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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 

of the requirement for the degree of Master of Science 

SHYNTHESIS AND CHARACTERIZATION OF WOLLASTONITE 
GLASSCERAMICS PREPARED FROM CULLET DOPED WITH 

SAMARIUM OXIDE  

By

KARIMA A MOHAMED ALMASRI 

May 2018 

Chairman :  Professor Sidek Hj. Abd Aziz, PhD 
Faculty : Science 

Wollastonite (CaSiO3) based glass ceramics doped with various amounts of 

samarium oxide (Sm2O3) were prepared using a melt-quenching technique based on 

the empirical formula [(CaO)0.21(SLS)0.79]1-y(Sm2O3)y, y=(0,1,2,3,4,5) wt.%. The 

effect of different sintering temperatures on physical, optical and structural 

properties of wollastonite (CaSiO3) based glass-ceramics were investigated for its 

potential application as a building material. In this work, soda lime silica glass waste 

was utilized as a source of silicon. The chemical composition and physical properties 

of glass were characterized by using Energy Dispersive X-ray Fluorescence (XRF) 

and Archimedes principle. The Archimedes measurement results show that the 

density increased with the increase of sintering temperature and doping Sm2O3

concentration. The generation of CaSiO3, morphology, size and crystal phase with

increasing the heat-treatment temperature was examined by field emission scanning 

electron microscopy (FESEM), X-ray diffraction (XRD) and Fourier transform 

infrared reflection spectroscopy (FTIR). The average calculated crystal size gained 

from XRD was found to be in the range 60 nm. XRD results show that after the 

sintering at 700 °C, the sample still in the amorphous phase. The increasing of 

sintering temperature to 800 °C cause the nucleation of triclinic wollastonite 

(CaSiO3), through increasing the sintering temperature to 900 ⁰C, para wollastonite

(β-CaSiO3) phase appeared, and the progression of sintering temperature above 1000 

⁰C improved almost of the positions and relative intensities of the crystalline peaks. 

The FESEM results show a uniform distribution of particles and the morphology of 

the wollastonite crystal is granular. FTIR results exhibited the structural evolution of 

wollastonite based glass ceramics. The appearance of CaO, SiO2, and Ca-O-Si bands 

disclosed from FTIR which showed the formation of CaSiO3 crystal phase. In 

addition to the calculation of the energy band gap which found to be increased from

3.96 eV to 4.1 eV with increasing sintering temperature, also increased from 4.1 eV 

to 4.9 eV with increasing of samarium oxide concentration. 



© C
OP

UPM

ii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains 

SINTESIS DAN PENCIRIAN WOLLASTONITE KACA-SERAMIK 
DIHASILKAN DARIPADA KULET DIDOPKAN DENGAN SAMARIUM 

OKSIDA 

Oleh 

KARIMA A MOHAMED ALMASRI 

Mei 2018 

Pengerusi 
Fakulti 

:  Profesor Sidek Hj. Abd Aziz, PhD
: �Sains

Kaca seramik berasaskan wollastonite (CaSiO3) yang didopkan dengan pelbagai 

jumlah samarium oksida (Sm2O3) telah disediakan menggunakan teknik 

pelindapkejutan yang berdasarkan formula empirikal [(CaO)0.21(SLS)0.79]1-y

(Sm2O3)y, di mana y = 0, 1, 2, 3, 4, 5 wt.%. Kesan suhu rawatan haba pada sifat-sifat 

fizikal, optik dan struktur wollastonite kaca-seramik disiasat kerana kaca-seramik ini 

berpotensi untuk digunakan sebagai bahan binaan. Dalam penyelidikan ini, kaca 

terbuang (SLS) telah digunakan sebagai sumber silikon. Komposisi kimia dan sifat 

fizikal kaca dicirikan dengan menggunakan (EDXRF) dan prinsip Archimedes. Hasil 

pengukuran Archimedes menunjukkan bahawa ketumpatan sampel meningkat 

dengan kenaikan suhu rawatan haba dan kepekatan didopkan Sm2O3. Penjanaan 

morphologi, saiz dan fasa kristal CaSiO3, dengan meningkatkan suhu rawatan haba 

telah diperiksa oleh (FESEM), (XRD) and (FTIR). Saiz purata kristal yang dikira 

daripada alat XRD didapati berada dalam lingkungan 60 nm. Keputusan XRD juga 

menunjukkan bahawa selepas proses rawatan haba pada 700 ° C, sampel masih 

berada dalam fasa amorphus. Peningkatan suhu rawatan haba kepada 800 ° C 

menyebabkan nukleasi wollastonite triklinik (CaSiO3), dan seterusnya melalui 

peningkatan suhu rawatan haba kepada 900 ° C, fasa wollastonite (β-CaSiO3)

muncul, dan kemajuan suhu rawatan haba melebihi 1000 ° C telah merubah 

kedudukan dan meningkatkan intensiti relatif puncak kristal. Hasil analisis FESEM 

memperlihatkan pembahagian seragam zarah dan morfologi kristal wollastonit 

adalah dalam bentuk berbutir. Analisis FTIR pula berhasil mempamerkan perubahan 

struktur kaca-seramik wollastonite. Kehadiran dan pembetukan unit CaO, SiO2, dan 

Ca-O-Si daripada analisis FTIR telah membuktikan pembentukan fasa kristal 

CaSiO3. Di samping itu, pengiraan jurang jalur tenaga juga didapati meningkat dari 

3.96 eV kepada 4.1 eV dengan peningkatan suhu rawatan haba, dan juga perubahan 

dari 4.1 eV ke 4.9 eV dengan peningkatan kepekatan samarium oksida. 
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CHAPTER 1 

1 INTRODUCTION
 
 
1.1 General Introduction 

The most crucial calcium silicate based glass-ceramic for application in the building 

industry manufactured by the Japanese firm “Nippon Electric Glass” was recently 
named Neoparis ® (Montazerian et al., 2015). Wollastonite, which is found in 

nature, is also known as calcium silicate (CaSiO3) and has been widely studied due 

to its beneficial application in ceramic, dental implant,  architecture, and construction 

where these materials are used as floor materials as a substitute the granite and 

natural marble (Boccaccini et al., 2000; Lu et al., 2014). The fundamental feature of 

this material is curved panels and big flat can be produced commercially (Perez et 
al., 2012; Teixeira et al., 2014a).  

Conventionally, wollastonite based glass-ceramic was produced from SiO2-CaO-

Al2O3 glass system through controlled surface crystallization. Such glass-ceramic 

materials may show specific visual impacts and other major characteristics, such as 

better hardness than natural stones, good strength, low shrinkage, absence of volatile 

constituents, fluxing characteristics, body permeability, whiteness, zero water 

absorption and low density (Zhang et al., 2013; Liu et al., 2014a). It is fabricated on 

a massive scale and is utilized as floor coating outside as well as interior of a 

building. One major advantage of wollastonite based glass-ceramics material over 

natural stones is that it can be fabricated to produce big flat and curved panels. 

Wollastonite begins to crystallize at temperatures above 950 °C as the wollastonite 

phase (triclinic) begins to emerge. As the temperature increases, the formation of 

needle-like β-wollastonite (monoclinic) through the glass surface in the direction of 

the inner grain of the glass increases, so that the compound produced is similar to 

marble or granite due to variation in light diffraction indicators between the glass 

and the crystals in the matrix (Holland et al., 2002). At higher temperature, α-

wollastonite (monoclinic, pseudo-wollastonite) with grainy crystalloid morphology 

with obscure crystals, are formed (Holland et al., 2002).

In many countries, industrial by-product, fly ash, or slag ash are employed as base 

materials in the ceramic industry to produce glass-ceramic (Rawlings et al., 2006; 

Lunip et al., 2016). This process relies on waste composition and additives, which 

generally consists of impurities and secondary components. Interest in soda lime 

silica (SLS) glass waste is by virtue of its constitution and the large amount of SLS 

manufactured in Malaysia. This glass makes up a large portion of domestic waste. 

Amongst the conventional glasses, SLS glass is known as the most  typical 

commercial glass merchandise that comprise up to 90 - 95% of the glass produced 

throughout the world (Sinton et al., 2001). These types of glasses are commonly used 

since they have a virtuous glass-forming characteristics in comparison to other 
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typical glass systems.  SLS glasses are usually used for making windowpane, glass 

containers, flat glasses, packaging and insulating materials, bioactive materials, and 

building material.  Consumption of raw materials decreases when SLS glass is 

recycled, thus yielding economic and environmental benefits (Juoi et al., 2013; Zaid 

et al., 2015). Preparation of wollastonite using high purity silicon dioxide (SiO2)

powder is costly and its synthesis requires a high temperature. Therefore, SLS 

glasses are chosen as a substitute for SiO2 source as it can reduce production cost 

and has the benefit of being an attractive host matrix due to its good mechanical and 

optical properties, such as high transparency, perfect chemical stability, high thermal 

stability, and low melting point (Zaid et al., 2011).

One of the primary concern in rare earth doped glasses is in defining the dopant 

environment. Hypersensitive transitions has been discovered in the spectra of all rare 

earth ions (Eraiah, 2006). The rare earth ion Sm2O3 may be employed as a dopant in 

various crystal hosts as well as glass hosts. By doping rare earth ions, the structural 

and optical properties of glasses can be improved and obtaining optimized 

concentrations is challenging in laser glass research, Raman studies suggested that 

Sm2O3 could modify the properties of glass, these glasses are expected to give 

interesting application in the field of optics. Notable improvements of optical and 

structural properties due to the doping samarium ions are evidenced (Reddy et al.,
2017).

To the extent of the author’s knowledge studies on the optical properties of 
wollastonite based glass-ceramics are very limited. In this work, the fabrication of 

wollastonite based glass-ceramics through controlled sintering of prepared CaO-SLS 

glasses is discussed. The synthesis of Sm2O3 doped wollastonite-based glass ceramic 

using waste materials in different weight percentages (1-5 wt. %) of Sm3+ through 

the conventional melt-quenching method was studied. The crystallization process 

was studied using the Fourier transform infrared reflection (FTIR) spectroscopy, X-

ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). 

The glass and the derived glass-ceramics were characterized by studying their 

physical, optical, and structural properties, including their optical band gap. The 

primary usefulness of the CaO-SLS glass system in comparison to the normal CaO-

SiO2 glass system is that the processing and melting as well as temperature will be 

reduced substantially. This reduces the production cost for this glass-ceramic. In fact, 

the core idea of this article is the blending and description of wollastonite based 

glass-ceramic derived from CaO-SLS glass system doped with samarium oxide. 

1.2 Problem Statement 

Over the last few years,  many research of rare earth doped glasses has been given a 

lot of focused by reason of their extensive utilization in  the optical  areas,  such  as  

optical  switches  for  laser, sensor, and  optical communication (Maheshvaran et al., 
2011). The most important concern with rare earth doped glasses is in defining the 

dopant effect on the host materials (Eraiah, 2006). Manjunatha et al. (2013) has 
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analyzed the structure, morphology, and optical characteristics of Sm3+ doped 

CdSiO3. However, no much work has been done with regard to wollastonite glass 

and its optical properties, and only a few studies regarding it has been published, 

while no studies on samarium oxide has been published, and due to the uses of Sm2O3

in optical and infrared absorbing glass to absorb infrared radiation,  Sm2O3 was 

doped to wollastonite in this study. 

There is, however, a scarcity of information on the effects of wollastonite doped 

transition metals on soda lime silica (SLS) glass as a source of silica, SiO2. The 

majority of researchers employed pure SiO2 as a base material in the blending 

process. Substituting SLS for SiO2 as a source of silica to produce wollastonite could 

also help reduce the problem of solid waste disposal in Malaysia. On average, every 

Malaysian produce approximately 1.2 kg of waste each day. Wastes are generated in 

various forms, such as paper, glass, construction material, wood, plastic, food scrap, 

and aluminum.  In Malaysia, these wastes are sent to landfill or incineration center.  

The volume of solid waste produced in the country has increased to 33,000 tons in 

2013 from the 19,000 tons generated in 2005; 3% of the total waste is composed of 

glass materials.  

Many of the previous studies used preparation methods such as hydrothermal method 

and sol-gel methods rather than solid-state method. This is because solid-state 

method requires the use of high amount of thermal or electrical energy and the 

resulting products have morphologies that are limited to agglomerated shapes. 

However, due to the complexity and high cost of these new fabrication methods, it 

would be difficult to commercialize samarium oxide (Cho and Chang, 2003). On the 

other hand, a solid-state method offers several advantages over other methods. For 

examples, this method of producing wollastonite is less complex and is able to 

produce wollastonite on a large scale, hence saves time and energy and reduce 

production cost. The crystallinity of wollastonite produced using the solid-state 

method is considerably higher than those prepared using hydrothermal and 

solvothermal methods (Takesue et al., 2009). Due to the important usages of 

wollastonite as building materials, thus, in this study, wollastonite doped samarium 

oxide was prepared using SLS glass as a source of SiO2 by using conventional solid-

state method. 

1.3 Hypotheses 

Wollastonite has beneficial application in ceramic, architecture, and construction 

where these materials are used as floor materials.  

The density of the samples will be increased with increasing the sintering

temperatures due to decreasing the pore size of the glass-ceramic samples and 

increased the densification, also it will be increased with increasing the concentration 

of Sm2O3 due to the addition of modifier oxide which breaks up the Si–O–Si linkage, 
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and increase the free space in the glass network. Para wollastonite β-CaSiO3 will be 

formed at temperatures 900 ˚C and above and the crystallinity of the glass-ceramic 

samples will be improved at high sintering temperatures. The grain sizes of the 

samples will be increased with increasing the sintering temperatures and with 

increasing the concentration of Sm2O3. The energy band gap of the samples will be 

increased with increasing the sintering temperatures due to the increase of sizes and 

number of the crystals formed also it will be increased with increase the 

concentration of Sm2O3.

1.4 Objectives of the Study 

The objectives of this study can be summarized as follows: 

1) To synthesis wollastonite doped  samarium oxide based glass-ceramics 

by using conventional melt quenching method followed by sintering 

method.  

2) To study the effect of different sintering temperatures on the physical, 

structural, and optical characteristics of wollastonite based glass-

ceramics 

3) To examine the effect of Sm3+ doping on the physical, structural, and 

optical characteristics of wollastonite based glass-ceramics. 

1.5 Scope of the Research 

The sphere of the research are:  

1. Wollastonite doped samarium oxide, CaSiO3:Sm3+, is  prepared using SLS 

glass, CaO, and Sm2O3 powder based on the stoichiometric equation 

[(CaO)0.21(SLS)0.79] 1-y [Sm2O3]y where y = (0,1,2,3,4,5) wt.% using 

conventional solid state method. All starting materials will be used as 

reference materials.

2. The sintering temperatures for producing CaSiO3:Sm3+ varies between 700 

°C and 1100 °C. 

3. The structure, bonding and morphology of the CaSiO3:Sm3+ will be 

characterized using XRD, FTIR and FESEM respectively. 

4. The optical properties, namely band gap of the samples, will be measured 

using UV-Vis spectroscopy.  
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1.6 Importance of the Study 

This study focuses on wollastonite, or CaSiO3, since it is used in the production of 

ceramics for use as sanitary ware and tableware. More recently, wollastonite is being 

used in electrical application as high voltage insulator (Puntharod et al., 2013). 

Researchers are currently working on improving the properties of wollastonite as a 

material for bio-ceramics and biomaterials, for example artificial bond, antibacterial 

growth, and as a platform for regeneration of hard tissue (Ortega et al., 2010; 

Magallanes et al., 2011). 

1.7 Outline of the Thesis 

This thesis is organized as follows. Chapter 1 presents an introduction to wollastonite 

doped with samarium oxide, problem statements, objectives, scope, and significance 

of the study. Previous and current works done by other researchers throughout the 

world are discussed in Chapter 2. Chapter 3 explains the methods used to prepare 

wollastonite doped with samarium oxide and the characterization method.  Chapter 

4 discusses and analyzes the effect of the content of samarium and sintering 

temperatures on the physical, structural and optical properties of wollastonite doped 

with samarium oxide.  Lastly, Chapter 5 presents the conclusion of the study and 

suggestions for upcoming works. 
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