumulated as 𝑠 increases and inhomogeneous which phase error is 
constant in time. Franco (2006) proposed that phase analysis is investigate 
using the second order homogeneous linear test model, 𝑦"(𝑥) = −𝜆2𝑦(𝑥).  
 
We apply the test equation 𝑦"(𝑥) = (𝑖𝜆)2𝑦(𝑥) = −𝜆2𝑦(𝑥), for 𝜆 > 0 by replacing 
𝑓(𝑥, 𝑦) = −𝜆2𝑦(𝑥) into equation (1.3) and (1.4) and we obtain 
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𝑌𝑖 = (1 + 𝑐𝑖)𝑦𝑛 − 𝑐𝑖𝑦𝑛−1 − ℎ2 ∑ 𝑎𝑖𝑗

𝑠

𝑗=1

𝜆2𝑦(𝑥), 𝑖 = 1, … , 𝑠,                (1.14) 

𝑦𝑛+1 = 2𝑦𝑛 − 𝑦𝑛−1 − ℎ2 ∑ 𝑏𝑖

𝑠

𝑖=1

𝜆2𝑦(𝑥).                                                       (1.15) 

 
By substituting 𝐻 = ℎ𝜆, equations (1.14) and (1.15) can be expressed as  

𝑌𝑖 = (1 + 𝑐𝑖)𝑦𝑛 − 𝑐𝑖𝑦𝑛−1 − 𝐻2 ∑ 𝑎𝑖𝑗

𝑠

𝑗=1

𝑦(𝑥), 𝑖 = 1, … , 𝑠,           (1.16) 

𝑦𝑛+1 = 2𝑦𝑛 − 𝑦𝑛−1 − 𝐻2 ∑ 𝑏𝑖

𝑠

𝑖=1

𝑦(𝑥),                                                          (1.17) 

 
and for 𝑠-stage,  equation (1.16) will give 
 

 

𝑌1 = (1 + 𝑐1)𝑦𝑛 − 𝑐1𝑦𝑛−1 − 𝐻2(𝑎11𝑌1 + 𝑎12𝑌2 + ⋯ + 𝑎1𝑠𝑌𝑠)

𝑌2 = (1 + 𝑐2)𝑦𝑛 − 𝑐2𝑦𝑛−1 − 𝐻2(𝑎21𝑌1 + 𝑎22𝑌2 + ⋯ + 𝑎2𝑠𝑌𝑠)
⋮

𝑌𝑠 = (1 + 𝑐𝑠)𝑦𝑛 − 𝑐𝑠𝑦𝑛−1 − 𝐻2(𝑎𝑠1𝑌1 + 𝑎𝑠2𝑌2 + ⋯ + 𝑎𝑠𝑠𝑌𝑠)

        (1.18) 

 
Then, (1.18) and (1.17) can be written in vector form respectively as below: 
 

   𝒀 = (𝒆 + 𝒄)𝑦𝑛 − 𝒄𝑦𝑛−1 − 𝐻2𝑨𝒀,          (1.19) 
 

  𝑦𝑛+1 = 2𝑦𝑛 − 𝑦𝑛−1 − 𝐻2𝒃𝑻𝒀,          (1.20) 
 

where 

𝒀 = (
𝑌1

⋮
𝑌𝑠

) , 𝒄 = (

𝑐1

⋮
𝑐𝑠

) , 𝒆 = (
1
⋮
1

) , 𝑨 = (

𝑎11 … 𝑎1𝑠

⋮ ⋱ ⋮
𝑎𝑠1 … 𝑎𝑠𝑠

), and 𝒃 = (
𝑏1

⋮
𝑏𝑠

). 

 
By rearranging (1.19) we obtain 
 

  𝒀 = (𝑰 + 𝐻2𝑨)−1(𝒆 + 𝒄)𝑦𝑛 − (𝑰 + 𝐻2𝑨)−1𝑐𝑦𝑛−1         (1.21) 
 

where (𝑰 + 𝐻2𝑨)−1 ≠ 0.  
 
Substituting (1.21) into (1.20), the following equation is obtained 
 

𝑦𝑛+1 = (2 − 𝐻2𝒃𝑻(𝑰 + 𝐻2𝑨)−1(𝒆 + 𝒄))𝑦𝑛 − (1 − 𝐻2𝒃𝑻(𝑰 + 𝐻2𝑨)−1𝑐)𝑦𝑛−1. (1.22) 

 
We simplify equation (1.22) and obtain the following recursion relation which 
represents the stability polynomial of hybrid method as 
 

  Ρ(𝜉, 𝐻) = 𝜉2 − 𝑆(𝐻2)𝜉 + 𝑃(𝐻2) = 0         (1.23) 
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where           𝑆(𝐻2) = 2 − 𝐻2𝒃𝑻(𝑰 + 𝐻2𝑨)−1(𝒆 + 𝒄)                     (1.24) 

𝑃(𝐻2) = 1 − 𝐻2𝒃𝑻(𝑰 + 𝐻2𝑨)−1𝒄.          (1.25) 

The numerical solution defined by the difference equation (1.23) should be 
periodic where the necessary conditions are  
 

 𝑃(𝐻2) ≡ 1,  and |𝑆(𝐻2)| < 2,   ∀𝐻𝜖(0, 𝐻𝑝) (1.26) 

 

and interval (0, 𝐻𝑝) is known as the periodicity interval of the method. The 

method is said to be zero dissipative (𝑑(𝐻) = 0) if it satisfied conditions in 
(1.26). Otherwise, the method is said to have finite order of dissipation, the 
integration process is stable if the coefficients of polynomial in (1.26) satisfy the 
conditions 
 
 𝑃(𝐻2) < 1,  and  |𝑆(𝐻2)| < 1 + 𝑃(𝐻2),  ∀𝐻𝜖(0, 𝐻𝑠)          (1.27) 

 
and interval (0, 𝐻𝑠) is known as the interval of absolute stability of the method.  
 
The analysis of phase-lag was firstly introduced by Bursa and Nigro (1980). 
The phase analysis can be divided into inhomogeneous and homogeneous test 
models. The inhomogeneous is describe when the phase error is constant in 
time, while for homogeneous the phase error are accumulated as 𝑛 increases. 
As proposed by Franco (2006), the phase analysis is investigated using the 
second order homogeneous linear test model, 𝑦"(𝑥) = −𝜆2𝑦(𝑥). The steps to 
define phase analysis of hybrid method are the same as equations (1.14) to 
(1.25). Given that the exact solution for the homogeneous test equation  
 

𝑦" = (𝑖𝜆)2𝑦(𝑥),    (1.28) 
 

which is 
 

  𝑦(𝑥𝑛) = 2|𝜛|cos(𝑋 + 𝑛𝐻).       (1.29) 
 

The numerical solution of (1.4) is in the form of 
 

  𝑦𝑛 = 2|𝑐||𝜌|𝑛cos(𝜔 + 𝑛𝜑).        (1.30) 
 

This leads to the following definition by Van der Houwen and Sommeijer 
(1989). 
 
Definition 1 (Apply the hybrid method (1.1) and (1.2) to (1.28)) Define the 
phase-lag 𝜙(𝐻) = 𝐻 − 𝜑. If 𝜙(𝐻) = 𝑂(𝐻𝑞+1), then the hybrid method is said to 
be dispersive of order 𝑞 . While, the quantity 𝑑(𝐻) = 1 − |𝜌|  is called as 
amplification error and if 𝑑(𝐻) = 𝑂(𝐻𝑟+1), then the hybrid method is said to 
have dissipation order 𝑟.  
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The error 𝜙(𝐻)  and 𝑑(𝐻)  are accumulated in the numerical process and 
therefore a cause of inaccuracy which leads to many integration steps to be 
performed. Hence, in this study we will focus on increasing the order of 
dispersion 𝑞  (defined by 𝜙(𝐻) = 𝑂(𝐻𝑞+1) ) and the order of dissipation 𝑟 
(defined by 𝑑(𝐻) = 𝑂(𝐻𝑟+1)).  
 
Dispersion (phase-lag) is described as the angle between the exact and the 
approximated solution, while dissipation (amplification error) is the distance 
from a standard cyclic solution which can be seen in example in Figure 1.1. 

 
 
 
 

Figure 1.1: Example of the position of Dissipation and Dispersion errors 
 

From Definition 1, it follows the nomenclature given by Van der Houwen and 
Sommeijer (1987)  

𝜙(𝐻) = 𝐻 − cos−1 (
𝑆(𝐻2)

2 √𝑃(𝐻2)
),                              (1.31) 

  𝑑(𝐻) = 1 − √𝑃(𝐻2),               (1.32) 
 

which defined as the dispersion error (phase-lag) and dissipation error 
(amplification error) respectively.  
 

1.3 Problem Statement 
 

We consider the solution of special second order ordinary differential 
equations (ODEs) and delay differential equations (DDEs) with oscillatory 
solutions directly using various hybrid methods. Usually, methods with higher 

/  Exact solution            ---Approximate solution 

 

Dispersion error 

Dissipation error 
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possible order of dispersion and dissipation errors are derived using 
mathematical software such as Maples. Hence, various fitted techniques are 
applied to the numerical methods which produce methods with zero-
dispersion and zero-dissipative properties. Consequently, these approaches 
should provide a significant improvement in accuracy of the solutions and 
produce less expensive methods. 

 

We concern about developing methods with smaller error and require lesser 
time to execute. The conventional approach is by using block method which 
execute few solutions of the problems for each function evaluation. However, 
the existing block methods in the literature are usually not accurate for solving 
oscillating problems. We proposed two-point block explicit hybrid method 
which two solutions of the problems are evaluated simultaneously at each step. 
The approach required half of the execution time compare to the existing 
explicit hybrid method. We aim for the accuracy to be preserved. 

 

It is possible to solve special second order ODEs for oscillatory solutions with 
linear multistep method. Due to the simplicity approach of the existing 
interpolation and collocation methods, we proposed linear multistep method 
with extra derivative by using collocation technique. Hence, application of the 
extra derivatives in the formulae as well as the fitted technique should provide 
a significant improvement in the accuracy. 

 

1.4 The Objective of the Thesis 
 

The main focus of this thesis  is to develop numerical methods that are suitable 
and competent to solve special second order ODEs and DDEs with oscillating 
solutions. Various fitting techniques are taken into consideration when 
developing the new methods.  
 
The objectives of this thesis are to develop: 
 

1. Trigonometrically-fitted semi-implicit hybrid methods that are suitable 
for solving both ODEs and DDEs. 

2. New phase-fitted explicit hybrid methods for solving ODEs. 
3. Vanishing phase-lag and amplification error semi-implicit hybrid 

method for solving ODEs. 
4. Block explicit hybrid methods for integrating ODEs. 
5. Trigonometrically-fitted linear multi-step method with collocation 

technique using Chebyshev polynomial as the basis function for 
solving ODEs.  
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1.5 Outline of the Thesis 
 

In this section, we provide a brief description of the thesis. Chapter 1 begins 
with the introduction of the order conditions and the theoretical analysis of 
dispersion and dissipation relations of semi-implicit hybrid methods. Chapter 
2 provides the reviews of some of the previous works on the numerical 
solutions for ODEs and DDEs.  
 
In Chapter 3, the derivation of three-stage fourth-order trigonometrically-fitted 
semi implicit hybrid method is presented. The method is used to solve both 
ODEs and DDEs for oscillatory problems. Extending the idea, the derivation of 
four-stage fifth-order trigonometrically-fitted semi implicit hybrid method for 
solving oscillatory ODEs and DDEs is presented in Chapter 4.  
 
In Chapter 5, the analysis of phase-lag of order infinity is presented. New 
phase-fitted explicit hybrid methods of order five and six are developed based 
on the existing hybrid methods in the literature. The applications of the 
methods in comparison with existing fitted and non-fitted methods for solving 
oscillatory ODEs are shown. 
 
Chapter 6 discussed the technique of nullifying the dispersion and dissipation 
error of a method. Semi implicit hybrid method of four-stage fifth-order with 
vanishing phase-lag and amplification error for solving highly oscillatory 
problems is derived in this chapter.  
 
Chapter 7 begins with the construction of order conditions for block explicit 
hybrid method by using Taylor series expansion and its derivatives. We derive 
four and five order block explicit hybrid methods. Then the methods are 
trigonometrically-fitted. Numerical results illustrated the efficiency of the new 
method with existing methods in comparison. 
 
In Chapter 8, we derive the linear multistep methods with extra derivative by 
using collocation technique.  The method is developed using the sequence of 
Chebyshev polynomials as the basis function. Trigonometrically-fitting 
technique is adapted to the new method. The applications of these new linear 
multistep methods for solving oscillatory ODEs are shown. 

Finally, conclusion of the thesis is given in Chapter 9 and future work is also 
recommended. 
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