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Chair: Professor Zulkarnain bin Zainal, PhD 
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Titania nanotubes array and nickel cobaltite are both widely studied metal oxide 
materials for applications in the field of energy storage and delivery. However, the 
electrochemical capacitive charge storage of titania nanotubes is generally poor 
because of their inferior electrical conductivity. A number of attempts at chemical 
modifications by doping and making composites have been performed but the effect of 
decorating the surface of titania nanotubes with ternary metal oxide has not been 
adequately addressed. This study aims to evaluate the electrochemical performance of 
combining titania nanotubes array with nickel cobaltite for the purpose of fabricating 
composite electrochemical capacitors. Further, this study also aims to evaluate the 
possibility of using wet impregnation method to introduce metal oxides onto titania 
nanotubes array. 
  

The techniques that were used in the characterisation of the samples were X-ray 
diffraction (XRD), cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), 
electrochemical impedance spectroscopy (EIS), field-emission–scanning electron 
microscopy (FESEM), and energy dispersive X-ray microanalyses (EDX). Parameters 
that were studied included anodisation duration, anodisation potential, initial molar 
concentration of nickel(II) nitrate solution and cobalt(II) nitrate solution, thermal 
treatment temperature of the precursor solution, impregnation duration, and types of
electrolytes. 

The optimum synthesis conditions for the unmodified titania nanotubes were 60 
minutes anodisation duration and 17 V anodisation potential, whereas the optimum 
synthesis conditions for the nickel cobaltite – titania nanotubes composite were 1.0 M 
initial molar concentration of nickel (II) nitrate solution and cobalt(II) nitrate solution, 
thermal treatment temperature of the precursor solution was 375 °C, and an 
impregnation duration of 60 minutes. The nickel cobaltite – titania nanotubes 
composite performed optimally in 1.0 M KOH.  
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By the use of optimised synthesis conditions, it was found that the composite possessed 
the best electrochemical behaviour in 1.0 M KOH. CV tests demonstrated that the 
composite exhibited a small degree of electrocatalytic behaviour due to a sharp 
increase in current density in the 0.6 V region. The areal capacitance was 214.76 
μF/cm2 at 350 μA/cm2, which decreased to 210.02 μF/cm2 when the current density 
increased to 400 μA/cm2. Further, it was found that the composites relied largely of 
electric double layer charge storage mechanism. Cycle stability study shows the 
composite deteriorated to 62.38% in 250 cycles of charge-discharge. Micrographs of 
the composite has shown that the nickel cobaltite nanoclusters preferred to deposit on 
the surface of the nanotubes rather than on the inside of the nanotube pores. EDX 
microanalyses indicated that the deposition of nickel and cobalt was very small, which 
were ~0.06 mol.% and ~0.13 mol.%, respectively.   
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan ijazah Master Sains 

PENYEDIAAN NIKEL KOBALT OKSIDA PADA TIUB NANO TITANIA 
MELALUI KAEDAH IMPREGNASI BASAH UNTUK 

SUPERKAPASITOR 

Oleh 

CHUA CHI WING

Julai 2018

Pengerusi: Profesor Zulkarnain bin Zainal, PhD 
Fakulti: Sains 

Tiub nano titania tersusun serta nikel kobalt oksida merupakan bahan logam oksida 
yang lazim dikaji untuk kegunaan dalam bidang penyimpanan dan pembekalan tenaga. 
Walaubagaimanapun, penyimpanan cas kapasitif elektrokimia tiub nano titania secara 
amnya adalah kurang memuaskan kerana kekondusian elektriknya yang rendah. 
Pelbagai percubaan pengubahsuaian kimia melalui pendopanan dan pembuatan 
komposit telah dilakukan tetapi kesan daripada penghiasan permukaan tiub nano titania 
dengan logam pertigaan tidak dijelaskan dengan secukupnya. Kajian ini bertujuan 
membuat penilaian pada ciri-ciri elektrokimia tiub nano titania–nikel kobalt oksida, 
dengan tujuan membentuk kapasitor elektrokimia komposit. Selain itu, kesesuaian 
kaedah impregnasi basah untuk memperkenalkan logam oksida kepada tiub nano 
titania tersusun juga dinilai.  

Teknik-teknik pencirian bahan yang digunakan dalam kajian ini termasuklah 
pembelauan sinar-X (XRD), voltametri berkitar (CV), cas-nyahcas galvanostatik 
(GCD), spektroskopi impedans elektrokimia (EIS), mikroskopi elektron imbasan 
pancaran medan (FESEM), dan analisis mikro sinar-X tenaga tersebar (EDX). 
Parameter-parameter yang dikaji termasuklah tempoh penganodan, potensi 
penganodan, kepekatan asal larutan nikel(II) nitrat dan kobalt(II), suhu rawatan haba 
larutan impregnasi, tempoh impregnasi, dan jenis elektrolit. 

Kaedah sintesis optimum bagi tiub nano titania adalah tempoh penganodan selama 60 
minit dan potensi penganodan 17 V manakala kaedah sintesis optimum bagi komposit 
nikel kobalt oksida – tiub nano titania adalah kepekatan molar permulaan larutan 
nikel(II) nitrat dan larutan kobalt(II) nitrat sebanyak 1.0 M, suhu rawatan haba bagi 
larutan pelopor pada 375 °C, dan tempoh impregnasi selama 60 minit. Komposit nikel 
kobalt oksida – tiub nano titania berfungsi secara optimum dalam 1.0 M KOH. 
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Melalui penggunaan kaedah sintesis optimum, komposit tersebut mempunyai ciri-ciri 
yang terbaik dalam elektrolit 1.0 M KOH. Ujian CV menunjukkan bahawa komposit 
tersebut juga mempunyai serba sedikit sifat elektropemangkin kerana berlakunya 
peningkatan ketumpatan arus mendadak pada sekitar potensi 0.6 V. Kapasitans spesifik 
permukaan pula mencatat nilai sebanyak 214.76 μF/cm2 pada ketumpatan arus 350 
μA/cm2, manakala nilai tersebut menurun ke 210.02 μF/cm2 pada ketumpatan arus 400 
μA/cm2. Tambahan pula, mekanisme pengecasan dwilapis elektrik merupakan kaedah 
utama yang digunakan oleh komposit tersebut untuk menyimpan cas. Ujian kitaran cas-
nyahcas menentukan bahawa komposit tersebut mengalami penurunan kapasitans 
spesifik permukaan kepada 62.38% selepas 250 kitaran cas-nyahcas, berbanding 
dengan nilai pada kitaran cah-nyahcas pertama. Gambar mikro-gambar mikro komposit 
tersebut menunjukkan kluster mikro nikel kobalt oksida lebih cenderung termendap 
pada permukaan tiub nano dan bukannya dalam liang-liang tiub nano. Menurut ujian 
EDX, nikel(II) dan kobalt(II) masing-masing termendap pada nilai ~0.06 mol.% dan 
~0.13 mol.%, dan nilai ini adalah amat kecil. 
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CHAPTER 1 

INTRODUCTION  

1.1 Research Background 

Different classes of materials have been researched for creating supercapacitors. An 
extremely broad class of these materials consist of  carbon-based materials and its 
derivatives such as activated carbon, carbon nanotubes, and graphene (Lokhande et al.,
2016). Carbon-based materials store charge predominantly via electric double layer 
charging mechanism. On the other hand some metal oxides and conducting polymers 
store charge through redox reactions apart from electric double layer charging 
mechanism, in which the active materials can gain or release electrons to and from 
ionic species in the electrolyte to enable charge storing and delivery. This kind of 
charge-storing mechanism is called pseudocapacitance (Lokhande et al., 2016). The 
formation of composites or mixing of materials for the fabrication of supercapacitors is 
common due to a few reasons. Firstly, pure materials such as carbon, that store charge 
solely through electric double layer charging mechanism generally possess very low 
capacitance, that is, it is not able to store a lot of charge, measured in Farads. Secondly, 
materials as metal oxide powders usually possess low porosity and may impede 
electrolyte diffusion. Thus, composites are usually fabricated and their electrochemical 
charge storage performance usually outperforms their original constituents, or novel 
synthesis methods to generate unique microscale or nanoscale architecture are often 
performed to improve the charge storage properties of the materials. To date, various 
composites have been reported in literature such as metal oxides on carbon nanotubes 
(Wu et al., 2015), metal oxides on carbon microfibre (Chiam et al., 2017), metal oxides 
on graphene (Bai et al., 2016; Naveen & Selladurai, 2015; Xu et al., 2015), metal 
oxides on metal oxides (Bo et al., 2006), conducting polymer on graphene (Alvi et al.,
2011; Gómez et al., 2011), and conducting polymer on metal oxide (Xie et al., 2011;
Xie et al., 2014), to list a few. Titania nanotubes store charge using electric double 
layer mechanism and does not possess very apparent pseudocapacitance properties. It is 
highly resistive and possesses low capacitance values, but the ease of tailoring its 
nanostructure is one of the main attractive features that can be exploited for the 
fabrication of nanotubes. To date, many titania nanotubes composite supercapacitors 
have been reported, such as conducting polymer-graphene-titania nanotubes composite 
(Huang et al., 2015), metal oxide-titania nanotubes composite (Zhou & Zhang, 2014b),
and conducting polymer-titania nanotubes composite (Shao et al., 2015), to name a 
few. The number of literature continues to grow with more new methods of composite 
preparation being discovered frequently.  
  

1.2 Problem Statement 

Supercapacitors are useful charge-storing electronic components that deliver huge 
bursts of energy in a short time and are used in video recorders, car electronic devices 
such as radios and taxi meters, cameras, mobile phones, toys, and much larger 
applications such as electric buses running on supercapacitors, to providing electric 
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pulse burst to start diesel locomotive engines (Kötz & Carlen, 2000). Ideally, 
supercapacitors should possess high power and energy density, long life expectancy, 
long storage life, robust operating conditions, use environmentally-friendly materials,
economically feasible to be produced, and safe for consumer consumption. However, 
current supercapacitors are plagued with problems such as relatively low from desired 
energy density, high materials and fabrication costs, rapid self-discharging rates, and 
also the lack of industrial standards pertaining to the commercialisation of 
supercapacitors. (Wang et al., 2012). Regarding titania nanotubes, the largest obstacle 
that prevents it from being commercialised as it is is due to its very large resistivity and 
small capacitance values, owing to its semiconducting nature. To improve its 
capacitance values, self-doping and/or adding dopants such as metal oxides or 
conducting polymers can be performed. However, the methods to introduce self-doping 
and/or adding dopants often involves the use of equipments such as potentiostat and 
special vessels for hydrothermal growth, as well as complex automation, which could 
lead to increased cost, increased chemical usage, and may sometimes be an obstacle for 
research facilities that can only afford low-cost approach to introduce these chemical 
modifications to titania nanotubes. 

Through our study, we aim to improve the the low capacitance values of titania 
nanotubes through doping of the nanotubes using wet impregnation method. This 
method has been widely used to prepare titania nanotubes for photocatalysis 
applications but is not sufficiently understood for the application in the preparation of 
titania nanotubes for supercapacitors application. The rationale of using this technique 
is two-fold; it requires no complex equipments and automation as it can be done by 
simply immersing the unmodified titania nanotubes into metal ion precursors followed 
by thermal treatment and the usage of chemicals for doping is largely minimised to 
only the use of precursor solutions. This study is also aimed at exploring the feasibility 
of this technique to form mixed metal oxides on titania nanotubes, which was found to 
be possible using hydrothermal growth (Yang et al., 2013) and electrodeposition (Yuan
et al., 2012) on various substrates, but not documented for this technique, particularly 
on titania nanotubes.  Nickel and cobalt were selected as the metal species due to their 
high theoretical capacitance values, as high as 3750 F/g for nickel(II) oxide (Wang et 
al., 2012) and 3560 F/g for cobalt(II,III) oxide (Lokhande et al., 2016), and relatively 
cheaper cost compared many other metal oxides with charge-storage properties.  

1.3 Objectives 

1. To synthesise and optimise synthesis parameters for TiO2 nanotubes/Ti 
(TNT/Ti). 

2. To synthesise and optimise synthesis parameters for NiCo2O4/TiO2

nanotubes/Ti composites (NCO/TNT/Ti). 
3. To characterise the prepared TNT/Ti and NCO/TNT/Ti composites using 

cyclic voltammetry analysis (CV), galvanostatic charge – discharge analysis 
(GCD), electrochemical impedance spectroscopy (EIS), X-ray diffractometry 
analysis (XRD), field emission scanning electron microscopy – energy 
dispersive X-ray spectroscopy (FESEM-EDX), and cycle stability analysis 
using GCD for the sample obtained from optimised synthesis parameters. 
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