
 
 

UNIVERSITI PUTRA MALAYSIA 
 

 
PRODUCTION OF SYNGAS VIA DRY REFORMING OF METHANE WITH 
CARBON DIOXIDE OVER DOLOMITE SUPPORTED COBALT-BASED 

CATALYST 
 

 
 
 

   
 
 
 
 
 

ARFAEZAH BINTI ANUAR 
 
 
 
 
 
 
 
 
 
 
  

                         FS 2018 65 
  
 
 

   



© C
OPYRIG

HT U
PMPRODUCTION OF SYNGAS VIA DRY REFORMING OF METHANE WITH 

CARBON DIOXIDE OVER DOLOMITE SUPPORTED COBALT-BASED 

CATALYST 

By 

ARFAEZAH BINTI ANUAR 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in 

Fulfilment of the Requirements for the Degree of Master of Science 

September 2018 



© C
OPYRIG

HT U
PM

All material contained within the thesis, including without limitation text, logos, icons, 

photographs and all other artwork, is copyright material of Universiti Putra Malaysia 

unless otherwise stated. Use may be made of any material contained within the thesis 

for non-commercial purposes from the copyright holder. Commercial use of material 

may only be made with the express, prior, written permission of Universiti Putra 

Malaysia. 

 

Copyright © Universiti Putra Malaysia 



© C
OPYRIG

HT U
PM

 

i 

 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Master of Science 

 

PRODUCTION OF SYNGAS VIA DRY REFORMING OF METHANE WITH 

CARBON DIOXIDE OVER DOLOMITE SUPPORTED COBALT-BASED 

CATALYST 

 

 

By 

ARFAEZAH BINTI ANUAR 

September 2018 

 

Chairman : Prof. Taufiq Yap Yun Hin, PhD 

Faculty  : Science 

 

 

Dry reforming of methane with carbon dioxide (DRM) has received great attention 

from researchers as this reaction is utilizing two main greenhouse gases which are CH4 

and CO2 gases in producing valuable syngas. In addition, H2/CO ratio produced in this 

reaction is equivalent to 1. Due to this, the syngas produced is compatible with various 

chemical and liquid fuel syntheses. However, the formation of carbon on the surface of 

the catalysts hinders the active sites to take part in the reaction is the main drawback in 

DRM reaction. The main objective of this study is to develop cobalt based catalysts 

with dolomite as support by impregnation method with different types of non-noble 

metals such as Ce, Ni and La.  

 

 

A series of monometallic catalysts (Co-based) at different metal loadings, 5 wt% - 25 

wt%, were prepared in order to determine the optimum loading of Co. Meanwhile, for 

bimetallic catalysts, Co with other metal with wt% ratio of 20:10 was impregnated on 

dolomite to form Co-La/Dol, Co-Ce/Dol and Co-Ni/Dol catalyst. The synthesized 

catalysts were characterized by various methods including X-ray diffraction (XRD), 

H2-temperature programmed reduction (H2-TPR), CO2-temperature programmed 

desorption (CO2-TPD), Field emission scanning electron microscope with energy 

dispersive X-ray spectrometer (FESEM-EDX), thermal gravimetric analysis (TGA) and 

N2 adsorption-desorption to determine their physico-chemical properties of the 

prepared catalysts as well as the carbon formation on the used catalysts.  

 

 

The catalytic evaluation showed that both monometallic and bimetallic catalysts gave 

high (> 90%) conversion of CH4 and CO2 at 900 
o
C without in-situ reduction with 5% 

H2 gas. However, as the temperature goes down to 850 – 750 
o
C, the unreduced Co/Dol 

catalyst gave poor catalytic performance with conversion around 59%-20%. The 

monometallic catalyst was reduced prior to reaction in order to obtain high conversion 

of CH4, 35% - 94% at 750 – 850 
o
C. Meanwhile, for unreduced bimetallic catalysts, 
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only Co-Ni/Dol catalyst gave high activity, with conversion of 80% for both feed gases 

at 800 
o
C, whilst other bimetallic catalysts have to be reduced prior to the reaction to 

obtain high conversion of CH4 and CO2 gas. Among these catalysts, Co-Ni/Dol catalyst 

exhibited the highest catalytic performance either reduced of unreduced. In addition, it 

showed good thermal stability for 72 h at lower temperature, 750 
o
C with conversion of 

91% and 92% for CH4 and CO2 gas, respectively with CO2:CH4 at 1:1 ratio.  
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Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi 

keperluan untuk ijazah Master Sains 

 

PENGHASILAN SYNGAS MELALUI PEMBENTUKAN SEMULA KERING 

METANA DAN KARBON DIOKSIDA DENGAN DOLOMIT SEBAGAI 

PENYOKONG DALAM MANGKIN KOBALT 

 

 

 Oleh  

ARFAEZAH BINTI ANUAR 

September 2018 

 

Pengerusi : Prof. Taufiq Yap Yun Hin, PhD 

Fakulti  : Sains 

 

 

Proses pembentukan semula kering metana dengan karbon dioksida (DRM) mendapat 

perhatian dalam kalangan penyelidik kerana proses ini menggunakan dua gas rumah 

hijau yang utama, iaitu metana (CH4) dan karbon dioksida (CO2) bagi penghasilan 

syngas yang bernilai. Tambahan pula, nisbah H2/CO yang dihasilkan melalui tindak 

balas ini menghampiri kepada 1. Oleh yang demikian, syngas yang dihasilkan 

bersesuaian untuk sintesis pelbagai jenis bahan kimia dan bahan api cecair. 

Walaubagaimanapun, pembentukan karbon di atas permukaan mangkin menghalang 

tapak aktif untuk mengambil bahagian dalam tindak balas ini yang merupakan 

kelemahan utama bagi tindak balas DRM. Objektif utama kajian ini untuk 

membangunkan mangkin kobalt (Co) dengan dolomit sebagai penyokong melalui 

kaedah pengisitepuan dengan pelbagai jenis logam bukan nobel seperti Ce, Ni dan La.  

 

 

Satu siri mangkin monologam (berasaskan Co) disediakan dengan jumlah muatan yang 

berbeza, 5 wt% - 25 wt% bagi menentukan muatan optimum Co. Manakala, untuk 

mangkin dwilogam, Co dan logam yang lain dengan nisbah muatan 20:10 diisitepukan 

ke atas dolomit membentuk mangkin Co-La/Dol, Co-Ce/Dol dan Co-Ni/Dol. Mangkin 

yang disintesis telah dicirikan dengan pelbagai kaedah termasuklah pembelauan sinar-

X (XRD), program suhu penurunan H2 (H2-TPR), program-suhu-nyahjerapan karbon 

dioksida (CO2-TPD), mikroskop imbasan elektron pancaran medan - tenaga serakan 

sinar-X (FESEM-EDX), analisis termogravimetrik (TGA) dan penjerapan-

penyahjerapan gas N2 bagi menentukan sifat fizik-ko-kimia mangkin serta 

mengenalpasti pembentukan karbon pada mangkin yang telah digunakan.  

 

 

Kajian penilaian pemangkinan menunjukkan kedua-dua mangkin monologam dan 

dwilogam mempunyai aktiviti yang tinggi (>90%) bagi penukaran gas CH4 dan CO2 

pada suhu 900 
o
C tanpa penurunan in-situ menggunakan 5% gas H2. Namun begitu, 

prestasi pemangkinan mangkin Co/Dol tanpa penurunan in-situ menurun kepada 59% - 
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20% apabila suhu tindak balas diturunkan kepada 850 – 750 
o
C. Mangkin monologam 

tersebut perlu diturunkan terlebih dahulu sebelum tindak balas dijalankan untuk 

mencapai penukaran gas CH4 yang tinggi, 35% - 94% pada suhu 750 
o
C – 850 

o
C. 

Manakala, bagi mangkin dwilogam tanpa penurunan in-situ, hanya Co-Ni/Dol 

menunjukkan lebih daripada 80% pada suhu 800 
o
C, sementara mangkin dwilogam 

yang lain perlu diturunkan terlebih dahulu bagi memastikan penukaran CH4 dan CO2 

yang tinggi. Antara mangkin-mangkin ini, Co-Ni/Dol menunjukkan sifat terbaik 

dengan prestasi pemangkinan yang tinggi sama ada tanpa penurunan in-situ ataupun 

diturunkan secara in-situ. Tambahan pula, mangkin ini menunjukkan sifat kestabilan 

terma untuk 72 jam pada suhu yang lebih rendah, 750 
o
C dengan penukaran CH4 dan 

CO2 masing-masing menunjukkan 91% dan 92% dengan nisbah CH4:CO2 adalah 1:1.  
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1 

 

CHAPTER 1 

INTRODUCTION 

 

1.1 Background of Study 

The usage of fossil fuel as the main primary energy source globally is about 35% and 

approximately 81% of total energy in the United States is powered by fossil fuel such 

as coal, petroleum and natural gas. However, burning of fossil fuel release large 

amount of greenhouse gases (GHG) to the environment and causing a serious threat to 

the humankind. Excessive emissions of GHGs’ cause global warming and triggered 

drastic climate change. It was also reported that the temperature of Arctic and Antarctic 

has increased by 5 
o
C in the 20

th
 century (Anisimov & Fitzharris, 2001). This is proven 

by the amount of GHGs’ released to the atmosphere has started since Industrial 

Revolution. Furthermore, rapid growth in world population in the developing countries 

increased the energy demand over the years that led to massive exploitation and usage 

of fossil fuels. As mentioned by Akbari et al. (2017), the energy demand is expected to 

increase by 57% from 2004 to 2030. Thus, numerous methods are being done to reduce 

the dependency on fossil fuel usage as primary energy sources as it has been exploited 

for long time where the amount of production could not compensate for the total annual 

demand (Aramouni et al., 2017). Besides, finding an alternative energy source may 

reduce the amount of GHG emissions and enable to mitigate the effects of global 

warming (Marcos et al., 2014). 

 

 

There are two types of energy; non-renewable and renewable energy. Non-renewable 

energy consists of coal, natural gas and fossil fuels, whilst, renewable energy comprises 

of biomass, biogas, geothermal, water, solar and wind. Biogas is now considered as one 

of the most promising and long-term solution in energy crisis as it can be transformed 

into valuable products.  

 

 

Biogas is generated from anaerobic digestion process of organic materials, such as 

landfills, sewage-treatment plants, mesophilic and thermophilic digestion of organic 

waste (Jönsson et al., 2003). In Malaysia, biogas production is dominated from 

anaerobic digestion of palm oil mill effluent (POME). With increased palm oil 

plantation in Malaysia, the amount of POME released increases gradually. Moreover, it 

contains high concentration  of biological oxygen demand (BOD) and  chemical 

oxygen demand (COD), whereby disposal without proper treatment  is undesirable 

(Sulaiman et al., 2011). However, anaerobic digestion releases high level of carbon 

dioxide, CO2 (25%-45%) and methane, CH4 (55%-75%), which  are the main 

contributors to climate change (Serrano-Lotina & Daza, 2013). Therefore, methane 

reforming technology is one of the most promising reactions in mitigating GHG 

emissions and full utilisation of the biogas by converting it to syngas provide a key-

intermediate product for Fischer-Tropsch reaction (Daza et al., 2010).  
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Dry reforming of methane (DRM) draws interest of researchers as this reaction can be 

used to utilise the methane and the carbon dioxide gases to produce syngas as shown in 

Equation 1.1 (Jang et al., 2013). 

 

 

CH4 + CO2 ↔ 2H2 + 2CO ∆H°298K = +247.0 kJ/mol               (Eq. 1.1) 

 

 

Furthermore, DRM is known for its ability to produce syngas ratio (H2/CO ratio) near 

to unity, which makes it suitable in Fischer-Tropsch synthesis to produce 

petrochemicals and chemical energy storage systems (Fan et al., 2010; Kambolis et al., 

2010). Besides,  the costly and energy intensive process in separating CO2 can be 

neglected,  and eventually reduce the gas treatment cost (Ay & Üner, 2015).  

 

 

However, the commercialization of DRM in industry is still in debate due to several 

drawbacks such as high reaction temperature is required to achieve better conversion 

due to its high endothermic nature. The reaction also suffers from catalyst deactivation 

due to carbon deposition that caused by unwanted side reactions. There are three main 

side reactions in DRM; reverse water-gas shift reaction, methane decomposition and 

Boudouard reaction. Carbon deposition is another problem that is prone to occur, 

which makes the selection of the catalysts becomes more critical. Therefore, several 

types of catalysts have been developed for this reaction, these includes, noble metals-

based catalyst, nickel-based catalyst and cobalt-based catalyst in order to identify 

active catalysts with high feedstock conversion and stable catalytic activity by 

preventing unwanted side reactions (Sutthiumporn et al., 2012). 

 

 

1.2 Problem Statement 

Dry reforming of methane with carbon dioxide (DRM) offers great potential for power 

generation and solving environmental-related problems. Malaysia, the second largest 

exporter of crude palm oil encounters several problems such as treatment of palm oil 

mil effluent (POME) via anaerobic digestion that produced huge amount of methane 

and carbon dioxide gases, which are the main cause of global warming. Thus, there is 

urgent need to utilize these gases into the valuable products; hydrogen and carbon 

monoxide gases.  

 

 

Dry reforming of methane is known as an endothermic reaction which requires high 

reaction temperature to obtain high conversion. Besides, the formation of carbon 

(coking), agglomeration and sintering of metal active sites are critical problems as it 

may cause serious catalyst deactivation. Hence, it is an urge to develop new catalyst 

that able to operate at lower reaction temperature with high catalytic activity and to 

prevent catalyst deactivation.  

 

 

Therefore, cobalt catalyst is synthesized as they are known as the most suitable 

catalysts for industrial applications due to their high activity, availability and low price 

(Luisetto et al., 2012; Marcos et al., 2014). Alkaline or alkaline-earth metals are 
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introduced in the development of catalysts as it helps in the dispersion of active metals 

to enhance the catalysts activity and suppress the formation of coke due their high 

basicity (Barroso-Quiroga et al., 2010). Naturally occurring alkaline earth-metal 

(dolomite) is chosen as the main support for Co catalysts. 

 

 

1.3 Scope of Study 

This work is focused on two studies. The first part of the study is to investigate the 

influence of single metal Co loading on the dolomite and selection of the optimum Co 

loading that shows the best catalytic activity. The second part is to develop the 

bimetallic catalysts by impregnating second dopant to the catalysts that includes Ni, Ce 

and La. Several characterizations techniques have been done to study the physical and 

chemical properties of the catalysts. Finally, the catalysts were tested for dry reforming 

of methane with CO2 at different initial condition in a continuous fixed-bed reactor 

connected with a mass flow controller and an online GC-TCD system. The deposition 

of carbon of the used catalyst were analysed using TGA and FESEM-EDX. 

 

 

1.4 Objectives 

The objectives of this study are as follows: 

1. To prepare mono (Co/Dol) and bimetallic cobalt based catalysts (Co-La, Co-Ni 

and Co-Ce) via impregnation method. 

2. To evaluate the physical and chemical properties of the synthesized catalysts using 

XRD, BET, TGA, H2-TPR, CO2-TPD, and FESEM-EDX. 

3. To study the catalytic activity between reduced and unreduced catalysts on the 

production of syngas. 

4. To evaluate the effects of second dopant and reaction temperature (750 – 900 
o
C) 

in the syngas production. 

5. To study the stability of the best catalyst in DRM reaction on the production of 

syngas. 
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