SYNTHESIS AND CHARACTERIZATION OF WOLLASTONITE GLASSCERAMICS PREPARED FROM CULLET DOPED WITH SAMARIIUM OXIDE

By

KARIMA A MOHAMED ALMASRI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement of the Degree of Master of Science

May 2018
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

To my beloved parents Amer Mohamed Almasri and Rabia Ali Essa
For their unconditional love and support

To my sisters
For making my life complete

To my husband and my kids
For their love and care

To all my very wonderful friends
For making my life full of joy and happiness

To all my lecturers
For helping me at a lot throughout this journey

Thank you all
SHYNTESIS AND CHARACTERIZATION OF WOLLASTONITE GLASSCERAMICS PREPARED FROM CULLET DOPED WITH SAMARIUM OXIDE

By

KARIMA A MOHAMED ALMASRI

May 2018

Chairman : Professor Sidek Hj. Abd Aziz, PhD
Faculty : Science

Wollastonite (CaSiO\textsubscript{3}) based glass ceramics doped with various amounts of samarium oxide (Sm\textsubscript{2}O\textsubscript{3}) were prepared using a melt-quenching technique based on the empirical formula [(CaO)\textsubscript{0.21}(SLS)\textsubscript{0.79}]\textsubscript{1-y}(Sm\textsubscript{2}O\textsubscript{3})\textsubscript{y}, y=(0,1,2,3,4,5) wt.%. The effect of different sintering temperatures on physical, optical and structural properties of wollastonite (CaSiO\textsubscript{3}) based glass-ceramics were investigated for its potential application as a building material. In this work, soda lime silica glass waste was utilized as a source of silicon. The chemical composition and physical properties of glass were characterized by using Energy Dispersive X-ray Fluorescence (XRF) and Archimedes principle. The Archimedes measurement results show that the density increased with the increase of sintering temperature and doping Sm\textsubscript{2}O\textsubscript{3} concentration. The generation of CaSiO\textsubscript{3}, morphology, size and crystal phase with increasing the heat-treatment temperature was examined by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Fourier transform infrared reflection spectroscopy (FTIR). The average calculated crystal size gained from XRD was found to be in the range 60 nm. XRD results show that after the sintering at 700 °C, the sample still in the amorphous phase. The increasing of sintering temperature to 800 °C cause the nucleation of triclinic wollastonite (CaSiO\textsubscript{3}), through increasing the sintering temperature to 900 °C, para wollastonite (β-CaSiO\textsubscript{3}) phase appeared, and the progression of sintering temperature above 1000 °C improved almost of the positions and relative intensities of the crystalline peaks. The FESEM results show a uniform distribution of particles and the morphology of the wollastonite crystal is granular. FTIR results exhibited the structural evolution of wollastonite based glass ceramics. The appearance of CaO, SiO\textsubscript{2} and Ca-O-Si bands disclosed from FTIR which showed the formation of CaSiO\textsubscript{3} crystal phase. In addition to the calculation of the energy band gap which found to be increased from 3.96 eV to 4.1 eV with increasing sintering temperature, also increased from 4.1 eV to 4.9 eV with increasing of samarium oxide concentration.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SINTESIS DAN PENCIRIAN WOLLASTONITE KACA-SERAMIK DIHASILKAN DARIPADA KULET DIDOPKAN DENGAN SAMARIUM OKSIDA

Oleh

KARIMA A MOHAMED ALMASRI

Mei 2018

Pengerusi : Profesor Sidek Hj. Abd Aziz, PhD
Fakulti : Sains

Kaca seramik berasaskan wollastonite (CaSiO₃) yang didopkan dengan pelbagai jumlah samarium oksida (Sm₂O₃) telah disediakan menggunakan teknik pelindapkejutan yang berdasarkan formula empirikal [(CaO)₀.2₁(SLS)₀.₇₉]₁₋ₕ(Sm₂O₃)ₕ, di mana h = 0, 1, 2, 3, 4, 5 wt.%. Kesan suhu rawatan haba pada sifat-sifat fizikal, optik dan struktur wollastonite kaca-seramik disiasat kerana kaca-seramik ini berpotensi untuk digunakan sebagai bahan binaan. Dalam penyelidikan ini, kaca terbuang (SLS) telah digunakan sebagai sumber silikon. Komposisi kimia dan sifat fizikal kaca dicirikan dengan menggunakan (EDXRF) dan prinsip Archimedes. Hasil pengukuran Archimedes menunjukkan bahawa ketumpatan sampel meningkat dengan kenaikan suhu rawatan haba dan kepekatan didopkan Sm₂O₃. Penjanaan morfologi, saiz dan fasa kristal CaSiO₃, dengan meningkatkan suhu rawatan haba telah diperiksa oleh (FESEM), (XRD) and (FTIR). Saiz purata kristal yang dikira daripada alat XRD didapati berada dalam lingkungan 60 nm. Keputusan XRD juga menunjukkan bahawa selepas proces rawatan haba pada 700 °C, sampel masih berada dalam fasa amorphus. Peningkatan suhu rawatan haba kepada 800 °C menyebabkan nukleasi wollastonite triklinik (CaSiO₃), dan seterusnya melalui peningkatan suhu rawatan haba kepada 900 °C, fasa wollastonite (β-CaSiO₃) muncul, dan kemajuan suhu rawatan haba melebihi 1000 °C telah merubah kedudukan dan meningkatkan intensiti relatif puncak kristal. Hasil analisis FESEM memperlihatkan pembahagian seragam zarah dan morfologi kristal wollastonit adalah dalam bentuk berbutir. Analisis FTIR pula berhasil mempamerkan perubahan struktur kaca-seramik wollastonite. Kedahiran dan pembentukan unit CaO, SiO₂, dan Ca-O-Si daripada analisis FTIR telah membuktikan pembentukan fasa kristal CaSiO₃. Dalam samping itu, pengiraan jurang jalur tenaga juga didapati meningkat dari 3.96 eV kepada 4.1 eV dengan peningkatan suhu rawatan haba, dan juga perubahan dari 4.1 eV ke 4.9 eV dengan peningkatan kepekatan samarium oksida.
ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful. I am very grateful to Allah for the blessing to be able to complete my thesis.

My deepest appreciation and thanks is to my parents and sisters for their love, prayers, and supporting me throughout my life.

I am very much thankful to my husband and family for their love, understanding, prayers and continuing support to complete this research. Not forgotten, my special thanks to my father-in-law for his supporting and encouraging me to complete my study.

I would like thank my supervisor, Prof. Dr. Sidek Hj. Abd Aziz, for his guidance, direction, patience, and continuous encouragement throughout the time of my dissertation research. He was always there to answer my questions and set time to meet with me whenever needed. I will be forever grateful.

I would like to thank my committee members Dr. Khamirul Amin Matori for their interest in my work. My big appreciation and thanks also goes to Dr. Mohd Hafiz Bin Mohd Zaid for his interest and helping me in my work. My thanks go to all my friends, staff and technicians of Faculty of Science, Universiti Putra Malaysia for the co-operation and technical support provided, and heartfelt gratitude towards all the individuals who have supported me in this endeavor.

Finally, my thanks go to all people who have directly or indirectly helped me in this research.
I certify that a Thesis Examination Committee has met on 22 May 2018 to conduct the final examination of Karima A Mohamed Almasri on her thesis entitled "Synthesis and Characterization of Wollastonite Glassceramics Prepared from Cullet Doped with Samarium Oxide" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Chen Soo Kien, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Halimah binti Mohamed Kamari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Md Rahim Sahar, PhD
Professor
Universiti Teknologi Malaysia
Malaysia
(External Examiner)

[Signature]

RUSLI HAJI ABDULLAH, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 30 July 2018
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Sidek Hj. Abd Aziz, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Khamirul Amin bin Matori, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: Karima A Mohamed Almasri, GS43045
Declaration by Member of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman of Supervisory Committee:
Professor Dr. Sidek Hj. Abd Aziz

Signature:
Name of Member of Supervisory Committee:
Associate Professor Dr. Khamirul Amin bin Matori
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>iv</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 General Introduction 1
1.2 Problem Statement 2
1.3 Hypotheses 3
1.4 Objectives of the Study 4
1.5 Scope of the Research 4
1.6 Importance of the Study 5
1.7 Outline of the Thesis 5

2 LITERATURE REVIEW

2.1 Introduction 6
2.2 Glass 6
2.3 Soda Lime Silica Glass 7
2.4 Glass Ceramic 8
2.5 Historical Overview of Wollastonite 9
2.6 Synthesis Method for Wollastonite 11
2.7 Physical Studies of Wollastonite 13
2.8 Structural Study of Wollastonite 15
2.9 Optical Study of Wollastonite 23

3 METHODOLOGY

3.1 Introduction 26
3.2 Preparation of Raw Materials 26
3.3 Preparation of Samples 27
3.3.1 Chemical Composition 27
3.3.2 Weighing, Mixing and Milling 28
3.3.3 Melting and Quenching 28
3.3.4 Drying, Grinding and Sieving 29
3.3.5 Pelleting 29
3.3.6 Sintering 29
3.4 Sample Characterization
3.4.1 Density
3.4.2 Energy Dispersive X-Ray Fluorescence (EDXRF)
3.4.3 X-Ray Diffraction (XRD)
3.4.4 Field Emission Scanning Electron Microscopy (FESEM)
3.4.5 Fourier Transform Infrared (FTIR) Spectroscopy
3.4.6 Ultraviolet-Visible (UV-Vis) Spectroscopy
3.4.7 Optical Band Gap

4 RESULTS AND DISCUSSION
4.1 Introduction
4.2 Physical Properties
4.2.1 Density
4.3 Structural Properties
4.3.1 EDXRF Analysis
4.3.2 XRD Analysis
4.3.3 FESEM
4.3.4 FTIR Analysis
4.4 Optical Properties
4.4.1 UV-Vis Spectroscopy
4.4.2 Optical Band Gap

5 CONCLUSIONS AND RECOMMENDATIONS
5.1 Conclusion
5.2 Recommendations for future research

REFERENCES
BIODATA OF STUDENT
PUBLICATION
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Chemical composition of SLS glass (Boulos et al., 1998)</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Change in density and weight of glass-ceramics with different sintering temperatures (Yoon et al., 2013)</td>
<td>14</td>
</tr>
<tr>
<td>2.3 Relative density of wollastonite sintered at 1200°C at varying heating rate (Wan et al., 2008)</td>
<td>15</td>
</tr>
<tr>
<td>3.1 Chemical constituent of SLS and precursor glass (%)</td>
<td>28</td>
</tr>
<tr>
<td>3.2 Sample formula and its abbreviation</td>
<td>28</td>
</tr>
<tr>
<td>4.1 Numerical values of density (g/cm³) for undoped and CaSiO₃:Sm³⁺ samples based glass-ceramic sintered at different temperatures</td>
<td>35</td>
</tr>
<tr>
<td>4.2 Analysis of chemical composition of SLS and precursor glass</td>
<td>37</td>
</tr>
<tr>
<td>4.3 Numerical values of average grain size (nm) for undoped and CaSiO₃:Sm³⁺ samples based glass-ceramic sintered at different temperatures</td>
<td>55</td>
</tr>
<tr>
<td>4.4 FTIR spectral band for undoped CaSiO₃ based glass-ceramic sintered at varying temperatures</td>
<td>57</td>
</tr>
<tr>
<td>4.5 FTIR spectral band assigned to vibrational modes</td>
<td>58</td>
</tr>
<tr>
<td>4.6 FTIR spectral band and wavenumber (cm⁻¹) for undoped and CaSiO₃:Sm³⁺ samples based glass-ceramic sintered at different temperatures</td>
<td>69</td>
</tr>
<tr>
<td>4.7 Indirect band gap energy of undoped and Sm³⁺ doped CaSiO₃ based glass-ceramic sintered at 700°C</td>
<td>74</td>
</tr>
<tr>
<td>4.8 Direct band gap energy of undoped and Sm³⁺ doped CaSiO₃ samples sintered at different temperatures</td>
<td>80</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Glass bottles used in daily life</td>
</tr>
<tr>
<td>2.2</td>
<td>Natural wollastonite found in ground (Essene, 1974)</td>
</tr>
<tr>
<td>2.3</td>
<td>Structure of CaSiO₃ (Nagabhushana et al., 2010)</td>
</tr>
<tr>
<td>2.4</td>
<td>Differences in density vs Sm₂O₃ in ZnO–TeO₂–Sm₂O₃ glasses (Eraiah, 2006)</td>
</tr>
<tr>
<td>2.5</td>
<td>XRD patterns of batches sintered at varying temperatures</td>
</tr>
<tr>
<td>2.6</td>
<td>XRD patterns for glass-ceramics subjected to heat treatment of between 850-1050°C (Yoon et al., 2013)</td>
</tr>
<tr>
<td>2.7</td>
<td>XRD patterns of the wollastonite powders with a mixing ratio of 1:0.8 heated (a) at 1100 °C for 10 minutes in microwave furnace, (b) at 1100 °C for 10 minutes, and (c) at 1250 °C for 1 hour in a typical furnace (Vichaphund et al., 2011)</td>
</tr>
<tr>
<td>2.8</td>
<td>Powder XRD patterns of solution combustion derived Cd₁₋ₓSmₓSiO₃ specimens calcined at 800°C/2 hours. (a) x=0.00, (b) x=0.01, (c) x=0.03, (d) x=0.05, and (e) x=0.07 (Manjunatha et al., 2013)</td>
</tr>
<tr>
<td>2.9</td>
<td>FE-SEM images of specimens subjected to heat treatment at 850°C (a), 900°C (b), 950°C (c), and chemical constituents of surface (matrix (d) and grain (e)) for glass-ceramics subjected to heat treatment at 850°C (Yoon et al., 2013)</td>
</tr>
<tr>
<td>2.10</td>
<td>FT-IR spectra of Cd₁₋ₓSmₓSiO₃ samples calcined at 800°C/2 hours (a) x=0.00, (b) x=0.01, (c) x=0.03, (d) x=0.05, and (e) x=0.07</td>
</tr>
<tr>
<td>2.11</td>
<td>Fourier transform infrared spectra subsequent to autoclaving for 8 hours and sintering at 950 °C (Ismail et al., 2016)</td>
</tr>
<tr>
<td>2.12</td>
<td>Direct optical energy band gap of Cd₁₋ₓSmₓSiO₃ (a) x=0.00, (b) x=0.01, (c) x=0.03, (d) x=0.05, and (e) x=0.07 (Manjunatha et al., 2013)</td>
</tr>
<tr>
<td>2.13</td>
<td>Differences in energy band gap vs Sm₂O₃ in ZnO–TeO₂–Sm₂O₃ glasses (Eraiah, 2006)</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart for producing CaSiO₃:Sm³⁺ samples employing solid-state method</td>
</tr>
</tbody>
</table>
4.1 Variation in density of undoped sample versus sintering temperatures

4.2 Variation in density of samples sintered at 1000°C versus Sm$_2$O$_3$ concentration

4.3 The density for Sm$^{3+}$ doped CaSiO$_3$ samples based glass-ceramic versus sintering temperatures

4.4 XRD pattern for soda lime silicate glass

4.5 XRD pattern for calcium oxide

4.6 XRD pattern for samarium oxide

4.7 XRD patterns of undoped sample sintered at varying sintering temperatures

4.8 XRD patterns for samples with varying ratios of Sm$_2$O$_3$ sintered at 1000°C

4.9 FESEM micrographs of undoped specimens sintered at varying temperatures; (a) 700°C (b) 800°C (c) 900°C (d) 1000°C and (e) 1100°C

4.10 FESEM micrographs of 1% Sm$^{3+}$ doped CaSiO$_3$ sintered at varying temperatures; (a) 700°C (b) 800°C (c) 900°C (d) 1000°C and (e) 1100°C

4.11 FESEM micrographs of 2% Sm$^{3+}$ doped CaSiO$_3$ sintered at varying temperatures; (a) 700°C (b) 800°C (c) 900°C (d) 1000°C and (e) 1100°C

4.12 FESEM micrographs of 3% Sm$^{3+}$ doped CaSiO$_3$ sintered at varying temperatures; (a) 700°C (b) 800°C (c) 900°C (d) 1000°C and (e) 1100°C

4.13 FESEM micrographs of 4% Sm$^{3+}$ doped CaSiO$_3$ sintered at varying temperatures; (a) 700°C (b) 800°C (c) 900°C (d) 1000°C and (e) 1100°C

4.14 FESEM micrographs of 5% Sm$^{3+}$ doped CaSiO$_3$ sintered at varying temperatures; (a) 700°C (b) 800°C (c) 900°C (d) 1000°C and (e) 1100°C
4.15 FESEM micrographs of undoped and Sm$^{3+}$ doped with varying ratios of CaSiO$_3$ sintered at 700°C; (a) undoped (b) 1% Sm$^{3+}$ (c) 2% Sm$^{3+}$ (d) 3% Sm$^{3+}$ (e) 4% Sm$^{3+}$ and (f) 5% Sm$^{3+}$

4.16 FESEM micrographs of undoped and Sm$^{3+}$ doped with varying ratios of CaSiO$_3$ sintered at 800°C; (a) undoped (b) 1% Sm$^{3+}$ (c) 2% Sm$^{3+}$ (d) 3% Sm$^{3+}$ (e) 4% Sm$^{3+}$ and (f) 5% Sm$^{3+}$

4.17 FESEM micrographs of undoped and Sm$^{3+}$ doped with varying ratios of CaSiO$_3$ sintered at 900°C; (a) undoped (b) 1% Sm$^{3+}$ (c) 2% Sm$^{3+}$ (d) 3% Sm$^{3+}$ (e) 4% Sm$^{3+}$ and (f) 5% Sm$^{3+}$

4.18 FESEM micrographs of undoped and Sm$^{3+}$ doped with varying ratios of CaSiO$_3$ sintered at 1000°C; (a) undoped (b) 1% Sm$^{3+}$ (c) 2% Sm$^{3+}$ (d) 3% Sm$^{3+}$ (e) 4% Sm$^{3+}$ and (f) 5% Sm$^{3+}$

4.19 FESEM micrographs of undoped and Sm$^{3+}$ doped with varying ratios of CaSiO$_3$ sintered at 1100°C; (a) undoped (b) 1% Sm$^{3+}$ (c) 2% Sm$^{3+}$ (d) 3% Sm$^{3+}$ (e) 4% Sm$^{3+}$ and (f) 5% Sm$^{3+}$

4.20 Variation in grain size of undoped sample versus sintering temperatures

4.21 Variation in grain size of samples with different concentrations of Sm$_2$O$_3$ versus sintering temperatures

4.22 FTIR spectra of undoped sample sintered at varying temperature

4.23 FTIR spectra of 1 wt.% Sm$^{3+}$ doped CaSiO$_3$ sintered at varying temperatures

4.24 FTIR spectra of 2 wt.% Sm$^{3+}$ doped CaSiO$_3$ sintered at varying temperatures

4.25 FTIR spectra of 3 wt.% Sm$^{3+}$ doped CaSiO$_3$ sintered at varying temperatures

4.26 FTIR spectra of 4 wt.% Sm$^{3+}$ doped CaSiO$_3$ sintered at varying temperatures

4.27 FTIR spectra of 5 wt.% Sm$^{3+}$ doped CaSiO$_3$ sintered at varying temperatures

4.28 FTIR spectra of undoped and Sm$^{3+}$ doped SLS-CaO based glass sintered at 700 °C

4.29 FTIR spectra of undoped and Sm$^{3+}$ doped SLS-CaO based glass sintered at 800 °C
4.30 FTIR spectra of undoped and Sm$^{3+}$ doped SLS-CaO based glass sintered at 900 °C

4.31 FTIR spectra of undoped and Sm$^{3+}$ doped SLS-CaO based glass sintered at 1000 °C

4.32 FTIR spectra of undoped and Sm$^{3+}$ doped SLS-CaO based glass sintered at 1100 °C

4.33 Absorption spectra of 1 wt.% Sm$^{3+}$ doped CaSiO$_3$ based glass-ceramic sintered at varying temperatures

4.34 Absorption spectra of undoped and Sm$^{3+}$ doped CaSiO$_3$ based glass-ceramic sintered at 700 °C

4.35 Absorption spectra of undoped and Sm$^{3+}$ doped CaSiO$_3$ based glass-ceramic sintered at 800 °C

4.36 Absorption spectra of undoped and Sm$^{3+}$ doped CaSiO$_3$ based glass-ceramic sintered at 900 °C

4.37 Absorption spectra of undoped and Sm$^{3+}$ doped CaSiO$_3$ based glass-ceramic sintered at 1000 °C

4.38 Absorption spectra of undoped and Sm$^{3+}$ doped CaSiO$_3$ based glass-ceramic sintered at 1100 °C

4.39 Plot of $(\alpha hv)^{1/2}$ against photon energy (hv) for undoped and Sm$^{3+}$ doped CaSiO$_3$ based glass-ceramic

4.40 Plot of $(\alpha hv)^{2}$ versus photon energy (hv) for 1% Sm$^{3+}$ doped CaSiO$_3$ based glass-ceramic sintered at different temperatures

4.41 Plot of $(\alpha hv)^{2}$ versus photon energy (hv) for 2% Sm$^{3+}$ doped CaSiO$_3$ based glass-ceramic sintered at different temperatures

4.42 Plot of $(\alpha hv)^{2}$ versus photon energy (hv) for 3% Sm$^{3+}$ doped CaSiO$_3$ based glass-ceramic sintered at different temperatures

4.43 Plot of $(\alpha hv)^{2}$ versus photon energy (hv) for 4% Sm$^{3+}$ doped CaSiO$_3$ based glass-ceramic sintered at different temperatures

4.44 Plot of $(\alpha hv)^{2}$ versus photon energy (hv) for 5% Sm$^{3+}$ doped CaSiO$_3$ based glass-ceramic sintered at different temperatures

4.45 Plot of $(\alpha hv)^{2}$ versus photon energy (hv) for undoped and Sm$^{3+}$ doped CaSiO$_3$ based glass-ceramic sintered at 700 °C
4.46 Plot of \((ahv)^2\) versus photon energy \((hv)\) for undoped and Sm\(^{3+}\) doped CaSiO\(_3\) based glass-ceramic sintered at 800 °C 78

4.47 Plot of \((ahv)^2\) versus photon energy \((hv)\) for undoped and Sm\(^{3+}\) doped CaSiO\(_3\) based glass-ceramic sintered at 900 °C 79

4.48 Plot of \((ahv)^2\) versus photon energy \((hv)\) for undoped and Sm\(^{3+}\) doped CaSiO\(_3\) based glass-ceramic sintered at 1000 °C 79

4.49 Plot of \((ahv)^2\) versus photon energy \((hv)\) for undoped and Sm\(^{3+}\) doped CaSiO\(_3\) based glass-ceramic sintered at 1100 °C 80

4.50 Optical band gap energy for undoped and Sm\(^{3+}\) doped CaSiO\(_3\) based glass-ceramic sample versus sintering temperatures 81
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaSiO₃</td>
<td>Wollastonite</td>
</tr>
<tr>
<td>CaSiO₃:Sm³⁺</td>
<td>Wollastonite doped Samarium Oxide</td>
</tr>
<tr>
<td>Sm³⁺</td>
<td>Samarium</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>SLS</td>
<td>Soda lime silica</td>
</tr>
<tr>
<td>SiO₂</td>
<td>Silica oxide</td>
</tr>
<tr>
<td>CaO</td>
<td>Calcium oxide</td>
</tr>
<tr>
<td>Na₂O</td>
<td>Sodium oxide</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Aluminium oxide</td>
</tr>
<tr>
<td>K₂O</td>
<td>Potassium oxide</td>
</tr>
<tr>
<td>MgO</td>
<td>Magnesium oxide</td>
</tr>
<tr>
<td>B₂O₃</td>
<td>Boron trioxide</td>
</tr>
<tr>
<td>ZnO</td>
<td>Zinc Oxide</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>Ferric oxide</td>
</tr>
<tr>
<td>CdSiO₃</td>
<td>Cadmium silicate</td>
</tr>
<tr>
<td>TeO₂</td>
<td>Tellurium dioxide</td>
</tr>
<tr>
<td>NaAlSiO₄</td>
<td>Nepheline</td>
</tr>
<tr>
<td>Ca(OH)₂</td>
<td>Calcium Hydroxide</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>Phosphorus Pentoxide</td>
</tr>
<tr>
<td>Dy³⁺</td>
<td>Dysprosium oxide</td>
</tr>
<tr>
<td>TiO₂</td>
<td>Titanium dioxide</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>Chromium oxide</td>
</tr>
<tr>
<td>Ga₂O₃</td>
<td>Gallium oxide</td>
</tr>
<tr>
<td>RE</td>
<td>Rare Earth</td>
</tr>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>PVA</td>
<td>Polyvinyl alcohol</td>
</tr>
<tr>
<td>EDXRF</td>
<td>Energy dispersive X-ray fluorescence</td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray diffraction</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field emission scanning electron microscopy</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared spectroscopy</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>Ultraviolet-Visible</td>
</tr>
<tr>
<td>E₉</td>
<td>Optical band gap</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full width at half maxima</td>
</tr>
<tr>
<td>JCPDS</td>
<td>Joint committee on powder diffraction standards</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General Introduction

The most crucial calcium silicate based glass-ceramic for application in the building industry manufactured by the Japanese firm “Nippon Electric Glass” was recently named Neoparis ® (Montazerian et al., 2015). Wollastonite, which is found in nature, is also known as calcium silicate (CaSiO₃) and has been widely studied due to its beneficial application in ceramic, dental implant, architecture, and construction where these materials are used as floor materials as a substitute the granite and natural marble (Boccaccini et al., 2000; Lu et al., 2014). The fundamental feature of this material is curved panels and big flat can be produced commercially (Perez et al., 2012; Teixeira et al., 2014a).

Conventionally, wollastonite based glass-ceramic was produced from SiO₂-CaO-Al₂O₃ glass system through controlled surface crystallization. Such glass-ceramic materials may show specific visual impacts and other major characteristics, such as better hardness than natural stones, good strength, low shrinkage, absence of volatile constituents, fluxing characteristics, body permeability, whiteness, zero water absorption and low density (Zhang et al., 2013; Liu et al., 2014a). It is fabricated on a massive scale and is utilized as floor coating outside as well as interior of a building. One major advantage of wollastonite based glass-ceramics material over natural stones is that it can be fabricated to produce big flat and curved panels. Wollastonite begins to crystallize at temperatures above 950 °C as the wollastonite phase (triclinic) begins to emerge. As the temperature increases, the formation of needle-like β-wollastonite (monoclinic) through the glass surface in the direction of the inner grain of the glass increases, so that the compound produced is similar to marble or granite due to variation in light diffraction indicators between the glass and the crystals in the matrix (Holland et al., 2002). At higher temperature, α-wollastonite (monoclinic, pseudo-wollastonite) with grainy crystalloid morphology with obscure crystals, are formed (Holland et al., 2002).

In many countries, industrial by-product, fly ash, or slag ash are employed as base materials in the ceramic industry to produce glass-ceramic (Rawlings et al., 2006; Lunip et al., 2016). This process relies on waste composition and additives, which generally consists of impurities and secondary components. Interest in soda lime silica (SLS) glass waste is by virtue of its constitution and the large amount of SLS manufactured in Malaysia. This glass makes up a large portion of domestic waste. Amongst the conventional glasses, SLS glass is known as the most typical commercial glass merchandise that comprise up to 90 - 95% of the glass produced throughout the world (Sinton et al., 2001). These types of glasses are commonly used since they have a virtuous glass-forming characteristics in comparison to other
typical glass systems. SLS glasses are usually used for making windowpane, glass containers, flat glasses, packaging and insulating materials, bioactive materials, and building material. Consumption of raw materials decreases when SLS glass is recycled, thus yielding economic and environmental benefits (Juoi et al., 2013; Zaid et al., 2015). Preparation of wollastonite using high purity silicon dioxide (SiO₂) powder is costly and its synthesis requires a high temperature. Therefore, SLS glasses are chosen as a substitute for SiO₂ source as it can reduce production cost and has the benefit of being an attractive host matrix due to its good mechanical and optical properties, such as high transparency, perfect chemical stability, high thermal stability, and low melting point (Zaid et al., 2011).

One of the primary concern in rare earth doped glasses is in defining the dopant environment. Hypersensitive transitions has been discovered in the spectra of all rare earth ions (Eraiah, 2006). The rare earth ion Sm₂O₃ may be employed as a dopant in various crystal hosts as well as glass hosts. By doping rare earth ions, the structural and optical properties of glasses can be improved and obtaining optimized concentrations is challenging in laser glass research, Raman studies suggested that Sm₂O₃ could modify the properties of glass, these glasses are expected to give interesting application in the field of optics. Notable improvements of optical and structural properties due to the doping samarium ions are evidenced (Reddy et al., 2017).

To the extent of the author’s knowledge studies on the optical properties of wollastonite based glass-ceramics are very limited. In this work, the fabrication of wollastonite based glass-ceramics through controlled sintering of prepared CaO-SLS glasses is discussed. The synthesis of Sm₂O₃ doped wollastonite-based glass ceramic using waste materials in different weight percentages (1-5 wt. %) of Sm³⁺ through the conventional melt-quenching method was studied. The crystallization process was studied using the Fourier transform infrared reflection (FTIR) spectroscopy, X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). The glass and the derived glass-ceramics were characterized by studying their physical, optical, and structural properties, including their optical band gap. The primary usefulness of the CaO-SLS glass system in comparison to the normal CaO-SiO₂ glass system is that the processing and melting as well as temperature will be reduced substantially. This reduces the production cost for this glass-ceramic. In fact, the core idea of this article is the blending and description of wollastonite based glass-ceramic derived from CaO-SLS glass system doped with samarium oxide.

1.2 Problem Statement

Over the last few years, many research of rare earth doped glasses has been given a lot of focused by reason of their extensive utilization in the optical areas, such as optical switches for laser, sensor, and optical communication (Maheshvaran et al., 2011). The most important concern with rare earth doped glasses is in defining the dopant effect on the host materials (Eraiah, 2006). Manjunatha et al. (2013) has
analyzed the structure, morphology, and optical characteristics of Sm$^{3+}$ doped CdSiO$_3$. However, no much work has been done with regard to wollastonite glass and its optical properties, and only a few studies regarding it has been published, while no studies on samarium oxide has been published, and due to the uses of Sm$_2$O$_3$ in optical and infrared absorbing glass to absorb infrared radiation, Sm$_2$O$_3$ was doped to wollastonite in this study.

There is, however, a scarcity of information on the effects of wollastonite doped transition metals on soda lime silica (SLS) glass as a source of silica, SiO$_2$. The majority of researchers employed pure SiO$_2$ as a base material in the blending process. Substituting SLS for SiO$_2$ as a source of silica to produce wollastonite could also help reduce the problem of solid waste disposal in Malaysia. On average, every Malaysian produce approximately 1.2 kg of waste each day. Wastes are generated in various forms, such as paper, glass, construction material, wood, plastic, food scrap, and aluminum. In Malaysia, these wastes are sent to landfill or incineration center. The volume of solid waste produced in the country has increased to 33,000 tons in 2013 from the 19,000 tons generated in 2005; 3% of the total waste is composed of glass materials.

Many of the previous studies used preparation methods such as hydrothermal method and sol-gel methods rather than solid-state method. This is because solid-state method requires the use of high amount of thermal or electrical energy and the resulting products have morphologies that are limited to agglomerated shapes. However, due to the complexity and high cost of these new fabrication methods, it would be difficult to commercialize samarium oxide (Cho and Chang, 2003). On the other hand, a solid-state method offers several advantages over other methods. For examples, this method of producing wollastonite is less complex and is able to produce wollastonite on a large scale, hence saves time and energy and reduce production cost. The crystallinity of wollastonite produced using the solid-state method is considerably higher than those prepared using hydrothermal and solvothermal methods (Takesue et al., 2009). Due to the important usages of wollastonite as building materials, thus, in this study, wollastonite doped samarium oxide was prepared using SLS glass as a source of SiO$_2$ by using conventional solid-state method.

1.3 Hypotheses

Wollastonite has beneficial application in ceramic, architecture, and construction where these materials are used as floor materials.

The density of the samples will be increased with increasing the sintering temperatures due to decreasing the pore size of the glass-ceramic samples and increased the densification, also it will be increased with increasing the concentration of Sm$_2$O$_3$ due to the addition of modifier oxide which breaks up the Si–O–Si linkage,
and increase the free space in the glass network. Para wollastonite β-CaSiO$_3$ will be formed at temperatures 900 °C and above and the crystallinity of the glass-ceramic samples will be improved at high sintering temperatures. The grain sizes of the samples will be increased with increasing the sintering temperatures and with increasing the concentration of Sm$_2$O$_3$. The energy band gap of the samples will be increased with increasing the sintering temperatures due to the increase of sizes and number of the crystals formed also it will be increased with increase the concentration of Sm$_2$O$_3$.

1.4 Objectives of the Study

The objectives of this study can be summarized as follows:

1) To synthesis wollastonite doped samarium oxide based glass-ceramics by using conventional melt quenching method followed by sintering method.
2) To study the effect of different sintering temperatures on the physical, structural, and optical characteristics of wollastonite based glass-ceramics
3) To examine the effect of Sm$^{3+}$ doping on the physical, structural, and optical characteristics of wollastonite based glass-ceramics.

1.5 Scope of the Research

The sphere of the research are:

1. Wollastonite doped samarium oxide, CaSiO$_3$:Sm$^{3+}$, is prepared using SLS glass, CaO, and Sm$_2$O$_3$ powder based on the stoichiometric equation $[(\text{CaO})_{0.21}(\text{SLS})_{0.79}]_{1-y} [\text{Sm}_2\text{O}_3]_y$, where $y = (0,1,2,3,4,5)$ wt.% using conventional solid state method. All starting materials will be used as reference materials.
2. The sintering temperatures for producing CaSiO$_3$:Sm$^{3+}$ varies between 700 °C and 1100 °C.
3. The structure, bonding and morphology of the CaSiO$_3$:Sm$^{3+}$ will be characterized using XRD, FTIR and FESEM respectively.
4. The optical properties, namely band gap of the samples, will be measured using UV-Vis spectroscopy.
1.6 Importance of the Study

This study focuses on wollastonite, or CaSiO$_3$, since it is used in the production of ceramics for use as sanitary ware and tableware. More recently, wollastonite is being used in electrical application as high voltage insulator (Puntharod et al., 2013). Researchers are currently working on improving the properties of wollastonite as a material for bio-ceramics and biomaterials, for example artificial bond, antibacterial growth, and as a platform for regeneration of hard tissue (Ortega et al., 2010; Magallanes et al., 2011).

1.7 Outline of the Thesis

This thesis is organized as follows. Chapter 1 presents an introduction to wollastonite doped with samarium oxide, problem statements, objectives, scope, and significance of the study. Previous and current works done by other researchers throughout the world are discussed in Chapter 2. Chapter 3 explains the methods used to prepare wollastonite doped with samarium oxide and the characterization method. Chapter 4 discusses and analyzes the effect of the content of samarium and sintering temperatures on the physical, structural and optical properties of wollastonite doped with samarium oxide. Lastly, Chapter 5 presents the conclusion of the study and suggestions for upcoming works.
REFERENCES

